
Waves2Weather — ECS Workshop

Z2, Scientific Programmers at Your Service

LMU — Meteorological Institute Munich

Jan 21, 2019

1 / 6



Developing scientific code
I write function
I print result and check for correctness
I check use cases, edge cases, invalid input

adding tests to it . . .
I record output and form automated tests
I check for physical constraints (i.e. analytic solutions,

symmetries, conservation properties)
I if you find a bug, make a test out of it

2 / 6



Developing scientific code
I write function
I print result and check for correctness
I check use cases, edge cases, invalid input

adding tests to it . . .
I record output and form automated tests
I check for physical constraints (i.e. analytic solutions,

symmetries, conservation properties)
I if you find a bug, make a test out of it

2 / 6



Runtime Assertions (defensive programming)
I check status of input
I check intermediate values
I immediate exit simplifies debugging
I always return status and check it! → traceback

Testing buzzword bingo
I unit tests — single function
I integration tests — combination of parts
I regression tests — behaviour stays the same
I full system tests — test full model
I test driven development
I automated testing & continuous integration

3 / 6



Running tests automatically, Continous Integration

feature branch

run tests

push to gitlab

gitlab CI
test multiple environments

merge request
code review

4 / 6



How to work with large codebases?

I doxygen — generates
automated
documentation

I various compilers with
warnings (gcc, icc, nag,
aocc)

I learn to use
debuggers (e.g. gdb,
ipdb)

I static code analyzers
(e.g. clang scan-build)

I adress sanitizers and
Valgrind

I gcov

5 / 6



How to work with large codebases?

I doxygen — generates
automated
documentation

I various compilers with
warnings (gcc, icc, nag,
aocc)

I learn to use
debuggers (e.g. gdb,
ipdb)

I static code analyzers
(e.g. clang scan-build)

I adress sanitizers and
Valgrind

I gcov

5 / 6



How to work with large codebases?

I doxygen — generates
automated
documentation

I various compilers with
warnings (gcc, icc, nag,
aocc)

I learn to use
debuggers (e.g. gdb,
ipdb)

I static code analyzers
(e.g. clang scan-build)

I adress sanitizers and
Valgrind

I gcov

5 / 6



How to work with large codebases?

I doxygen — generates
automated
documentation

I various compilers with
warnings (gcc, icc, nag,
aocc)

I learn to use
debuggers (e.g. gdb,
ipdb)

I static code analyzers
(e.g. clang scan-build)

I adress sanitizers and
Valgrind

I gcov

5 / 6



How to work with large codebases?

I doxygen — generates
automated
documentation

I various compilers with
warnings (gcc, icc, nag,
aocc)

I learn to use
debuggers (e.g. gdb,
ipdb)

I static code analyzers
(e.g. clang scan-build)

I adress sanitizers and
Valgrind

I gcov

5 / 6



How to work with large codebases?

I doxygen — generates
automated
documentation

I various compilers with
warnings (gcc, icc, nag,
aocc)

I learn to use
debuggers (e.g. gdb,
ipdb)

I static code analyzers
(e.g. clang scan-build)

I adress sanitizers and
Valgrind

I gcov

5 / 6



How to work with large codebases?

I doxygen — generates
automated
documentation

I various compilers with
warnings (gcc, icc, nag,
aocc)

I learn to use
debuggers (e.g. gdb,
ipdb)

I static code analyzers
(e.g. clang scan-build)

I adress sanitizers and
Valgrind

I gcov

5 / 6



How to work with large codebases?

I doxygen — generates
automated
documentation

I various compilers with
warnings (gcc, icc, nag,
aocc)

I learn to use
debuggers (e.g. gdb,
ipdb)

I static code analyzers
(e.g. clang scan-build)

I adress sanitizers and
Valgrind

I gcov
5 / 6



« Best Practices for Scientific Computing »
Wilson G et al. (2014) doi.org/10.1371/journal.pbio.1001745

I Let the computer do the work.
Make the computer repeat tasks.
Save recent commands in a file for re-use.
Use a build tool to automate workflows.
(remember climate model setup)

I Make incremental changes.
Work in small steps with frequent feedback and course
correction.
Use a version control system.
Put everything that has been created manually in version
control. (W2W data managment)

6 / 6



« Best Practices for Scientific Computing »
Wilson G et al. (2014) doi.org/10.1371/journal.pbio.1001745

I Plan for mistakes.
Add assertions to programs to check their operation.
Use an off-the-shelf unit testing library. (e.g. nosetest)
Turn bugs into test cases.
Use a symbolic debugger.

I Collaborate.
Use pre-merge code reviews.
Use pair programming when bringing someone new up to
speed and when tackling particularly tricky problems.
Use an issue tracking tool. (gitlab merge requests and CI)

6 / 6


