
The equation of motion for a fluid follows from Newton´s 
second law, i.e.,

mass × acceleration = force

If we apply the equation to a unit volume of fluid:
(i)   the mass of the element is ρ kg m-3 ;
(ii)  the acceleration must be that following the fluid

element to take account both of the change in velocity
with time at a fixed point and of the change with
position of the velocity field at a fixed time,
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Equations of motion for an inviscid fluid

(iii)  the total force acting on the element (neglecting viscosity or
fluid friction) comprises the contact force acting across the
surface of the element -p per unit volume, and any body
forces F, acting throughout the fluid including especially the
gravitational weight per unit volume, -gk.

For an inviscid fluid, the contact force is a pressure gradient 
force arising from the difference in pressure across the 
element.

The resulting equation of motion/momentum equation for 
inviscid fluid flow,
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is known as Euler´s equation.
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where u = (u, v, w) and F = (X, Y, Z) is the external force per 
unit mass (or body force). 

In rectangular Cartesian coordinates the component equations 
are:

Three partial differential equations in the four dependent 
variables u, v, w, p and four independent variables x, y, z, t. 

The continuity equation
gives the fourth equation:
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Equations of motion for an incompressible 
viscous fluid

It can be shown that the viscous (frictional) forces in a fluid 
may be expressed as

µ∇ ρν∇2 2u u=

where µ the coefficient of viscosity and ν = µ/ρ the kinematic 
viscosity provide a measure of the magnitude of the frictional 
forces in particular fluid.

Note: µ and ν are properties of the fluid and are relatively small 
in air or water and relatively large in glycerine or heavy oil.



In a viscous fluid the equation of motion for unit mass is:
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It is known as the Navier-Stokes’ equation.
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We require also the continuity equation,

to close the system of four differential equations in four
dependent variables:  u, v, w, p.

There is no equivalent to the continuity equation in either 
particle or rigid body mechanics, because in general mass is 
permanently associated with bodies.

In fluids we must ensure that holes do not appear

∇ ⋅ =u 0

in the absence of sources or sinks there can be no net flow 
either into or out of any closed surface.

This equation is not satisfied by a compressible fluid
(e.g. a bicycle pump). 

The continuity equation



The Navier-Stokes equation plus continuity equation are 
extremely important but extremely difficult to solve.

With possible further force terms on the right, they represent:

– the behaviour of gaseous stars,
– the flow of oceans and atmosphere,
– the motion of the earth´s mantle,
– blood flow,
– air flow in the lungs,
– many processes of chemistry and chemical engineering,
– the flow of water in rivers and in the permeable earth,
– the aerodynamics of aeroplanes, and so forth.…

There are probably no more than a dozen or so analytic 
solutions known for very simple geometries!

The difficulty of solution arises from:

(i)   the non-linear term ( )u u⋅ ∇

As a result of this if u1 and u 2 are two solutions of the 
equation, c1 u 1 + c2 u 2 (where c1 and c2 are constants) is 
in general not a solution, so that we lose one of our main 
methods of solution;

(ii)  the fact that viscous term is small relative to other terms            
except close to boundaries, yet it contains the highest order 
derivatives.

∂ ∂ ∂ ∂ ∂ ∂2 2 2 2 2 2u u u/ , / , /x y zd i
and hence determines the number of spatial boundary 
conditions that must be imposed to determine a solution.



The Navier-Stokes equation is too difficult for us to handle at 
present and we shall concentrate on Euler´s equation from which 
we can learn much about fluid flow.

Euler´s equation is still non-linear, but there are clever methods 
to bypass this difficulty.

is fixed in direction, but     and
rotate in the plane z = 0 as P

moves.

z

O

z

O

θ

vθ

P

P

vr

vz

r

θ

z

n r

More complicated than 
Cartesian coordinates as vr , vθ
change in direction with P.

OP rotates about Oz with 
angular velocity vθ/r.

n
rz

ˆ ˆd d d dˆ ˆ,
dt dt dt dt

θ θ
= == −

r nn r

v r n z= + +v v vr zθb g

Equations of motion in cylindrical polar coordinates
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Euler equation for an incompressible fluid is:
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This is the hydrostatic equation and p0 the hydrostatic pressure
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Subtraction gives
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pd = p - p0 is the dynamic pressure (or perturbation pressure).

Dynamic pressure (or perturbation pressure)

The dynamic pressure is the excess of total pressure over 
hydrostatic pressure, and is the only part of the pressure 
field associated with motion.

We usually omit the suffix “d” since it is clear that if g is 
included we are using total pressure, and if no g appears 
we are using the dynamic pressure
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(i) Solid boundaries: there can be no normal component of 
velocity (through the boundary).

If friction is neglected there may be free slip along the 
boundary.

