W

WAVES TO WEATHER

Introduction to Parallel Computing
Overview of methods

Fabian Jakub!, Oriol Tinto-Prims®, Robert Redl!

!Meteorologisches Institut Miinchen, Ludwig-Maximilians-Universitit Miinchen

™ B war #

A

Overview WAVES TO WEATHER

Topics we will touch

@ Message Passing, e.g. MPI
@ Shared memory parallelization, e.g. OpenMP
@ Cluster environment, here SLURM

@ How to tap into parallel resources from within Python

. -~ Whw
Message Passing vs Shared memory parallelization»+ s o vearnes
Shared memory parallelization, e.g. OpenMP

P @ Spawn multiple threads that act on global memory
! ! ! in parallel
cpPu cPu cpu

@ Parallelization bound to single node (computer)

A

Message Passing vs Shared memory parallelization»+ s o vearnes
Shared memory parallelization, e.g. OpenMP

P @ Spawn multiple threads that act on global memory
! ! ! in parallel
cpPu cPu cpu

@ Parallelization bound to single node (computer)

Message Passing, e.g. MPI
@ Spawn multiple processes, each with own address

MEM MEM MEM Space
! ! ! @ If data exchange needs to happen, send it explicitly
cPU cPU cPU

@ Parallelization can be over any number of nodes as
long as they are able to communicate

A

Message Passing vs Shared memory parallelization»+ s o vearnes

Shared memory parallelization, e.g. OpenMP

MEM

!] !

CPU CPU CPU

Message Passing, e.g. MPI

MEM MEM MEM
! ! !
cPU CcPU CcPU
Others:

@ Spawn multiple threads that act on global memory
in parallel

@ Parallelization bound to single node (computer)

@ Spawn multiple processes, each with own address
space

@ If data exchange needs to happen, send it explicitly

@ Parallelization can be over any number of nodes as
long as they are able to communicate

@ OpenACC (like OpenMP but for GPU’s and accelerators)

@ CUDA / OpenCL (GPU’s)
@ Pthreads, Co-array Fortran

@ ZeroMQ, Celery etc. (message passing queues, higher latency, fault tolerance, ...)

A

What is MPI? WAVES To WEATHER

MPI — the Message Passing Interface is a library
@ Industry standard since 1991
@ Easy but rather low-level API
@ Nothing is shared, if you need something from your neighbor, send it explicitly

@ MPI standards 2 and 3 implement shared memory parallelism and one sided
communication

MPI He"o World! WAVES TO WEATHER

from mpidpy import MPI
import numpy as np

comm = MPI.COMM_WORLD # default communicator for all processes
rank = comm.Get_rank () # get the integer id of this rank
numranks = comm.Get_size () # get the number of ranks in the communicator
N = 6
if rank == # 1if I am the first
workload = np.arange (N) .reshape (numranks, -1) # generate a list of work to for each rank
localtasks = comm.scatter (workload, root=0) # communicate (scatter) from 0 to all
print (f"Hi, I am rank {rank} out of {numranks}", # see who wants to do what

f" and will work on problems {localtasks}")

$> mpirun -np 2 python mpi_example.py
Hi, I am rank O out of 2 and will work on problems [0 1 2]
Hi, I am rank 1 out of 2 and will work on problems [3 4 5]

$> mpirun -np 3 python mpi_example.py
Hi, I am rank 1 out of 3 and will work on problems [2 3]
Hi, I am rank 2 out of 3 and will work on problems [4 5]
Hi, I am rank 0 out of 3 and will work on problems [0 1]

1.copy "halo”
2.local stencil

A

WAVES TO WEATHER

MPI parallelization scheme in NWP models:

split domain (in NWP usually 2D)
exchange borders to update "halo” regions
overlap width depends on stencil size

run local computations

A

What is OpenMP? FAVTS Fo-WrRTIES

OpenMP — Open MultiProcessing is a compiler extension
@ Basically all compilers support it
@ Using comment lines in code (called pragmas) to steer thread creation and data movement
@ available in Fortran, C, C++
@ Newer OpenMP standards target GPU’s and accelerators

A

Process vs. Thread? WAVES To wEATHER

@ Starting a program with a single process
@ Each process has its own address space
@ A process can spawn one or multiple threads

@ Threads share address space but have unique instruction and stack pointers

OpenMP Hello World!

#include <stdio.h>
#include <omp.h>

int main() {

#pragma omp parallel // generate parallel environment
{

const int myid = omp_get_thread_num();

const int numthreads = omp_get_num_threads();

fprintf (stderr, "Hi, I am thread %d of %d\n", myid, numthreads);
}

return 0;

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=3 ./a.out
Hi, I am thread 0 of 3
Hi, I am thread 2 of 3
Hi, I am thread 1 of 3

WAVES TO WEATHER

WAVES TO WEATHER

OpenMP CumSum!

const int N=1000;

int
int
for

int

// lets compute a cumulative sum

serial_sum = 0;
serial_sum += 1i;

threaded_sum = 0;

#pragma omp parallel for

for

}

// parallel for loop, barrier afterwards

threaded_sum += i;

fprintf (stderr,

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=1

(expected %d)\n", N, threaded_sum,

cumsum (1000)

