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Chapter 1

Potential Vorticity Thinking -
How might it help the
forecaster?

1.1 Introduction

A review paper on the applications of Potential Vorticity (PV-) concepts
by Brian Hoskins, Michael McIntyre and Andy Robertson in the Quarterly
Journal of the Royal Meteorological Society in October 1985 (Hoskins et al.,
1985; henceforth referred to as HMR) led to a dramatic increase in their
use for understanding dynamical processes in meteorology, at least at the
research level. In my experience, these ideas have not filtered through to the
forecasting ‘bench’, perhaps for one good reason; until recently forecasters
have not had access to PV charts! With the proliferation of diagnostic aids in
forecasting offices throughout Australia, this obstacle has now be removed. It
remains only to persuade the forecaster that PV concepts have something to
offer by way of understanding and I view this as a challenge for the researcher.

Potential vorticity concepts are not new, they have their origins in the
work of Rossby and Ertel in the early 40’s and their utility was recognized
in a series of visionary papers by Kleinschmidt in the early 50’s. A compre-
hensive historical survey is given in HMR. Recent developments have gone
a long way, inter alia, to bridge the gap between early baroclinic instability
theories of cyclogenesis and observations. Following the pioneering studies
by Charney (1947) and Eady (1949), much of the early theoretical work on
baroclinic instability was concerned with the evolution and structure of small
amplitude perturbations to a baroclinic zonal shear flow. On the other hand,
cyclogenesis is observed to occur in conjunction with finite amplitude dis-

2



turbances within a zonally nonuniform flow. Even so, baroclinic instability
theory does predict many of the observed features of real cyclones includ-
ing the scale, growth rate, and wave structure (e.g. pressure trough sloping
westward with height).

While baroclinic instability theory may be perceived by forecasters as
a rather esoteric pursuit, a group of closely related ideas on the“steering”
and “development” of extratropical cyclones, involving popular jargon such
as “PVA-maxima”, do enjoy a prominent place. These ideas go back to a
remarkably insightful and practically-orientated paper by Sutcliffe (1947) on
“The theory of development”. Sutcliffe’s theory, based on quasi-geostrophic
dynamics, provides a dynamical basis for a few important forecasting rules.
These include the thermal steering principle, which states that extratropical
cyclones tend to move with the speed of and in the direction of the 1000-500
mb thermal wind, as well as criteria for the development and nondevelop-
ment of cyclones in terms of the position of the surface low in relation to
the thermal trough (or more or less equivalently to that at 500 mb). Indeed,
Sutcliffe’s theory is one of the few to provide practical rules with a sound
dynamical basis that can be applied ‘on the bench’. However, like any theory
it has limitations and in my experience, the ideas are frequently ‘stretched’
by forecasters; i.e., they are often used to construct arguments or to justify
scenarios in circumstances in which the theory is not really valid. Frequently
an important misconception is that the theory is a predictive one; in reality
it is no more than a diagnostic one for the tendencies at a particular instant
of time. Moreover the theory is often used to construct ’cause and effect’
arguments when, in fact, it reflects only one aspect of the dynamics of cyclo-
genesis - it considers only the initial tendencies of the surface low (direction,
speed, deepening, filling etc.), but does not take into account the mutual
evolution of the complete system (surface low + thermal trough/ridge etc.).
I do not have time here to go into details: a more complete discussion of
Sutcliffe’s theory of development, its strong points and limitations are to be
found in Chapter 10 of my Lecture Notes on Dynamical Meteorology (Smith,
1998)1.

For reasons just outlined, Sutcliffe’s theory cannot hope to out perform
even the most basic two-layer baroclinic numerical forecast model and it is
not surprising that with the relatively sophisticated and normally reliable
numerical products currently available, there would need to be very com-
pelling reasons for a forecaster to ignore the numerical products in favour of

1A pdf file of these notes may be downloaded from the website:
http://www.meteo.physik.uni-muenchen.de. Please email me at roger@meteo.physik.uni-
muenchen.de for the precise location and to obtain a password.
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Sutcliffe’s rules. Nevertheless, to quote Davis and Emanuel (1991), “ ... a
proper integration of the equations of motion is not synonymous with a con-
ceptual grasp of the phenomena being predicted”. The forecaster would like
to have not only the numerical prognoses, but a modern conceptual frame-
work in which to interpret them. This is where “PV-thinking” can help and
my ambitious aim in this article is to show how.

1.2 What is PV-thinking?

There are two main approaches to the solution of fluid flow problems:

1. We can integrate the momentum, continuity and thermodynamic equa-
tions (the so-called primitive equations) directly, or

2. In certain cases we can use the vorticity-streamfunction formulation as
described below.

The former method may provide rather less insight into the dynamics of a
particular phenomenon than the latter, partly because we cannot arbitrarily
specify the force field (i.e. the pressure gradient field) in a fluid (see my
article “Understanding fluid motion”, Smith 2003). In contrast, the vorticity-
streamfunction approach can provide a neat conceptual framework in which
to ‘understand’ the dynamics. I shall illustrate what I mean in section 1.3 by
some very simple examples. First I should like to show how the formulation
goes in a series of flow systems of increasing complexity.

