

Supplemental Material

© Copyright 2021 American Meteorological Society (AMS)

For permission to reuse any portion of this work, please contact

permissions@ametsoc.org. Any use of material in this work that is determined to be “fair

use” under Section 107 of the U.S. Copyright Act (17 USC §107) or that satisfies the

conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not

require AMS’s permission. Republication, systematic reproduction, posting in electronic

form, such as on a website or in a searchable database, or other uses of this material,

except as exempted by the above statement, requires written permission or a license

from AMS. All AMS journals and monograph publications are registered with the

Copyright Clearance Center (https://www.copyright.com). Additional details are provided

in the AMS Copyright Policy statement, available on the AMS website

(https://www.ametsoc.org/PUBSCopyrightPolicy).

http://www.ametsoc.org/PUBSCopyrightPolicy
mailto:permissions@ametsoc.org
https://www.copyright.com/
https://www.ametsoc.org/PUBSCopyrightPolicy

Supplemental Material:
KDP Algorithm Descriptions

This supplemental material provides more detailed descriptions of the KDP estimation al-
gorithms described in the manuscript. The information provided here comes from associated
publications or code documentation (if available), and by our interpretation of the source
code for each algorithm. Here, ΦDP represents the propagation differential phase shift, δ is
the phase shift imparted on backscatter, and ΨDP is the total differential phase shift pro-
duced by the combination of ΦDP, δ, and any phase shift imparted by the radar itself. KDP

represents the specific differential phase. None of the algorithms described below explicitly
calculate δ, but if the resulting smoothed ΦDP field is monotonic and appears to correctly
smooth the noisy, observed ΨDP field, users can estimate δ through analyzing the difference
between the processed ΦDP field and the observed ΨDP field.

1 phase proc lp (Giangrande et al. 2013)

Here we briefly summarize the “phase proc lp” linear programming algorithm described fully
in Giangrande et al. (2013). We relate the algorithm description to the tunable parameters
available within the Py-ART phase proc lp function in an attempt to clarify the purpose of
these various tuning parameters. In its basic form, linear programming seeks to optimize a
linear function while simultaneously maintaining previously defined constraints on the linear
function. In this algorithm, the authors aim to minimize the L1 norm (L1), which can be
thought of as minimizing the sum of the magnitudes of vectors in space. For processing ΨDP

the authors define the following minimization problem:

L1 =
n∑

i=1

= |xi − bi| (1)

where b represents the ΨDP data to be processed and x represents the “fitted” data. Thus,
the authors attempt to minimize the difference between the processed differential phase data
and the ΨDP data measured by a weather radar. By minimizing this difference, the authors
determine the optimal values of x. This minimization problem can be expressed as an LP
problem through the following matrix equation:

Axc ≥ b (2)

1

or, equivalently  In −In
In In

Zn−4,n Mn−4,n


︸ ︷︷ ︸

A

[
z
x

]
︸︷︷︸
xc

≥
[
−b
b

]
︸ ︷︷ ︸

b

(3)

The first two rows of A serve to split up the absolute values in the minimization problem
above, such that we now have two equations (zi ≥ xi − bi; zi ≥ −xi + bi) in matrix form.
In represents an n by n identity matrix. Mn−4,n(shown below) is a n− 4 by n matrix that
implements a five-point Savitzky-Golay second-order derivative filter intended to reduce
instrument noise. The coefficients of the filter are: −0.2,−0.1, 0.0, 0.1, 0.2. The authors
require that the resulting derivative of each application of the Savitzky-Golay filter be non-
negative to enforce monotonicity. The matrix is n− 4 by n because the filter is not applied
to the edge of the data array.

Mn−4,n =

−0.2 −0.1 0.0 0.1 0.2 06 . . . 0n
...

...
...

...
...

...
...

