
Introduction to Parallel Computing
Overview of methods

Fabian Jakub1, Oriol Tinto-Prims1, Robert Redl1

1Meteorologisches Institut München, Ludwig-Maximilians-Universität München

Overview

Topics we will touch

Message Passing, e.g. MPI
Shared memory parallelization, e.g. OpenMP
Cluster environment, here SLURM
How to tap into parallel resources from within Python

Message Passing vs Shared memory parallelization
Shared memory parallelization, e.g. OpenMP

MEM

CPU CPU CPU

Spawn multiple threads that act on global memory
in parallel
Parallelization bound to single node (computer)

Message Passing, e.g. MPI

MEM

CPU CPU CPU

MEM MEM

Spawn multiple processes, each with own address
space
If data exchange needs to happen, send it explicitly
Parallelization can be over any number of nodes as
long as they are able to communicate

Others:
OpenACC (like OpenMP but for GPU’s and accelerators)
CUDA / OpenCL (GPU’s)
Pthreads, Co-array Fortran
ZeroMQ, Celery etc. (message passing queues, higher latency, fault tolerance, ...)

Message Passing vs Shared memory parallelization
Shared memory parallelization, e.g. OpenMP

MEM

CPU CPU CPU

Spawn multiple threads that act on global memory
in parallel
Parallelization bound to single node (computer)

Message Passing, e.g. MPI

MEM

CPU CPU CPU

MEM MEM

Spawn multiple processes, each with own address
space
If data exchange needs to happen, send it explicitly
Parallelization can be over any number of nodes as
long as they are able to communicate

Others:
OpenACC (like OpenMP but for GPU’s and accelerators)
CUDA / OpenCL (GPU’s)
Pthreads, Co-array Fortran
ZeroMQ, Celery etc. (message passing queues, higher latency, fault tolerance, ...)

Message Passing vs Shared memory parallelization
Shared memory parallelization, e.g. OpenMP

MEM

CPU CPU CPU

Spawn multiple threads that act on global memory
in parallel
Parallelization bound to single node (computer)

Message Passing, e.g. MPI

MEM

CPU CPU CPU

MEM MEM

Spawn multiple processes, each with own address
space
If data exchange needs to happen, send it explicitly
Parallelization can be over any number of nodes as
long as they are able to communicate

Others:
OpenACC (like OpenMP but for GPU’s and accelerators)
CUDA / OpenCL (GPU’s)
Pthreads, Co-array Fortran
ZeroMQ, Celery etc. (message passing queues, higher latency, fault tolerance, ...)

What is MPI?

MPI — the Message Passing Interface is a library
Industry standard since 1991
Easy but rather low-level API
Nothing is shared, if you need something from your neighbor, send it explicitly
MPI standards 2 and 3 implement shared memory parallelism and one sided
communication

MPI Hello World!
from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD # default communicator for all processes
rank = comm.Get_rank() # get the integer id of this rank
numranks = comm.Get_size() # get the number of ranks in the communicator

N = 6

if rank == 0: # if I am the first
workload = np.arange(N).reshape(numranks, -1) # generate a list of work to for each rank

localtasks = comm.scatter(workload, root=0) # communicate (scatter) from 0 to all

print(f"Hi, I am rank {rank} out of {numranks}", # see who wants to do what
f" and will work on problems {localtasks}")

$> mpirun -np 2 python mpi_example.py
Hi, I am rank 0 out of 2 and will work on problems [0 1 2]
Hi, I am rank 1 out of 2 and will work on problems [3 4 5]

$> mpirun -np 3 python mpi_example.py
Hi, I am rank 1 out of 3 and will work on problems [2 3]
Hi, I am rank 2 out of 3 and will work on problems [4 5]
Hi, I am rank 0 out of 3 and will work on problems [0 1]

MPI in NWP

MPI parallelization scheme in NWP models:

split domain (in NWP usually 2D)
exchange borders to update ”halo” regions
overlap width depends on stencil size
run local computations

What is OpenMP?

OpenMP — Open MultiProcessing is a compiler extension
Basically all compilers support it
Using comment lines in code (called pragmas) to steer thread creation and data movement
available in Fortran, C, C++
Newer OpenMP standards target GPU’s and accelerators

Process vs. Thread?

Starting a program with a single process
Each process has its own address space
A process can spawn one or multiple threads
Threads share address space but have unique instruction and stack pointers

OpenMP Hello World!