For a homogeneous (uniform density) two-dimensional nonrotating flow,
the vorticity-streamfunction approach is particularly insightful. Then the
vorticity ζ normal to the plane of motion is materially conserved (i.e. follow-
ing fluid parcels). Expressed mathematically,

Dζ

Dt
= 0, (1.1)

where ζ = vx−uy is the vorticity, u and v are the velocity components in the
x and y directions, and D/Dt = ∂/∂t+u ·∇ is the material derivative, where
t is the time and u = (u, v). The continuity equation implies the existence
of a streamfunction ψ for which

u = −ψy, v = ψx, (1.2)

and then

∇2ψ = ζ. (1.3)

4



The latter is an elliptic2 partial differential equation, a so-called Poisson
equation, which may be solved diagnostically (i.e. at a particular instant of
time) for ψ, given the distribution of vorticity ζ throughout the domain at this
time, together with suitable boundary conditions along the entire boundary
of the flow domain. In this formulation, Eq.(1.1), written in the form ∂ζ/∂t =
−u ·∇ζ , is used to update the vorticity field at a new time level and Eq.(1.3)
is used to diagnose the corresponding flow pattern. Following HMR we refer
to equations such as (1.3) as ‘invertibility’ relations or principles, i.e. a
knowledge of ζ can be inverted to give a knowledge of ψ and hence, using
(1.2), a complete knowledge of the flow.

For a rotating fluid on an f -plane3 or β-plane, Eq.(1.1) must be replaced
with

D

Dt
(ζ + f) = 0, (1.4)

expressing the conservation of absolute vorticity f + ζ . However, Eq. (1.3)
remains valid as the invertibility relation. I shall give some examples showing
the power of arguments based on (1.4) and (1.3) in section 1.3, but for the
moment let us continue.

For a divergent flow having variable depth h(x, y, t), Eq.(1.4) must be
replaced with

D

Dt

[
ζ + f

h

]
= 0, (1.5)

expressing the conservation of potential vorticity for a homogeneous layer of
fluid. In this case, the continuity equation is

Dh

Dt
= −h∇ · u, (1.6)

and unlike the nondivergent cases it does not provide a diagnostic equation
relating the flow field to the PV distribution unless some sort of balance
is assumed. For example if the motion is assumed to be quasi-geostrophic
(implying a restriction on the degree to which h may vary and therefore on
the magnitude of the divergence), (1.6) can be approximated by ∇ · u = 0,
whereupon Eq.(1.3) again provides a valid invertibility relation. For three-

2Elliptic equations are a particular type of partial differential equation that arise nat-
urally in equilibrium problems, such as the problem for equilibrium displacement of a
stretched membrane subjected to a (steady) prescribed force distribution. See e.g. Fig.
1.2

3Of course, on an f -plane, (1.4) reduces to (1.1)
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dimensional, quasi-geostrophic motion of a rotating stratified fluid, the prog-
nostic equation is for the quasi-geostrophic PV, or pseudo-PV (PPV), q, i.e.,

Dq

Dt
= 0, (1.7)

where

∇2
hψ + f + ε

∂2ψ

∂z2
= q. (1.8)

Here ε = f 2/N2, N being the Brunt-Väisälä frequency4, assumed here to
be a constant for simplicity. Equation (1.8) is again an elliptic differential
equation relating ψ diagnostically to q, given suitable boundary conditions
on the former.

For the general adiabatic motion of a rotating stratified fluid, a quantity
P called the Ertel potential vorticity (EPV) is conserved, i.e.,

DP

Dt
= 0, (1.9)

where

P =
(ω + f) · ∇θ

ρ
, (1.10)

being the full vector vorticity (= curl u) and ρ the fluid density. When
expressed in isentropic coordinates, P takes the particularly simple form

P = −g(ζθ + f)(∂θ/∂p), (1.11)

where ζθ is the “vertical” component of relative vorticity in isentropic coor-
dinates and p is the pressure (here “vertical” means normal to an isentropic
surface). Now the scalar product no longer appears. Moreover, the vertical
advection in the derivative D/Dt is identically zero also. Then (1.9) says
that P is conserved on isentropic surfaces. This turns out to be a very useful
result and later we shall discuss isentropic charts of EPV for the atmosphere5.

Unfortunately, as in the case of a divergent homogeneous flow with vari-
able depth as discussed above, there is no unique relationship between the
flow field and the EPV distribution, unless we make also some sort of bal-
ance assumption (e.g. geostrophic balance, gradient-wind balance or some

4N is defined by the formula N2 = (g/θ)(∂θ/∂z), where z is the height, θ is the
potential temperature and g is the acceleration due to gravity.

5Note, HMR use the term IPV for P , an acronym for isentropic potential vorticity.
This acronym has since been dropped as EPV is just as valid in other coordinate systems.
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other form of nonlinear balance). As it turns out, this is not such a major
restriction and we can construct arguments for quite realistic atmospheric
flows based on the EPV structure and its evolution in much the same way
as in the simple examples to be discussed now.

1.3 Examples of ‘PV-thinking’

To answer the question posed in section 1.2, I shall apply ‘PV-thinking’ to
three simple two-dimensional flows, the first and third governed by (1.4) and
(1.3), the second by (1.1) and (1.3).

1.3.1 A thought-experiment for understanding tropi-

cal cyclone motion

Perhaps the simplest problem in the theory of tropical cyclone motion con-
siders the translation of an initially symmetric vortex on a β-plane at rest
(Fig. 1.1(a)). Numerical experiments have shown that for a vortex in the
Southern Hemisphere, the subsequent motion is towards the southwest; in
the northern hemisphere it is towards the northwest. We assume the motion
to be barotropic and nondivergent so that the PV (in this case the absolute
vorticity f + ζ) is conserved.