...
01 . . . 0n−5 −0.2 −0.1 0.0 0.1 0.2

 (4)

The Zn−4,n matrix is an n− 4 by n matrix of zeroes. Combined, Axc − b ≥ 0 contains all
the constraints for the applicable LP problem. To solve this LP problem, the authors make
use of the concept of duality (summarized in Ch. 6 of Bazaraa et al. 2010). For each primary
LP problem (the primal), there exists a “dual” LP problem that is maximized as the primal
is minimized. In this case:

Primal: Minimize c · xc subject to Axc ≥ b,xc ≥ 0
Dual: Maximize w · b subject to wA ≤ c,w ≥ 0

where c is a vector of length 2n comprising cost coefficients c = {11, . . . , 1n, 0n+1, . . . , 02n}
that act as a dot product to sum the elements of z. The primal and dual can be solved
simultaneously, as they should approach the same solution such that c · xc = w · b. This
problem is solved via an open source package that uses the simplex method (Dantzig 1998).
The specific package used to solve this problem can be defined by the user, as the algorithm
provides three options.

Once the optimal values of x are found, a Sobel window is applied to the data to calcu-
late the final KDP profile. The length of this window can be defined by users, with the
default value set to 35. This value corresponds to the number of gates used in the filter
window, and therefore corresponds to the number of coefficients used.

Along with the ability to change the length of the Sobel window, the algorithm also al-
lows the user to decide if they want to take advantage of self-consistency constraints. To
implement self-consistency constraints, the primal constraint b ≥ 0 is adjusted such that b
is now dependent on ZH . In this case, bi ≥ KDP(Zi) = aZb, or within the code the rela-
tionship is KDP = (100.1Z)coef . The coefficient, “coef”, can be defined by the user, but the
default is set to 0.914. Users can change this coefficient to change the amount of constraint

2

ZH has on KDP, or they can set it such that it matches theoretical expectations for the
relationships between ZH and KDP. The self consistency factor can also be used to deter-
mine how much weight the relationship between ZH and KDP has in the final solution. The
default value for this factor is 6× 104. In analysis not shown, we varied the factor from 0 to
1.8× 105, increasing by a factor of 2× 104. Setting this value smaller than about 4× 104 led
to degraded results. Discontinuous fields can be assigned zero weight within the cost func-
tions such that missing data does not affect the KDP estimation. In this case, missing data
points do not influence the ΦDP estimation and no processed data is assigned to these points.

Within the algorithm, the “fzl” parameter is intended for users to define the height at
which the 0◦C level is located. Any ΨDP values above this level are not processed because
the monotonicity constraint breaks down in the mixed phase. In addition, there exists a
“high z” threshold meant to serve as a cap on ZH that prevents hail from contaminating the
KDP estimate. The authors suggest a cap between 50-53 dBZ, with the default value in the
algorithm being 53 dBZ. Any value above the defined threshold is set to that threshold within
the algorithm to ensure that self consistency between KDP and ZH is not contaminated by
hail. Minimum thresholds also exist for the polarimetric variables (“low z”,“min phidp”,
“min ncp”, “min rhv”) to serve as another way to initially process the data. Any values
below these minimum thresholds are set to the minimum threshold. Users may also define
the system differential phase (“sys phase”) to prevent error due to system differential phase
offsets. The algorithm returns both the KDP estimate as well as a processed (or smoothed)
ΨDP field.

2 FIR Filter (Hubbert and Bringi 1995)

The appendix in Hubbert and Bringi (1995) describes an iterative technique that uses a fi-
nite impulse response (FIR) filter to remove δ and smooth the ΦDP field. Because our study
assumes no δ, we simply apply the FIR filter once to our idealized tests. We describe our
methodology here.

There are 21 coefficients in the Hubbert and Bringi (1995) FIR filter, meaning that 21
range gates are included within each application of the filter along a radial. The center point
of the 21-point filter is the one being processed, and therefore the location in the radial at
which a ΦDP value is being calculated. Each of the 21 range gates included in the filter are
multiplied by their respective coefficient. The 21 resulting values are then summed together
and normalized by the sum of the FIR filter coefficients. Once this is complete, KDP is
estimated as half the slope of the processed ΦDP field. The FIR coefficients are listed below
in Table 1.