#include <stdio.h>
#include <omp.h>

int main() {

#pragma omp parallel // generate parallel environment
{
const int myid = omp_get_thread_num();
const int numthreads = omp_get_num_threads();
fprintf(stderr, "Hi, I am thread %d of %d\n", myid, numthreads);

}
return 0;

}

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=3 ./a.out
Hi, I am thread 0 of 3
Hi, I am thread 2 of 3
Hi, I am thread 1 of 3

OpenMP CumSum!

const int N=1000; // lets compute a cumulative sum

int i;
int serial_sum = 0;
for (i=0; i<N; ++i) serial_sum += i;

int threaded_sum = 0;
#pragma omp parallel for // parallel for loop, barrier afterwards
for (i=0; i<N; ++i) {

threaded_sum += i;
}

fprintf(stderr, "cumsum(%d) = %d (expected %d)\n", N, threaded_sum, serial_sum);

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=1 ./a.out
cumsum(1000) = 499500 (expected 499500)

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=10 ./a.out
cumsum(1000) = 86371 (expected 499500)

OpenMP CumSum!

const int N=1000; // lets compute a cumulative sum

int i;
int serial_sum = 0;
for (i=0; i<N; ++i) serial_sum += i;

threaded_sum = 0;
#pragma omp parallel for private(i) reduction(+: threaded_sum)
for (i=0; i<N; ++i) {

threaded_sum += i;
}

fprintf(stderr, "cumsum(%d) = %d (expected %d)\n", N, threaded_sum, serial_sum);

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=1 ./a.out
cumsum(1000) = 499500 (expected 499500)

$> gcc -Wall -fopenmp openmp.c && OMP_NUM_THREADS=10 ./a.out
cumsum(1000) = 499500 (expected 499500)

OpenMP vs. MPI
Which one to use is very dependent on your situation!

OpenMP easier to introduce in established codebase
MPI scales across nodes but needs some thought beforehand

And not exclusive — Hybrid OpenMP & MPI
OpenMP for intra node parallelization and or GPU’s
MPI across nodes

My personal opinion:
OpenMP: race conditions hard to debug
OpenMP: getting good scaling wrt to memory access is wicked difficult
MPI-2 has shared mem support
Message Passing as compute model is far easier to understand
I have never seend speed gains from OpenMP over MPI

OpenMP vs. MPI
Which one to use is very dependent on your situation!

OpenMP easier to introduce in established codebase
MPI scales across nodes but needs some thought beforehand

And not exclusive — Hybrid OpenMP & MPI
OpenMP for intra node parallelization and or GPU’s
MPI across nodes

My personal opinion:
OpenMP: race conditions hard to debug
OpenMP: getting good scaling wrt to memory access is wicked difficult
MPI-2 has shared mem support
Message Passing as compute model is far easier to understand
I have never seend speed gains from OpenMP over MPI

Threading in Python

Python threads are not OS level threads!
Concurrency vs. Parallelism

concurrency allows context switches if process is waiting for external resources (e.g. yield
co-routine waiting for network response)
in contrast parallelism is doing things at the same time

Python threads only allow concurrency because of the Global Interpreter Lock (GIL)

More often you probably want true (in Python process based) parallelism
multiprocessing
concurrent.futures
joblib
dask
ipyparallel

Python ProcessPoolExecutor

from concurrent.futures import ProcessPoolExecutor
import os

def do_the_hard_work(data):
return sum([i**0.12345 for i in range(data)])

work = range(10000)

with ProcessPoolExecutor(int(os.environ['OMP_NUM_THREADS'])) as pool:
output = pool.map(do_the_hard_work, work)

total = sum(output)
print(f'Sum: {total}')

$> OMP_NUM_THREADS=1 time python3 pool_example.py
0:06.93 elapsed

$> OMP_NUM_THREADS=10 time python3 pool_example.py
0:02.24 elapsed

Submitting jobs to the cluster

run a job interactively on the cluster:

$> srun
-N --nodes=1 # number of nodes (computers) the job should be distributed (MPI)
-n --ntasks=1 # number of MPI ranks (MPI)
-c --cpus-per-task=4 # number of CPU's per task (sets OMP_NUM_THREADS)
--mem=4G # memory needs per node
--mem-per-cpu=1G # memory needs per CPU
<script/binary> # program to run
<commandline args> # options to give to the program

Submitting jobs to the cluster

alternatively for long running jobs:

$> cat > myjob.slurm << EOF
#!/bin/bash
#SBATCH -o myjob.%j.log
#SBATCH --mail-type=fail
#SBATCH --mail-user=Fabian.Jakub@physik.uni-muenchen.de
#SBATCH --time=24:00:00
#SBATCH --mem=15G
#SBATCH -n 256
#SBATCH -N 1-24
module load spack gcc openmpi
srun mybinary --foo=bar
EOF

$> sbatch myjob.slurm # submit job script to cluster

Bash parallel execution

MODELBINARY=sleep
MPIEXEC=srun
JOBS="1 2 3"

pids=()
jobnr=0
for J in $JOBS; do

($MPIEXEC $MODELBINARY $J) &
pids[${jobnr}]=$!
jobnr=$(($jobnr +1))

done

allow hitting CTRL-C to cancel the running background jobs
trap 'for pid in ${pids[*]}; do echo "kill $pid"; kill ${pid}; done' EXIT

wait for all background processes before proceeding
for pid in ${pids[*]}; do echo "waiting for job $pid to finish"; wait $pid; done

echo "Finished all jobs"

Recap

We had a very brief overview on:
Message Passing, e.g. MPI
Shared memory parallelization, e.g. OpenMP
How to tap into parallel resources from within Python
Cluster environment, here SLURM

There ain’t no such thing as a free lunch!

Choosing a feasible approach is important but not always easy.
Before you try something it is always worthwhile to ask colleagues.