As time proceeds, air parcels on the eastern side of the vortex move
poleward, conserving their initial f + ζ . Since f becomes increasingly more
negative (i.e. cyclonic), ζ increases and becomes more anticyclonic. Equator-
ward motion on the western side of the vortex leads to a cyclonic tendency in
relative vorticity and the net result is the development of a dipole asymmetry
in the vorticity field (Fig. 1.1(b)). Because of advection by the basic vor-
tex motion, this asymmetry does not remain oriented west-east, but rotates
cyclonically as shown. Since the symmetric vortex cannot advect itself, the
subsequent motion must be attributed to the flow field associated with the
vorticity asymmetry which has a southwestward component across the vortex
centre (northwestward in the Northern Hemisphere). For a full discussion of
this problem and a simple analytic solution for the dipole vorticity asymme-
try I refer you to recent papers by Smith et al. (1990) and Ulrich and Smith
(1991). The latter paper gives an analytic solution for the inversion problem,
i.e. given the asymmetric vorticity distribution ζa, what is the corresponding
streamfunction ψa satisfying appropriate boundary conditions?

In the foregoing problem, I appealed to your intuition when deducing the
flow field between the asymmetric vorticity dipole which satisfies ∇2ψa = ζa
although I show the calculated field in Fig. 1.1(c) for completeness. Now,

7



(a)

(b) (c)

Figure 1.1: Flow configuration on a Southern Hemisphere β-plane depicting
the simplest thought experiment in the theory of tropical cyclone motion,
i.e. the motion of an initially symmetric vortex in the case of zero basic flow.
The dashed line in panel (a) denotes the vortex track towards the south-
west. (b) Shows the pattern of the vorticity asymmetry ζa, that develops
after 24 hours (adapted from Smith and Ulrich, 1990). (c) Shows the asym-
metric streamfunction pattern corresponding with ζa obtained analytically
by solving ∇2ψa = ζa. Negative contours are dashed. Contour intervals are
arbitrary.
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I would like to show how we use our intuition more generally. Consider a
flexible membrane with uniform properties stretched across a wire frame and
subject to a steady force distribution F (x, y) as shown in Fig. 1.2.

I have shown the case where the wire frame has the form of a rectangle
and lies in the plane z = 0. It happens that the equilibrium distribution of
the membrane displacement ξ(x, y) satisfies the equation

∇2ξ = −F, (1.12)

subject to the boundary condition ξ = 0 on the boundary of the domain
(i.e. along the wire frame). Therefore, we may use our intuition to infer
qualitatively the structure of the membrane displacement (i.e. if the force
is positive over a region, the membrane displacement will be positive). This
problem provides a convenient analogy to deduce qualitatively the structure
of solutions to the invertibility equation ∇2ψ = ζ , given the vorticity dis-
tribution. We simple interpret ζ as minus the force on the membrane and
ψ as the membrane displacement. Thus regions of positive vorticity tend to
be associated with areas of negative streamfunction and vice versa. How-
ever, because the inversion is a global problem, i.e., the membrane is under
tension, extrema in the vorticity field are not necessarily collocated with ex-
trema in the streamfunction pattern (compare for example Fig. 1.1(b) with
Fig. 1.1(c)). A slight reformulation of the membrane problem allows us to
handle other types of boundary conditions on ψ (see Smith, 1998, Appendix
to Chapter 14 for details).

1.3.2 Kelvin-Helmholtz shear instability

Many cases of clear air turbulence are thought to be associated with a form
of shear instability when the vertical wind shear in a stably stratified layer
of air is large. An idealized model for shear instability is to consider two
parallel homogeneous airstreams with uniform velocities U1 and U2 (Fig.
1.3). We consider here only the case of weak stratification and neglect the
density difference between the airstreams. In this model the shear is all
concentrated at the interface between the airstreams, which can be thought
of as an infinitesimally thin sheet of horizontally-oriented vorticity. We can
use vorticity arguments to understand why this flow is unstable. We suppose
that the vortex sheet is perturbed by a sinusoidal wave-like disturbance as
shown in Fig. 1.3. We explore then the subsequent evolution of the vorticity
field, which in this case is governed by Eq. (1.1) (now we take x horizontal
and y vertical). Consider a material particle at the point B where the vertical
displacement is a maximum. The motion at this point is due to the influence
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Figure 1.2: Equilibrium displacement ξ(x, y) of a stretched membrane over
a square frame under the force distribution F (x, y). Intuition about how a
membrane responds provides a means of deducing the qualitative structure
of solutions to Poisson’s equation.
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Figure 1.3: Interpretation of Helmholtz shear instability in terms of the self-
induced amplification of a distorted vortex sheet (see text for discussion).

of the vorticity distribution at all other points. For example, vortex elements
at the points A and C, symmetrically placed with respect to B, induce
velocity contributions as shown. The net effect gives zero component in
the y-direction, but there is a net horizontal component towards C. The
total contribution summed over all symmetrically placed points has a similar
structure. For the parcel with maximum negative displacement at D, there is
a net induced motion also towards C. At first then, the vorticity in the sheet
tends to clump to towards regions such as between B and D, i.e. the vortex
sheet breaks up into isolated centres of vorticity (lower panel in Fig. 1.3). As
this occurs the initial symmetry of the vorticity distribution about B and D
is broken and the induced velocity at these points is such as to increase their
lateral displacement. This is a run-away process unless suitably modified by
nonlinearities as the displacement amplitude becomes large. In this example
we applied the invertibility principle without direct reference to the solution
of (1.3), but the arguments are equivalent.
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Figure 1.4: Sketch of the absolute vorticity contours ζ + f = constant (solid
lines) for a sinusoidal anomaly pattern along a band of latitudes in a β-
plane channel. Shown also is the induced velocity field. These patterns are
characteristic of a simple Rossby wave.