3

Table 1: FIR filter coefficients as specified in Hubbert and Bringi (1995)

FIR Filter Coefficients

1) 1.625807356× 10−2 12) 6.718151185× 10−2

2) 2.230852545× 10−2 13) 6.476934523× 10−2

3) 2.896372364× 10−2 14) 6.089991897× 10−2

4) 3.595993808× 10−2 15) 5.578764970× 10−2

5) 4.298744446× 10−2 16) 4.971005447× 10−2

6) 4.971005447× 10−2 17) 4.298744446× 10−2

7) 5.578764970× 10−2 18) 3.595993808× 10−2

8) 6.089991897× 10−2 19) 2.896372364× 10−2

9) 6.476934523× 10−2 20) 2.230852545× 10−2

10) 6.718151185× 10−2 21) 1.625807356× 10−2

11) 6.800100000× 10−2

3 kdp schneebeli (Schneebeli et al. 2014)

Schneebeli et al. (2014) use a discrete Kalman filter (KF) to process observed ΨDP data. A
discrete KF is based on the following equations:

z(i) = Fis(i) + εz(i) (5)

s(i+ 1) = Tis(i) + εs(i) (6)

In Eq. 5, the state s(i) is related to a set of observations z(i) through a linear model,
called the observational model F. In simpler terms, the state variables are converted to
“observation space” through F. εz(i) encompasses errors due to this observation model as
well as those from measurement noise. Eq. 6 represents the forward propagation of the
state from location i to i + 1 via the transition matrix, T. εs(i) represents the error due to
uncertainty in the forward propagation that takes place through this T matrix. Between the
propagation step established in Eq. 6, KF methods call for the calculation of an a posteriori
state s(+) from an a priori state s(−). The a priori comes from Eq. 6, where s(i) is the a

4

posteriori state at (i− 1). In other words, Eq. 6 is applied as s(−)(i) = Tis
(+)(i− 1) + εs(i) .

The a posteriori can then be calculated through:

s(+)(i) = s(−)(i) + Ki[z(i)− Fs(−)(i)] (7)

Ki represents the Kalman gain, which is defined by the following equation:

Ki = P
(−)
s(i)F

T[FP
(−)
s(i)F

T + C(εz(i))]
−1 (8)

Where P
(−)
s(i) is the error covariance associated with the a priori state and P

(+)
s(i) is associated

with the a posteriori state. These covariance matrices are calculated as follows:

P
(−)
s(i) = TP(+)

si−1
TT + C(εs(i)) (9)

P
(+)
s(i) = (I−KiF)P

(−)
si (10)

C(εs(i)) and C(εz(i)) represent the covariance matrices associated with εs(i) and εz(i) respec-
tively.

When applied to polarimetric radar data, z includes variables measured by the radar and
s encompasses all quantities we are attempting to retrieve. Variables with a “∼” represent
the variable at the next location (i+ 1) when our current location is (i).

z(i) =

ΨDP(i)

Ψ̃DP(i)
c

 (11)

s(i) =


KDP(i)
δ(i)

ΦDP(i)

Φ̃DP(i)

 (12)

The following relationships are used to relate the values observed in z to those in s.

ΨDP(i) = Φ̃DP(i)− 2∆rKDP(i) + δ(i) (13)

Ψ̃DP(i) = ΦDP(i) + 2∆rKDP(i) + δ(i) (14)

c = δ(i)− bKDP(i) (15)

This information can be placed into matrix form through the observational model, F:

F =

−2∆r 1 0 1
2∆r 1 1 0
−b 1 0 0

 (16)

Equations 13 and 14 come from the relationship between ΨDP and KDP. Equation 15 links
KDP with δ. The values of c and b are calculated through fitting linear functions to a scatter
plot of KDP and δ. The scatter plot is created through utilizing a large dataset of simulated

5

DSD fields and applying T-matrix scattering calculations (Mischenko and Travis 1998) to
these DSDs. The resulting relationship changes between differing radar wavelengths. The
following relationships are used within the KDP algorithm:

X band : δfit =

{
2.37KDP + 0.054, KDP ≤ 2.5◦km−1

0.27KDP + 6.16, KDP > 2.5◦km−1

S band : δfit =

{
0.19KDP + 0.024, KDP ≤ 1.1◦km−1

0.019KDP + 0.15, KDP > 1.1◦km−1

C band : δfit =

{
0.53KDP + 0.036, KDP ≤ 2.5◦km−1

0.15KDP + 1.03, KDP > 2.5◦km−1

To propagate the system forward, the authors make a few important assumptions defined in
the following equations:

KDP(i+ 1) = KDP(i) (17)

δ(i+ 1) = δ(i) (18)

ΦDP(i+ 1) = Φ̃DP(i) (19)

