
Computational Challenges of 3D Radiative Transfer in High Resolution Simulations

3D MYSTIC 1D δ-Eddington Twostream TenStream

• 3D-MonteCarlo (MYSTIC) solver as benchmark
• Solar first order 3D effects are cloud-side illumina-

tion and horizontally displaced cloud shadows at
the surface

• Full 3D solvers are several orders of magnitude
slower than 1D approximations → not feasible for
NWP/LES

• 1D Radiative Transfer solvers, as implemented in
almost any atmospheric model, neglect horizontal
energy transfer

• Each vertical column is solved independently
from each other (Independent Column Approxima-
tion, ICA)
→ not valid for high resolution simulations

• We developed the TenStream [1, 2] solver for com-
paratively fast yet accurate radiative transfer cal-
culations

• Coupling with neighboring boxes handles horizontal
energy transfer

• MPI-Parallelization realized with PETSc
• Available at github.com/tenstream

Concept for the TenStream Solver
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Discretize radiation streams angularly
and spatially → at least 3 streams for
direct radiation (fixed angle)
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Diffuse angular discretization assumes
Lambertian surface. Two streams (up-
and downward), as in 1D solver.
Additional streams sidewards enable for
horizontal energy transfer

Use MonteCarlo to compute transport
coefficients for single boxes and couple
to neighbors
→ huge but sparse matrix

Solve eq. system with parallel iterative
methods (PETSc):
BCGS + Incomplete-LU (ILU) or

GMRES + Algebraic Multigrid (GAMG)

Solver Accuracy

Atmospheric heating rates compared for above pictured Cumulus-
scene (from I3RC):

• TenStream computes accu-
rate Heating Rates (by magni-
tude and at the correct loca-
tion)

• Compared to 1D ICA, reduce
rel. RMSE for HeatingRates
from 176% to 31% and bias
from −12.8% to −0.04%

• Surface heating rel. RMSE re-
duced from 62% to 18% and
bias from 4.4% to −1%

Strong Scaling (constant problem size)
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Timings for the radiative transfer routines (normalized to Twostream timings) for a weakly- and
strongly forced simulation with varying preconditioner (Multigrid or ILU), solar zenith angle θ and
number of cores:

• Reuse of last-timestep solution as initial guess improves performance
→ Performance depends on complexity (rate of change between radiation calls) of scene

• Use algebraic multigrid matrix preconditioner for parallel scalability
• Tenstream solver is a factor of 5 to 10 more expensive than 1D δ-Eddington Twostream

Weak Scaling (constant work per CPU)

Weak–scaling parallel efficiency for Twostream and TenStream solver (GAMG preconditioning) on:
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• Blizzard – IBM Power6 Supercomputer at
DKRZ, Hamburg

• Mistral – Intel Haswell Supercomputer at
DKRZ,Hamburg

• Thunder – Linux Cluster at ZMAW,Hamburg

→Multigrid Solvers show excellent parallel scaling
of > 80%
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