1.3.3 Rossby wave propagation in a β-plane channel

Our third example provides an interpretation of Rossby (or planetary) wave
dynamics on a middle latitude β-plane channel (Fig. 1.4) as discussed by
McIntyre (1988a).

We assume that the channel has rigid boundaries at latitudes correspond-
ing with specific values of y. The basic state is assumed to be one of relative
rest (ψ = 0 everywhere) and f has a uniform y-gradient (β > 0) . Then the
absolute vorticity contours of the basic state q = f0 +βy = constant lie along
latitude circles. Because the ensuing motion conserves the absolute vorticity
q = ζ+f , the contours of q remain material contours. If a disturbance makes
these contours undulate sinusoidally as shown in Fig. 1.4, the perturbation
q = (= q − q) will vary sinusoidally also, having alternatively positive and
negative sign as indicated in the figure. To see what the induced ψ field
must look like we can think of the ζ pattern as corresponding with the force
on an elastic membrane that is pushed and pulled alternatively in the same
pattern. The sides of the membrane are held down with zero displacement
along lines corresponding with the channel boundaries. According to our
membrane analogy, the ψ field will have a similar pattern to the ζ field, but
with opposite sign. Thus ψ will have hills and valleys centred respectively
on the minus and plus signs, and the strongest north-south winds will occur
at intermediate positions, a quarter of a wavelength out of phase with the
displacement, and in the sense shown by the heavy, dashed arrows in the
figure (recall that v = ∂ψ/∂x). It is easy to see what this induced velocity
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Figure 1.5: The climatological P and q distribution below 100 mb in the
Northern Hemisphere winter. The dashed contours are those of q, drawn
every 30 K. Values of P are given in terms of the unit PVU = 10−6 m2 kg
s−1, and contours are drawn at 0, 0.5, 1, 2, 5 and 10. The “dynamical”
tropopause, specified by 2 PV U , is indicated by stippling (from Hoskins,
1990).

field will do to the material contours: it is clear that the undulations will
propagate westward. The motions are stable (or to be more precise, neutrally
stable) because the velocity perturbation is zero where the displacements of
particles from their equilibrium positions are a maximum.

In each of these examples, the line of argument is the same. First we
infer the vorticity distribution implied by the conservation property (1.1) or
(1.4). Then we invoke the invertibility principle (1.3) to infer the flow field
associated with this distribution. In general, the induced flow is associated
with anomalies of vorticity.

1.4 The structure of EPV in the atmosphere

Before considering how the foregoing ideas can be extended to the atmo-
sphere, we examine the mean structure of EPV in the atmosphere as well
as its day-to-day variation. Figure 1.5 shows the climatological distribution
of P and the potential temperature θ, zonally-averaged, for the Northern
Hemisphere winter. From the pole to about 25◦ latitude, the P = 2 sur-
face corresponds to the tropopause (the units of P are 10−6 km2 kg−1 s−1,
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commonly referred to as 1 PV-unit (or 1 PVU). Tropospheric values of PV
are typically less than 1.5 PVU and vertical gradients thereof are associated
mainly with the variation of ρ with height. An almost discontinuous jump
occurs at the tropopause because of the jump in static stability, character-
ized by −∂θ/∂p, across the tropopause. Stratospheric values of PV generally
exceed 4 PVU. At latitudes equatorward of about 25◦, PV values decrease
with the decline in f + ζ as the equator is approached. In this region, PV
surfaces slope steeply upwards towards the equator.

The typical variation of PV along isentropic surfaces can be readily in-
ferred from Fig. 1.5. For example, along the 300 K isentrope, which lies
mainly in the troposphere, PV gradients are generally small. On the other
hand, the 330 K isentrope samples stratospheric air in higher latitudes and
middle tropospheric air at low latitudes. PV values and gradients are rel-
atively small equatorwards of where this surface meets the tropopause and
relatively large polewards. The 360 K isentrope samples mostly stratospheric
air, except at times in very low latitudes.

1.4.1 Isentropic potential vorticity maps

HMR show Northern Hemisphere contour plots of PV on selected isentropic
surfaces for a particular synoptic situation and compare features on these
with those on more conventional charts. For example they showed that im-
portant features in isobaric charts of geopotential height, such as troughs,
ridges, cut off lows and blocking anticyclones correspond with distinctive fea-
tures on isentropic maps of PV. An extract from their Fig. 1.2 is shown in
Figs. 1.6 and 1.7.

