HD 2

High definition clouds and precipitation
for advancing climate prediction

LUDWIG-

MAXIMILIANS- F. Jakub, F. Negwer and B. Mayer

,L\JAIEI;,:,/EHRZ:\,TAT Meteorological Institute, Physics Department

Computational Challenges of 3D Radiative Transfer in High Resolution Simulations
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e 3D-MonteCarlo (MYSTIC) solver as benchmark e 1D Radiative Transfer solvers, as implemented in e We developed the TenStream [1, 2] solver for com-
e Solar first order 3D effects are cloud-side illumina- almost any atmospheric model, neglect horizontal paf atolvely fast yet accurate radiative transter cal-
tion and horizontally displaced cloud shadows at energy transter culations
the surface e Each vertical column is solved independently e Coupling with neighboring boxes handles horizontal
e Full 3D solvers are several orders of magnitude from each other (Independent Column Approxima- energy transter
slower than 1D approximations — not feasible for tion, ICA) e MPI-Parallelization realized with PETSc
NWP /LES — not valid for high resolution simulations e Available at github.com/tenstream
Concept for the TenStream Solver Strong Scaling (constant problem size)
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Timings for the radiative transfer routines (normalized to Twostream timings) for a weakly- and
Solve eq. system with parallel iterative strongly forced simulation with varying preconditioner (Multigrid or ILU), solar zenith angle 6 and
methods (PETSc): number of cores:
BCGS + Incomplete-LU (ILU) or e Reuse of last-timestep solution as initial guess improves performance
GMRES + Algebraic Multigrid (GAMG) — Performance depends on complexity (rate of change between radiation calls) of scene
e Use algebraic multigrid matrix preconditioner for parallel scalability
e Tenstream solver is a factor of 5 to 10 more expensive than 1D o-Eddington Twostream

Solver Accuracy Weak Scaling (constant work per CPU)
Atmospheric heating rates compared for above pictured Cumulus- Weak—scaling parallel efficiency for Twostream and TenStream solver (GAMG preconditioning) on:
scene (from I3RC):
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