Friction has the effect of slowing down fluid near the 
boundary and it is observed experimentally that there is no 
relative motion at the boundary, either normal or tangential 
to the boundary.

In fluids with low viscosity this tangential slowing down 
occurs in a thin boundary layer

u

Boundary conditions for fluid flow

Illustrating the boundary layer

Flow



In a number of important applications the boundary layer is 
so thin that it can be neglected and we can say approximately 
that the fluid slips at the surface.

In many other cases the entire boundary layer separates from 
the boundary and the inviscid model is a very poor.

In summary, in an inviscid flow (also called an ideal fluid) the 
fluid velocity must be tangential at a rigid body, and

for a surface at rest
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(i) Free boundaries: at an interface between two fluids (of 
which one might be water and one air) the pressure must be 
continuous and the component of velocity normal to the 
interface must be continuous.
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If the pressure were not continuous there would be an 
infinite force on an infinitesimally small element of fluid 
causing unbounded acceleration.

If viscosity is neglected the two fluids may slip over each 
other. u1
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air

liquid

take p = p0 = atmospheric pressure
at the interface ( p0 a constant)

If surface tension is important there may be a pressure 
difference across the curved interface.

This happens in the case of capillary waves.

Air liquid interface

Surface tension

A heavier-than-water, double-edged steel razor blade can float on water. Without 
surface tension it would sink because its weight is greater than the upward force on 
it due to the water it displaces.  A slightly heavier single-edged blade sinks.
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as F must remain zero for all time for each surface particle.

The velocity at a boundary of an inviscid fluid must be 
wholly tangential.

A fluid particle once at the surface must always remain at 
the surface.

Let the surface or boundary have equation F(x, y, z, t) = 0.

If the coordinates of a fluid particle satisfy this equation at 
one instant, they must satisfy it always.

or

moving with the fluid at the boundary

An alternative free surface boundary condition

For steady inviscid flow under external forces which have 
a potential  Ω such that  F = −∇Ω the Euler equation is
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For incompressible fluids
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We may regard p + ρΩ as a more general dynamic pressure.
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For the particular case of gravitation potential, Ω = gz, and

Bernoulli´s equation
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because  u ⋅∇ is a scalar differential operator.
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Note u is proportional to the rate of change in the direction u of streamlines.

is constant along each streamline

For steady, incompressible, inviscid flow

1
2 u2 + +p / ρ Ωd i

is a constant on a streamline, although the constant will 
generally be different on each different streamline.

Bernoulli´s Theorem

Applications



1.  Draining a reservoir through a small hole

Assume the draining opening is much smaller in cross-section than the 
reservoir.

The water surface in the tank will fall very slowly and the flow may be 
regarded as approximately steady.
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Assume uA and pA to be 
approximately uniform 
across the jet and pA = p0.

Applications of Bernoulli´s equation

This result is known as Toricelli´s theorem.

Note that the outflow speed is that of free fall from B under gravity; this 
clearly neglects any viscous dissipation of energy.
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Draining flow

Bernoulli  ⇒ the velocity is proportional to the square root 
of the depth.

2.  Bluff body in a stream - Pitot tube

S
U0

p0

uniform upstream 
conditions dividing streamline

S is a stagnation point where u = 0

Bernoulli’s theorem along the dividing streamline
p p US = +0

1
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Flow near a stagnation point

On any body in a flowing fluid is a stagnation point.  Some fluid flows “over” 
the body and some flows “under”. The dividing line, the stagnation 
streamline, terminates at a stagnation point on the body. The flow decelerates 
as it approaches the stagnation point.

The foregoing calculation provides the basis for the Pitot tube
in which a pressure measurement is used to obtain the free 
stream velocity U0.
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3. Pitot tube

The pressure                                 is the total or Pitot pressure
(also known as the total head) of the free stream
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It differs from the static pressure p0 by the dynamic pressure



The Pitot tube consists of a tube directed into the stream with 
a small central hole connected to a manometer for measuring 
pressure difference p − p0 .

At equilibrium there is no flow through the tube, and hence 
the left hand pressure on the manometer is the total pressure
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The static pressure p0 can be 
obtained from a static tube 
which is normal to the flow.

The Pitot-static tube combines a Pitot
tube and a static tube in a single head. 
The difference between Pitot pressure

and static pressure (p0) 
is the dynamic pressure              .

3. Pitot-static tube
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The Pitot-static tube can be flown in an aeroplane and used to 
determine the speed of the aeroplane through the air.

4. Venturi tube

Measures fluid velocity 
and discharge.

A restriction of cross-section in a 
pipe of cross-section S.
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Venturi meter

The same principle can be used in a garden sprayer so that liquid chemicals 
can be sucked from a bottle and mixed with water in the hose.



Other devices

Other devices



The End