As expected from the discussion above, PV gradients are large in a re-
gion encircling the pole, where the particular isentropic surface lies in the
stratosphere (surfaces 350 K and 330 K are shown in the figure), but are
weak where it lies further equatorwards in the troposphere. The tropopause,
which is marked approximately by the blackened region in Figs. 1.6 and
1.7b, is noticeably contorted and there are small regions where high PV air
is totally encircled by low PV air and vice versa. These features may be
associated with cut-off lows and blocking anticyclones, respectively, in the
geopotential fields. In other places, long tongues of high PV air extrude
from the stratospheric “reservoir” and tongues of low PV air intrude pole-
wards into the region normally occupied by stratospheric air on the particular
isentrope. These regions tend to be associated respectively with the troughs
and ridges on isobaric charts. Specific features are marked in Figs. 1.6 and
1.7. Feature A is primarily an upper level feature and corresponds with an
upper tropospheric low while B is associated with an upper level trough.
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Figure 1.6: Northern Hemisphere PV maps on the 350 K isentropic surface
30 September 1982. The contour intervals is 0.75 PVU. The values 2.25-3
PVU have been blacked in. Also shown are arrows indicating the horizontal
component of the velocity vector on these isentropic surfaces. The points of
the arrowheads are plotted at the mid-points of the arrows which also mark
the grid-points to which the vectors refer. An arrow length from the 40◦-60◦

latitudinal circles would indicate a speed of 100 ms−1. The boundary circle
is the equator. The lettering denotes features referred to in the text. (from
HMR)
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Figure 1.7: Northern Hemisphere synoptic fields for the 30 September 1982.
Shown in (b), (c), and (d) are the PV maps on the 330 K, 315 K and 300 K
isentropic surfaces, respectively. As indicated, the contour intervals are 1.0,
0.5 and 0.5 PVU, respectively. The values 2-3 units in (b) and 1.5-2 units
in (c) and (d) have been blacked in. Wind vectors are as in Fig. 1.6, but
unlike in Fig. 1.6, the boundary circle is 20oN. The contours in (e) are of
the pressure p on the 315 K surface, the contour interval being 100 mb. The
250 mb and 1000 mb geopotential height fields are shown in (f) and (g), with
contour intervals of 100 m and 60 m respectively. (from HMR)
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Figure 1.8: (a) Sectors of the 300 K PV maps for the period 20-25 September
1982. The region covered is from 40◦N to the north pole and from 120◦W to
0◦W with the 60◦W meridian central. The contour interval is 0.5 PV units
and the region 1.5-2 units is blacked in. Also shown are the horizontal velocity
vectors on this surface, as scaled in Fig. 1.5. (b) The 500 mb geopotential
heights corresponding to the PV maps shown in (a). The contour interval is
100 m. (From HMR)

Feature C corresponds with a trough that extends through the whole depth
of the troposphere while, trough D is mainly an upper level feature.

HML (Figs. 1.3 and 1.4) show time sequences of PV charts to illustrate
the evolution of various types of systems and they compare the PV evolution
with the evolution in the geopotential height fields on selected isentropic sur-
faces. They show also an example of the formation of a cutoff low, illustrated
here in Fig. 1.8a.

In this an upper-air anomaly, consisting of high-PV stratospheric air,
was advected near Hudson Strait across the Atlantic towards Europe, and
appeared to roll itself up into a large cutoff cyclone (at 18◦W on 24 Sept.).
Fig. 1.8b shows the 500 mb geopotential heights corresponding to these PV
maps, while Fig. 1.9 shows the 1000 mb geopotential and 700 mb temperature
fields for the period 22-24 September covering the period of cutoff. This is
an example of the simplest kind of cyclogenesis when a single upper-air PV
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Figure 1.9: The 1000 mb geopotential (a) and 700 mb temperature (b) for
the period 22-24 September 1982 and the region 40◦N - 90◦N and 120◦W-
0◦W corresponding to that shown in Fig. 1.8. The contour intervals are 60
m and 5 K, respectively. (from HMR)

anomaly is advected into a region from a location where its surroundings
made it less “anomalous” (McIntyre, 1988a). We are led to enquire into the
typical vertical structure of such anomalies. An indication of what to expect
is provided by some calculations by Thorpe (1985, 1986).

1.4.2 The vertical structure of upper-air PV anomalies

Figure 1.10 shows the vertical structure of disturbances associated with axi-
symmetric upper-air potential vorticity anomalies. These diagrams are based
on numerical solutions of the inversion problem for EPV, assuming the dis-
turbances to be in gradient wind balance. A positive anomaly located near
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Figure 1.10: Circularly symmetric flows induced by simple, isolated, upper-
level PV anomalies (location stippled). The quasi-horizontal lines are the
isentropes while the thinner lines are the isotachs. The thick line represents
the tropopause. Further details are given in HMR (see caption to Fig. 15.)

the tropopause (Fig. 1.10a) has a cyclonic circulation associated with it
while a negative anomaly (Fig. 1.10b) has an anticyclonic circulation. The
circulation is most intense at the level of the anomaly and decays with height
above and below the anomaly. The isentropes show a characteristic pattern
also. For a positive anomaly, they are raised below the anomaly, indicating
reduced static stability and are lowered above, a feature reflected in the low-
ered tropopause in the vicinity of the anomaly. For a negative (anticyclonic)
anomaly these features are reversed; there is enhanced static stability below
the anomaly and the tropopause is raised above the anomaly. Such struc-
tures are quire realistic; for example Fig. 1.11 shows the analogous isentrope
structure through a cutoff low in an early observational analysis of Peltonen
(1963). In a stationary anomaly, there is no vertical motion.