Φ̃DP(i+ 1) = Φ̃DP(i) + 2∆rKDP(i) (20)

This information can be applied in matrix form through the transition matrix, T:

T =


1 0 0 0
0 1 0 0
0 0 0 1

2∆r 0 0 1

 (21)

The simulated DSD dataset is also used to calculate the covariance matrices C(εs(i)) and
C(εz(i)). Polarimetric radar T-matrix scattering calculations (described in Mishchenko and
Travis 1998, not to be confused with the KF transition matrix above) provide polarimetric
output for the simulated DSD fields. The forward transition matrix can be tested and its
errors expressed through the following equation:

εs(i) = strue(i)−Tstrue(i− 1) (22)

The combined DSD and T-matrix simulations can also be used to define εz(i). In this case,
observations are created through adding artificial noise to the calculated ΨDP profile. The
error due to noise and the observation model can be calculated from:

εz(i) = znoisy(i)− Fstrue(i) (23)

The authors then use a large ensemble of these error vectors to create the covariance matri-
ces C(εs(i)) and C(εz(i)). The Py-ART algorithm provides users the option to use their own
covariance matrices through the “rcov” and “pcov” parameters.

6

To process ΨDP data and produce ΦDP and KDP for the entire radar volume, the KF is
applied to each range gate along a radial, for each radial in the polarimetric radar profile.
The KF is applied in the forward direction and then again in the backward direction to
account for errors due to the assumption that KDP(i) = KDP(i+ 1). This application of the
KF in the forward and backward direction is applied multiple times, where the C(εs(i)) is
varied with a set of factors defined by a = 10b where b = −1,−0.8,−0.6, . . . , 0.8, 1.0. This
is done to ensure that the variability of the state from one range gate to the next is not
constant throughout the KF application. The result of this methodology is an ensemble of
forward and backward KF applications, defined by the scaling factor on C(εs(i)).

The authors found that forward application of the KF produces better results for cases
where KDP is increasing and the opposite is true for cases where KDP decreases. For this
reason, rather than averaging the forward and backward KF results for each ensemble mem-
ber, the authors set up criteria for choosing one to use. To determine if KDP is increasing
or decreasing, the authors compute the ensemble mean and compare the ensemble mean at
location i to location i + 1. According to Schneebeli et al. (2014), if the difference is less
than or equal to −0.1◦km−1, the forward KF result is used for location i. If this difference is
greater than or equal to +0.1◦km−1, then the backward KF results are used. If the difference
falls between -0.1 and +0.1◦km−1, the average of the forward and backward values is used.
An analysis of the Py-ART algorithm shows that these thresholds are set to -0.15 and 0.15
in the open-source software.

Finally, to calculate the final KDP value from the ensemble, the average of a specific set
of ensemble members is taken. The standard deviation is used to determine how many
ensemble members are used in this average, where large standard deviations warrant more
ensemble members. The mean is used to determine which ensemble members are included.
For example, if the mean value is larger, then ensemble members with larger scaling factors
are chosen because they have larger covariance matrices and allow for larger variation be-
tween range gates.

The algorithm assumes that the effects of differential phase folding, ground clutter, and
low signal-to-noise ratio are already accounted for prior to its application. Regions where
ΨDP is not measured (e.g., regions of no rain) or where it is discontinuous are interpolated
linearly and then noise is added to the interpolated field to maintain a consistent field for the
KF. The resulting KDP estimates are then removed for regions where ΨDP was not measured.
To account for filtering at the beginning and end of each radial, synthetic data is created to
spin up the KF prior to the application of the KF to an observed gate.

4 kdp maesaka (Maesaka et al. 2012)

This method assumes that ΦDP has already been unfolded and is only applicable in pure
rain. For this reason, this methodology should only be applied below the melting level. To
calculate KDP from ΦDP, a cost function minimization is used. The cost function is bounded

7

by the observed ΨDP field. To determine the boundary values, linear regression is applied
to a set number of gates at the beginning and end of the ΨDP radial, corresponding to the
“near” and “far” boundary conditions, respectively. If the fitted line has a positive slope,
the linear regression value at the beginning of the radial is assigned to the near boundary
condition, and the value at the end of the radial is assigned to the far boundary condition.
If the linear regression line is negative, an average of the data points is taken and used for
the boundary condition.