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=10

(expected 499500)

cumsum (1000)

(expected 499500)

OpenMP CumSum! WEves To-wraTEs

const int N=1000; // lets compute a cumulative sum

int i;
int serial_sum = 0;
for (i=0; 1i<N; ++i) serial_sum += i;

threaded_sum = 0;
#pragma omp parallel for private (i) reduction(+: threaded_sum)
for (i=0; 1i<N; ++1i) {

threaded_sum += i;

}

fprintf (stderr, "cumsum(%d) = %d (expected %d)\n", N, threaded_sum, serial_sum);

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=1 ./a.out

cumsum (1000) = 499500 (expected 499500)

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=10 ./a.out

cumsum (1000) = 499500 (expected 499500)

OpenMP vs. MPI

Which one to use is very dependent on your situation!
@ OpenMP easier to introduce in established codebase

@ MPI scales across nodes but needs some thought beforehand

And not exclusive — Hybrid OpenMP & MPI
@ OpenMP for intra node parallelization and or GPU’s
@ MPI across nodes

A

WAVES TO WEATHER

A

OpenMP vs. MPI waves To weaTnes

Which one to use is very dependent on your situation!
@ OpenMP easier to introduce in established codebase

@ MPI scales across nodes but needs some thought beforehand

And not exclusive — Hybrid OpenMP & MPI
@ OpenMP for intra node parallelization and or GPU’s
@ MPI across nodes

My personal opinion:
@ OpenMP: race conditions hard to debug
@ OpenMP: getting good scaling wrt to memory access is wicked difficult
@ MPI-2 has shared mem support
@ Message Passing as compute model is far easier to understand

@ [have never seend speed gains from OpenMP over MPI

'P'
Threading in Python

WAVES TO WEATHER

Python threads are not OS level threads!
@ Concurrency vs. Parallelism

@ concurrency allows context switches if process is waiting for external resources (e.g. yield
co-routine waiting for network response)

@ in contrast parallelism is doing things at the same time

@ Python threads only allow concurrency because of the Global Interpreter Lock (GIL)

More often you probably want true (in Python process based) parallelism
@ multiprocessing

@ concurrent.futures
@ joblib

@ dask

@ ipyparallel

Python ProcessPoolExecutor WAYES Fo-WELTHER

from concurrent.futures import ProcessPoolExecutor
import os

def do_the_hard_work (data) :
return sum([ix%x0.12345 for i in range (data) 1)

work = range (10000)

with ProcessPoolExecutor (int (os.environ['OMP_NUM_THREADS'])) as pool:
output = pool.map (do_the_hard_work, work)

total = sum(output)

print (f'Sum: {total}')

$> OMP_NUM_THREADS=1 time python3 pool_example.py
0:06.93 elapsed

$> OMP_NUM_THREADS=10 time python3 pool_example.py
0:02.24 elapsed

A

Submitting jobs to the cluster WAVES To weaTHER

run a job interactively on the cluster:

$> srun
-N —--nodes=1 # number
-n ——ntasks=1 # number
-c —--cpus-per-task=4 # number
—-mem=4G # memory
——-mem-per—-cpu=1G # memory
<script/binary> #
<commandline args> #

of nodes (computers) the job should be distributed (MPI)
of MPI ranks (MPI)

of CPU's per task (sets OMP_NUM_THREADS)

needs per node

needs per CPU

program to run
options to give to the program

A

Submitting jobs to the cluster WAVES To weaTHER

alternatively for long running jobs:

$> cat > myjob.slurm << EOF
#!/bin/bash

#SBATCH -0 myjob.%j.log
#SBATCH --mail-type=fail
#SBATCH —--mail-user=Fabian.Jakub@physik.uni-muenchen.de
#SBATCH --time=24:00:00
#SBATCH --mem=15G

#SBATCH -n 256

#SBATCH -N 1-24

module load spack gcc openmpi
srun mybinary --foo=bar

EOF

$> sbatch myjob.slurm # submit job script to cluster

A

Bash parallel execution S AvEs To-WExTIEE

MODELBINARY=sleep
MPIEXEC=srun
JoBS="1 2 3"

pids=()

jobnr=0

for J in $JOBS; do
(SMPIEXEC SMODELBINARY $J) &
pids[${jobnr}]=5!
jobnr=$ (($jobnr +1))

done

allow hitting CTRL-C to cancel the running background jobs
trap 'for pid in ${pids[%]}; do echo "kill $pid"; kill ${pid}; done' EXIT

wait for all background processes before proceeding
for pid in ${pids[x]}; do echo "waiting for job $pid to finish"; wait $pid; done

echo "Finished all jobs"

A

Recap WAVES To wEaTHER

We had a very brief overview on:
@ Message Passing, e.g. MPI
@ Shared memory parallelization, e.g. OpenMP
@ How to tap into parallel resources from within Python
@ Cluster environment, here SLURM

There ain’'t no such thing as a free lunch!
@ Choosing a feasible approach is important but not always easy.

@ Before you try something it is always worthwhile to ask colleagues.