An important feature of these structures is that they are carried along
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Figure 1.11: A vertical section through a cutoff cyclone at 12 GCT Novem-
ber 16 1959 produced by Peltonen (1963). The heavy line represents the
tropopause; dashed lines are isotherms at 50◦C intervals and solid lines isen-
tropes every 5 K. The centre of the cyclone was at about 350◦E, 58◦N. (from
HMR)

with an anomaly if it moves. This implies the existence of a pattern of vertical
motion. For example, as a positive anomaly advances, air below and ahead of
it must ascend along the raised isentropes, while air behind it descends along
the isentropes. The reverse is true for a moving negative anomaly. In reality,
these patterns of vertical motion can be expected to relate to observed areas
of cloudiness or of cloudless skies in systems. In the next chapter we shall go
on to examine other types of cyclogenesis events in a PV framework.
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Chapter 2

A Potential Vorticity view of
cyclogenesis

2.1 Preliminary Ideas

In the previous chapter we examined one very basic type of cyclogenesis
leading to the formation of a cutoff low. However, this is not the only kind
and is not associated with baroclinic energy conversions. How then are such
energy conversions manifest in a PV description? The answer to this prob-
lem has its origins in a paper by Bretherton (1966) and was further refined
by McIntyre (early ‘70’s, unpublished lecture notes). Bretherton showed
that temperature gradients at boundaries characterizing low-level baroclinic
zones are mathematically equivalent to thin layers of potential vorticity just
above the boundary with horizontal gradient proportional to the temperature
gradient. In particular, isolated temperature anomalies at a boundary are
equivalent to potential vorticity anomalies of the appropriate sign. This rev-
olutionary idea makes it possible to present a unified picture of the baroclinic
instability mechanism in terms of PV and it allows us also to do the same
for cyclogenesis. Because of the importance of the result I shall try to sketch
out how it comes about by way of a simple calculation.

2.2 Surface layers of PV

I would like to show how a horizontal temperature gradient at the surface can
be regarded as equivalent to a thin layer (or “sheet”) of PV at the surface. In
fact, I shall demonstrate this result for the case of PV in a quasi-geostrophic
flow.

Consider a zonal flow with uniform vertical shear u = U ′z (U ′ constant)
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Figure 2.1: (a) Sloping isentropes in a uniform zonal shear flow u = U ′z (U ′

a positive constant) assuming gradient wind balance, fU ′ = −(g/θ)(∂θ/∂y).
(b) Analogous situation when the isentropes turn to become horizontal in a
thin layer above the surface. This surface layer is equivalent to a layer of
PPV gradient ∂qavr/∂y, as discussed in the text.

in thermal wind balance with a uniform meridional potential temperature
gradient ∂θ/∂y. Mathematically, thermal wind balance implies that

f
∂u

∂z
= −g

θ

∂θ

∂y
, (2.1)

where θ is some reference potential temperature. The geostrophic stream-
function satisfying Eq. 1.2 is

ψ = −U ′yz (2.2)

so that for z > 0, q = 0 (refer to Eq. 1.8). The isentropes and flow configu-
ration are sketched in Fig. 2.1a.

Imagine now a similar flow configuration in which the sloping isentropes
become horizontal in a shallow surface-based layer of depth H (Fig. 2.1b).
Now there is no surface gradient of potential temperature. The average q in
this layer can be estimated by integrating Eq. 1.8 through the layer, i.e.,

22



qavr ≡ ∇2
hψavr +

ε2

H

[
∂ψ

∂z

∣∣∣∣
z=H

− ∂ψ

∂z

∣∣∣∣
z=0

]
(2.3)

Now, we let H → 0 so that the surface layer becomes infinitely thin. Then
ψavr → ψ(0) = 0, using Eq. 2.2. We assume further that ∂ψ/∂z = 0 at
z = 0. Then using (2.2), (2.3) becomes

qavr =
ε2

H

∂ψ

∂z

∣∣∣∣
z=H

= − f 2U ′

N2H
y, (2.4)

and using (2.1),

∂qavr/∂y =
[
gf/(N2Hθ)

]
(∂θ/∂y) . (2.5)

We have shown that the presence of a surface potential temperature gradient
at a boundary is mathematically equivalent to a flow with no such gradient,
but with a thin layer of potential vorticity adjacent to the boundary, pro-
vided we choose ∂ψ/∂z = 0 as the boundary condition on ψ at the boundary.
Moreover, the horizontal gradient of potential vorticity in this layer is pro-
portional to the horizontal temperature gradient above the layer (Eq. 2.5)1.
Although demonstrated in a simple case, it is a general result that horizontal
temperature gradients at boundaries are equivalent to horizontal gradients
of potential vorticity there.

Analogous to Fig. 1.11, Fig. 2.2 shows the vertical structure of ax-
isymmetric flows associated with isolated surface temperature anomalies, or
equivalently with isolated surface PV anomalies (in this case EPV). The cal-
culations were again carried out by Thorpe (1985) assuming gradient wind
balance. Characteristically, a warm surface anomaly is associated with isen-
tropes that dip down above the anomaly and with a cyclonic wind circulation
that decays with height (Fig. 2.2a). In contrast, a cold anomaly has isen-
tropes that bulge upwards and an anticyclonic circulation (Fig. 2.2b).