The authors define the following cost function:

J = Jobs + J ′obs + Jlpf (24)

The first two terms of the right hand side of the cost function serve to fit the processed ΦDP

profile to the observed ΨDP data. Therefore Jobs and J ′obs are defined as the mean square
errors between ΨDP and the analyzed ΦDP field:

Jobs =
1

N

N∑
i=1

(φi − ψi)
2 (25)

J ′obs =
1

N

N−1∑
i=0

(φ′i − ψ′i)2 (26)

The prime in J ′obs denotes terms that deal with the “far” boundary condition, whereas
Jobs and its corresponding terms deal with the “near” boundary condition. This is better
understood through the following definitions:

φi = (ΦDP)i − Φnear (27)

φ′i = Φfar − (ΦDP)i (28)

ψi = Ψi − δi − Φnear (29)

ψ′i = Φfar −Ψi + δi (30)

The kdp maesaka algorithm does not compute δ, and thus allows users to define δ. If no
δ is defined by users, then it is set to zero for all range gates. Because KDP is the range
derivative of ΦDP, the authors further define the following relationships:

φ′N = 0 (31)

φ0 = 0 (32)

φ′i = 2
N∑

j=i+1

(KDP)j∆r

=
N∑

j=i+1

k2j , (i = 0, 1, 2, . . . , N − 1)

(33)

8

φi = 2
i−1∑
j=0

(KDP)j∆r

=
i−1∑
j=0

k2j , (i = 1, 2, 3, . . . , N)

(34)

k2i = 2(KDP)i∆r (35)

The third term in the cost function (Jlpf) functions as a low pass filter. It is defined as the
mean square of the Laplacian of k:

Jlpf =
1

N + 1
Clpf

N∑
i=0

(
∂2ki
∂r2

)2 (36)

The parameter Clpf determines how much of an effect the low pass filter has on the final
solution. When Jlpf is larger than Jobs + J ′obs, the result is a smoother profile. With this
idea in mind, it can be understood that larger Clpf values support smoother profiles. The
Py-ART algorithm provides users the opportunity to change the Clpf parameter values such
that they control the amount of smoothing applied by the algorithm.

The overall goal of this methodology is to minimize the cost function with respect to k,
where KDP is calculated from the final k profile. The algorithm offers users various tunable
parameters related to minimizing this cost function. First, the “method” used to solve the
cost function refers to the Python package used to solve the cost function. Maesaka et al.
(2012) describes the use of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, but
the default choice within the algorithm itself does not align with that described in Maesaka
et al. (2012). Instead, an algorithm available through another Python package that is faster
than the BFGS algorithm is used. The “length scale” ensures the magnitude of the Clpf value
aligns with the observed data. For example, when length scale is not defined by the user, it
is set to the radar range resolution. Users can define a “first guess” for the cost function,
which should be close to 0 since KDP should be assumed to be 0 everywhere initially. To
avoid problems with the cost function, though, it should be set to something slightly larger
than 0; the default is 0.01. The “finite order” parameter allows users to determine finite
difference accuracy when the algorithm computes derivatives. The “maxiter” parameter
refers to the maximum number of iterations performed when minimizing the cost function.
This maximum number is only met if the cost function does not converge on a solution in
sufficient time.

5 calc kdp bringi (Lang et al. 2007)

Available at https://github.com/CSU-Radarmet/CSU_RadarTools,the CSUKDP algorithm
offers a relatively simple solution to the differential phase processing problem. The algorithm
utilizes a finite-impulse filter (FIR) like that in Hubbert and Bringi (1995) and behaves simi-
larly, with the main differences being that the filter length is flexible and ZH is used to assist

9

https://github.com/CSU-Radarmet/CSU_RadarTools

in the KDP calculations (Lang et al. 2007).

The algorithm begins with an initial quality-control process in which the standard devi-
ation of ΦDP is calculated along each radial. The ΦDP threshold (“thsd”) defined in the
function is compared to the calculated standard deviation. If the calculated standard devi-
ation is larger than the threshold, those ΦDP values are masked out. Once the entire field
is quality controlled, a FIR filter is established. The size of the filter and its corresponding
coefficients are dependent on the “window” and “gs” parameters defined in the algorithm
function. The “window” parameter represents the length over which the FIR filter is applied
(in km) and “gs” is the gate spacing (in m). The FIR filter length is determined by divid-
ing the window length by the gate spacing. For example, in the case where the window=3
and gs=150, the FIR filter would be of the 20th order, with 21 total coefficients applied to
21 consecutive range gates. The coefficients of the FIR filter change based on the window
length/gate spacing. The user can define how many times the FIR filter is applied to the
data through the “nfilter” parameter.

