LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

F. Jakub, F. Negwer and B. Mayer Meteorological Institute, Physics Department

0 23 50 81 120 0 225 450 675 900

- 3D-MonteCarlo (MYSTIC) solver as benchmark
- Solar first order 3D effects are cloud-side illumination and horizontally displaced cloud shadows at the surface
- Full 3D solvers are several orders of magnitude slower than 1D approximations \rightarrow not feasible for NWP/LES
- 1D Radiative Transfer solvers, as implemented in almost any atmospheric model, neglect horizontal energy transfer
- Each vertical column is solved independently from each other (Independent Column Approximation, ICA)
 - \rightarrow not valid for high resolution simulations
- We developed the TenStream [1, 2] solver for comparatively fast yet accurate radiative transfer calculations
- Coupling with neighboring boxes handles horizontal energy transfer
- MPI-Parallelization realized with PETSc
- Available at github.com/tenstream

Concept for the TenStream Solver

Discretize radiation streams angularly and spatially \rightarrow at least 3 streams for direct radiation (fixed angle)

Diffuse angular discretization assumes Lambertian surface. Two streams (upand downward), as in 1D solver. Additional streams sidewards enable for horizontal energy transfer

Strong Scaling (constant problem size)

		_						
$\left[E_{\uparrow}^{T} \right]$		$oldsymbol{a}_1$	a_2	$oldsymbol{a}_3$	$oldsymbol{a}_3$	$oldsymbol{a}_4$	$oldsymbol{a}_4$	$oldsymbol{b}_{01}oldsymbol{b}_{11}$
$E^{\mathrm{B}}_{\downarrow}$		$oldsymbol{a}_2$	$oldsymbol{a}_1$	$oldsymbol{a}_4$	$oldsymbol{a}_4$	$oldsymbol{a}_3$	a_3	$oldsymbol{b}_{02}oldsymbol{b}_{12}$
$E^{\mathrm{L}}_{\swarrow}$		$oldsymbol{a}_5$	a_6	$oldsymbol{a}_7$	a_8	$oldsymbol{a}_9$	$oldsymbol{a}_{10}$	$oldsymbol{b}_{03}oldsymbol{b}_{13}$
$E^{\mathbf{\tilde{R}}}_{\mathbf{N}}$		a_5	a_6	$oldsymbol{a}_8$	$oldsymbol{a}_7$	$oldsymbol{a}_{10}$	$oldsymbol{a}_9$	$oldsymbol{b}_{04}oldsymbol{b}_{14}$
$E^{\mathrm{L}}_{\mathrm{K}}$		a_6	a_5	$oldsymbol{a}_9$	$oldsymbol{a}_{10}$	$oldsymbol{a}_7$	a_8	$oldsymbol{b}_{05}oldsymbol{b}_{15}$
$E^{\mathbf{R}}_{\nearrow}$		a_6	a_5	$oldsymbol{a}_{10}$	$oldsymbol{a}_9$	a_8	a_7	$oldsymbol{b}_{06}oldsymbol{b}_{16}$
$S^{\mathrm{B}}_{\downarrow}$		0	0	0	0	0	0	$oldsymbol{c}_{00}oldsymbol{c}_{10}$
$S^{\mathbf{R}}_{\rightarrow}$		0	0	0	0	0	0	$oldsymbol{c}_{01}oldsymbol{c}_{11}$

Use MonteCarlo to compute transport coefficients for single boxes and couple to neighbors \rightarrow huge but sparse matrix

Solve eq. system with parallel iterative methods (PETSc): BCGS + Incomplete-LU(ILU) or

GMRES + Algebraic Multigrid (GAMG)

Timings for the radiative transfer routines (normalized to Twostream timings) for a weakly- and strongly forced simulation with varying preconditioner (Multigrid or ILU), solar zenith angle θ and number of cores:

- Reuse of last-timestep solution as initial guess improves performance
 - \rightarrow Performance depends on complexity (rate of change between radiation calls) of scene
- Use algebraic multigrid matrix preconditioner for parallel scalability
- Tenstream solver is a factor of 5 to 10 more expensive than $1D \delta$ -Eddington Twostream

Solver Accuracy

Atmospheric heating rates compared for above pictured Cumulusscene (from I3RC):

• TenStream computes accurate Heating Rates (by magnitude and at the correct location)

Weak Scaling (constant work per CPU)

Weak-scaling parallel efficiency for Twostream and TenStream solver (GAMG preconditioning) on:

- Blizzard IBM Power6 Supercomputer at DKRZ, Hamburg
- Mistral Intel Haswell Supercomputer at DKRZ, Hamburg

- Compared to 1D ICA, reduce rel. RMSE for HeatingRates from 176% to 31% and bias from -12.8% to -0.04%
- Surface heating rel. RMSE reduced from 62% to 18% and bias from 4.4% to −1%

- Thunder Linux Cluster at ZMAW, Hamburg
- \rightarrow Multigrid Solvers show excellent parallel scaling of > 80%

References

[1] F. Jakub and B. Mayer. "A Three-Dimensional Parallel Radiative Transfer Model for Atmospheric Heating Rates for use in Cloud Resolving Models-the TenStream solver." JQSRT (2015).

[2] F. Jakub and B. Mayer. "3D Radiative Transfer in Large-Eddy Simulations – Experiences coupling the TenStream solver to the UCLA-LES" GMD (2016).

[3] F. Jakub, On the Impact of Three Dimensional Radiative Transfer on Cloud Evolution. LMU (2016)

[4] C. Klinger, B. Mayer, F. Jakub, T. Zinner, S. Park, and P. Gentine. Effects of 3D Thermal Radiation on Cloud Development. ACP (2017)

[5] F. Jakub and B. Mayer. "The Role of 1D and 3D Radiative Heating on the Organization of Shallow Cumulus Convection and the Formation of Cloud Streets" ACP (2017)