2.3 Potential vorticity gradient waves

In chapter 1 I discussed the dynamics of a barotropic Rossby wave in a
β-plane channel. These ideas generalize readily to quasi-geostrophic wave
motions in a stably-stratified rotating fluid governed by Eqs. (1.7) and (1.8).
Let us consider the case where there is a basic state meridional gradient of

1In the limiting case as H → 0, the layer becomes a sheet of infinitesimal thickness.
Mathematically, ∂qavr/∂y is then expressed in terms of the Dirac Delta function.
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Figure 2.2: Circularly symmetric flows induced by simple boundary temper-
ature anomalies. Otherwise similar to Fig. 1.10. The warm anomaly (a)
induces a cyclonic circulation, and the cold anomaly (b) an anticyclonic cir-
culation. The insets and stippling suggest the interpretation of the warm sur-
face potential temperature anomaly as equivalent to a cyclonic PV anomaly,
and the cold surface potential temperature anomaly as part of an anticyclonic
PV anomaly. (from HMR)
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PPV, qy, in some region. Away from horizontal boundaries, this is related
to the basic state zonal flow u(y, z) by

qy = β − ∂2u

∂y2
− ∂2u

∂z2
, (2.6)

obtained by differentiating Eq.(1.8) with respect to y and remembering that
u = −∂ψ/∂y. At a horizontal boundary where there is a meridional temper-
ature gradient, there is an additional contribution to qy in a thin sheet at
the boundary given by (2.5).

Writing q = q+ q′ in (1.7) and assuming the perturbation PPV, q′, to be
of sufficiently small amplitude, we can linearize (1.7) to obtain

∂q′

∂t
+ u

∂q′

∂x
+ v

∂q

∂y
= 0. (2.7)

Moreover, using (1.8), q′ is related to the geostrophic streamfunction per-
turbation ψ′ by

∇2
hψ

′ + ε
∂2ψ′

∂z2
= q′ (2.8)

A simple case is when the zonal flow is a linear function of height, say u =
U ′ z, where U ′ is a constant. Then qy = β from (2.6) and has uniform layer
distributions −f 2U ′/(N2H) at z = 0 according to (2.4) and −f 2U ′/(N2H) at
z = H , obtained in an analogous manner to (2.4). In some situations these
layer distributions may be more important than the interior distribution
associated with β.

As in the Rossby wave example studied earlier, there exist perturbation
wave solutions, independent of y and travelling in the x-direction. However,
the perturbations now have structure in the z-direction also. Even so, the
earlier line of argument can still be used with effect.

We saw in chapter 1 that the largest meridional gradients of PV in the
atmosphere occur near the tropopause. Significant gradients may occur also
near the surface, in so-called “baroclinic zones” where there are relatively
large horizontal temperature gradients. I am thinking here of synoptic-scale
gradients rather than gradients at fronts. These observations lead us to
consider wave propagation on layers of PV gradient, or more precisely in
thin layers adjacent to boundaries, or PV sheets. In our case they are sheets
of PPV, but from now on we shall drop the first ‘P’ because the ideas can
be extended to EPV defined in (1.10) or (1.11).

Figure 2.3 shows the structure of a sinusoidal wave propagating along
a sheet of PV gradient at an elevated boundary. We can think of this as
a crude representation of the large PV gradient at the tropopause. If the
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tropopause is thought of as a rigid lid above the uniform zonal shear flow
u = U ′ z, there will be a uniform meridional PV gradient in a sheet at the
lid, associated with a uniform potential temperature gradient there. Both of
these gradients are positive. For the present we neglect the earth’s vorticity
gradient characterized by β.

As in the Rossby wave example we suppose that the disturbance is such,
that material surfaces, initially in x− z planes, are deformed into sinusoidal
corrugations that are independent of height. This will lead to PV pertur-
bations in the sheet, exactly as in example 3.3, but not elsewhere These
are associated with streamfunction perturbations governed by (2.8) which,
because the disturbance is independent of y, takes the form

u = U ′ z. (2.9)

The membrane analogy can again be used again to infer the pattern of ψ′

corresponding with that of q′, but, first we must rescale z, defining Z = ε
1
2 z

so that both coefficients in Eq. (2.8) are unity. We think of ψ′(x, Z) as the
displacement of a semi-infinite membrane in which a sinusoidal force distribu-
tion −q′ is applied along its top edge2. Where q′ is negative (anticyclonic in
the Northern Hemisphere), ψ′ is positive and where q′ is positive (cyclonic),
ψ′ is negative. Contours of ψ′ in the x − z plane are included also in Fig.
2.3. Remember that ψ′ is proportional to the pressure perturbation in the
disturbance. There are two features particularly worthy of note:

1. Although the “forcing” is at the boundary, the response extends a cer-
tain distance below the boundary with penetration scale D.

2. In the rescaled domain (x, Z), the equation for ψ′ corresponds with
that for an isotropic membrane, i.e., one is displaced equally in all
directions in response to a localized point force. This means that the
vertical scale of the disturbance is comparable with the horizontal scale
L. Therefore, making the reverse transformation, the penetration scale

in physical space D ∼ L/ε
1
2 = f L/N is for a given horizontal scale L.

This is commonly referred to as the Rossby height scale.