Once the ΦDP field has been processed, KDP is calculated by computing one-half the slope
of the processed ΦDP. The window over which the slope is calculated varies based on the
ZH value at the gate of interest. If ZH ≥ 45 dBZ, the window over which KDP is computed
is taken as half of the FIR window size, whereas if 35 ≤ ZH < 45 dBZ , the window size is
twice the halved FIR window length. If ZH < 35dBZ, the window size is 3 times the halved
FIR filter length. Once KDP is calculated at each gate, the algorithm returns the KDP field,
along with the filtered ΦDP field and the standard deviation of ΦDP calculated during the
quality-control process.

6 NWS Operational Algorithm (Ryzhkov et al. 2005)

The operational algorithm used by the U.S. National Weather Service (NWS) to calculate
KDP is partially described in Ryzhkov et al. (2005), and is simple compared to many of the
other algorithms described herein. First, to address the noise within the ΦDP data, a mov-
ing average is used to smooth the ΦDP field. First a 9-gate moving window is applied such
that the average of the 9-gate window is applied to the center value. This is done moving
from the beginning to the end of a radial, producing a smoother ΦDP field. This process is
then repeated using a 25-gate window. KDP is calculated for both the 9-gate and 25-gate
moving average ΦDP fields. To calculate KDP, a least-squares fit line is found using 9 gates
for the 9-gate moving average and 25 gates for the 25-gate moving-average ΦDP field. The
slopes of the least-squares lines are halved to get a KDP value for the center gate of the win-
dow. To calculate the final KDP value for each gate, ZH is consulted. Moving through each
gate of the radial, if ZH < 40 dBZ, the KDP value at the same gate calculated from the 25-
gate moving window is used. If ZH ≥ 40 dBZ, the KDP value from the 9-gate window is used.

We are unaware of literature that discusses how the edges of the radial are treated. For

10

the sake of our analysis, we simply set KDP to 0 for the first 4 and 12 gates of the 9-gate
and 25-gate window KDP calculations, respectively. We then set the last 4 and 12 gates of
the 9-gate and 25-gate moving window to the last computed KDP value in the radial.

7 kdp vulpiani (Vulpiani et al. 2012)

The kdp vulpiani algorithm found in Py-ART is based on the retrieval described in Vulpiani
et al. (2012) and applied in Vulpiani et al. (2015). The algorithm follows a four step process.
First, an initial guess is made through computing the finite difference across the raw, ΨDP

field through the following equation:

K ′DP(rk) ≈ 0.5[ΨDP(rk +
L

2
)−ΨDP(rk −

L

2
)]/L (37)

where L is the window length defined by the user (“windsize” parameter) in gates. The
initial guess is then analyzed and compared to KDP thresholds defined within the algorithm.
The algorithm is designed to work with S-, C-, and X-band radars. The radar wavelength
must be defined within the “band” parameter. The thresholds are meant to limit KDP values
outside the expected, physically possible, KDP. The thresholds are as follows:

X band: -2 to 40◦km−1

C band: -2 to 20◦km−1

S band: -2 to 14◦km−1

We note that KDP values larger than these are possible and have been observed in storms
with large quantities of small, melting hail (Kumjian et al. 2019). If any of the KDP values
acquired by the first guess are smaller or equal to the minimum threshold of -2◦km−1, the
KDP value there is set to 0. If the KDP value is larger than the defined maximum threshold,
the KDP value is also set to 0. This is done to avoid non-physical KDP fluctuation owing to
noise, δ, nonuniform beam filling, and residual artifacts. Vulpiani et al. (2012) also describe
a method in which ΨDP values that are aliased are unfolded at this point in the algorithm,
but the Py-ART implementation of the algorithm assumes that ΨDP has already been pro-
cessed, and therefore does not require any sort of unfolding. We will focus on the algorithm
present within Py-ART. The Py-ART algorithm adds an extra step, not described within
the Vulpiani et al. (2012) paper: after initially filtering the first-guess KDP, a rolling window
standard deviation is calculated over the field. If the standard deviation at a specific gate is
> 5◦km−1, then the KDP value is also set to 0.

Next, ΦDP is reconstructed from the processed KDP field through integrating over the KDP

first guess as follows:

Φ̂DP = 2

∫
K ′DP(s)ds (38)

If the user only desires one iteration of the algorithm, then a final KDP estimate is taken
from this reconstructed ΦDP field through using finite differencing once again. Users may

11

define the number of iterations used within the algorithm through the “n iter” parameter.
If the number of iterations is > 1, then the reconstructed ΦDP field is used for the next guess
of KDP calculated using finite differencing. ΦDP is then reconstructed from this new KDP

guess. This is repeated for n iter, and then a final KDP estimate is made.

References

Bazaraa, M. S., J. J. Jarvis, and H. D. Sherali, 2010: Linear programming and network flows.
4th ed., John Wiley & Sons, 768 pp.

Dantzig, G. B., 1998: Linear programming and extensions, Vol. 48. Princeton university
press, 94-119 pp.

Giangrande, S. E., R. McGraw, and L. Lei, 2013: An application of linear programming
to polarimetric radar differential phase processing. Journal of Atmospheric and Oceanic
Technology, 30 (8), 1716–1729, doi:10.1175/JTECH-D-12-00147.1.

Hubbert, J., and V. N. Bringi, 1995: An iterative filtering technique for the analysis
of copolar differential phase and dual-frequency radar measurements. Journal of Atmo-
spheric and Oceanic Technology, 12 (3), 643–648, doi:10.1175/1520-0426(1995)012〈0643:
AIFTFT〉2.0.CO;2.

Kumjian, M. R., Z. J. Lebo, and A. M. Ward, 2019: Storms producing large accumulations
of small hail. Journal of Applied Meteorology and Climatology, 58 (2), 341–364, doi:
10.1175/JAMC-D-18-0073.1.

Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli,
2007: Radar-observed characteristics of precipitating systems during NAME 2004. Journal
of Climate, 20 (9), 1713–1733, doi:10.1175/JCLI4082.1.

Maesaka, T., K. Iwanami, and M. Maki, 2012: Non-negative KDP estimation by monotone in-
creasing Φdp assumption below melting layer. Extended Abstracts, Seventh European Conf.
on Radar in Meteorology and Hydrology, Toulouse, France, ERAD, [Available online at
http://www.meteo.fr/cic/meetings/2012/ERAD/extended abs/QPE 233 ext abs.pdf.].

Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current fortran
implementation of the t-matrix method for randomly oriented, rotationally symmetric
scatterers. Journal of Quantitative Spectroscopy and Radiative Transfer, 60 (3), 309–324.

Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and
D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements
and hydrometeor classification. Bulletin of the American Meteorological Society, 86 (6),
809–824, doi:10.1175/BAMS-86-6-809.

Schneebeli, M., J. Grazioli, and A. Berne, 2014: Improved estimation of the specific differ-
ential phase shift using a compilation of Kalman filter ensembles. IEEE transactions on
geoscience and remote sensing, 52 (8), 5137–5149.

12

http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/QPE_233_ext_abs.pdf

Vulpiani, G., L. Baldini, and N. Roberto, 2015: Characterization of mediterranean hail-
bearing storms using an operational polarimetric x-band radar. Atmospheric Measurement
Techniques, 8 (11), 4681–4698, doi:10.5194/amt-8-4681-2015.

Vulpiani, G., M. Montopoli, L. D. Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012:
On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous
areas. Journal of Applied Meteorology and Climatology, 51 (2), 405–425, doi:10.1175/
JAMC-D-10-05024.1.

13

	phase_proc_lp (Giangrande et al. 2013)
	FIR Filter (Hubbert and Bringi 1995)
	kdp_schneebeli (Schneebeli et al. 2014)
	kdp_maesaka (Maesaka et al. 2012)
	calc_kdp_bringi (Lang et al. 2007)
	NWS Operational Algorithm (Ryzhkov et al. 2005)
	kdp_vulpiani (Vulpiani et al. 2012)