The meridional velocity perturbation v′(= ∂ψ′/∂x) is indicated by arrows
at points along the x-axis in Fig. 2.3. Note that v′ is zero where particle

2Actually we must be careful about boundary conditions in this case. Inclusion of the
PV-sheet just below z = H allows us to set the meridional temperature gradient to zero
at z = H itself. This is equivalent to taking the boundary condition ∂ψ′/∂z = 0 at z = 0,
or to assuming that the membrane surface has zero slope at this boundary.
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Figure 2.3: Diagram illustrating the structure of sinusoidal wave perturba-
tions associated with sheets of potential vorticity at horizontal boundaries.
(a) shows the structure of a wave on a PV-sheet with positive meridional
gradient at an upper boundary. (b) shows the corresponding structure for a
sheet with negative gradient at the lower boundary.
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displacements are a maximum from equilibrium, and is a maximum to the
west of the maximum poleward displacement of particles. Hence, just like
the Rossby waves in example 3.3, the waves do not grow in amplitude with
time and they propagate westward relative to the basic current at z = H .

If the tropopause is regarded as a deformable surface separating more
stable stratospheric air (N = N1) from less stable tropospheric air (N = N2),
the disturbance structure in the stratosphere will be a mirror image of that
in the troposphere, but with a smaller depth scale D1 = (N2/N1)D2.

Figure 2.3b shows the analogous situation to Fig. 2.3a, but for waves on
a sheet of negative PV gradient at the lower boundary, corresponding with
the negative meridional temperature gradient there. Now the PV pertur-
bations are restricted to the surface, but the corresponding streamfunction
perturbations extend to the flow interior, again with the penetration scale
fL/N . Again the waves are non-growing, but because the PV gradient is
negative at the surface, the waves propagate eastward relative to the basic
surface current (in the present example u(0) = 0).

The addition of a uniform flow to either of the above configurations leads
to an advective component of the wave motion with the same speed. Thus
the sense of phase propagation indicated above is relative to the basic flow
at the level of the PV sheet.

With these elementary concepts we are now in a position to discuss other
types of cyclogenesis including the mechanism of baroclinic instability in
terms of PV arguments.

2.4 Baroclinic Instability

In order to understand other mechanisms for cyclogenesis, it is insightful
to examine the baroclinic instability problem which considers the growth
of incipient disturbances in a baroclinic current. One of the simplest prob-
lems is that formulated by Eady (1949) who considered the stability of a
uniform zonal shear flow U = U ′z to quasi-geostrophic wave perturbations.
The β-effect was ignored, i.e. the calculations assumed a constant Corio-
lis parameter, and the flow was assumed to be confined between horizontal
boundaries at z = 0 and z = H . The meridional (P)PV-gradient in the
flow interior is then zero from Eq. (2.6), but there are sheets of PV at the
boundaries, with negative meridional gradient at z = 0 and positive gradi-
ent at z = H . Accordingly we can think of possible disturbances as being
composed of “potential vorticity gradient waves”, for want of a better term,
of the type outlined in Fig. 2.3. Indeed, I want to show that the unstable
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Figure 2.4: Steering current and relative flow in a uniform tonal shear flow
showing the sense of relative advection at z = 0 and H and that of PV-
gradient wave propagation (curly arrows) at these boundaries.

waves in the Eady problem can be understood in terms of two3 sinusoidal
waves of the same wavelength, one associated with the PV gradient at the
upper boundary as in Fig. 2.3a, the other associated with the PV gradient
at the lower boundary as in Fig. 2.3b.

A well-known result is that the unstable Eady waves propagate at the
speed of the flow in mid-channel, u = 1

2
U ′H , the “steering level” for these

waves. This is consistent with the “steering principle” used as a rule of
thumb in forecasting practice that deep tropospheric disturbances tend to
move with the 500 mb flow. Now, relative to the steering flow, the upper
wave propagates westwards, but is advected eastwards by the current- In
contrast, the lower wave propagates eastwards, but is advected westwards
relative to the steering flow (Fig. 2.4). The net speed and direction of
each wave depends on the wavelength λ. As in the case of Rossby waves4,
propagation wins over advection if the wavelength is longer than a certain
value, otherwise advection wins, but there is a wavelength at which the waves
are both stationary in the frame of reference moving with the steering speed.

Consider a situation when the two waves are out-of-phase, e.g. suppose
the upper low is westward of the surface low. Then provided the disturbance
associated with each wave overlaps with that of the other, i.e. provided

3Remember that the problem is linear so that particular solutions can be superposed.
4The phase speed for Rossby waves on a uniform current U is cp = U − βλ2/4π.
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D ≥ H , then the meridional velocity perturbation of the upper wave is
positive at the position in the lower wave where the meridional displacement
of that wave is a maximum and vice versa. That means that each component
wave will help to increase the meridional displacements of the other, and
hence the amplitude of the other. With this phase configuration both waves
will grow together in time. Note that this phase configuration is exactly
the one you know from forecasting experience to be conducive to continued
cyclogenesis in the atmosphere - one of the predictions, indeed, of Sutcliffe’s
theory!

If the phase is reversed, i.e. if the upper low is eastward of the lower one,
the meridional velocity perturbation of the upper wave is negative at the
position in the lower wave where the meridional displacement is a maximum.
In this case the waves help each other to decay. This is exactly the structure
of decaying modes in the Eady problem.

When the phase of the upper and lower waves is the same, i.e. when
the upper low is exactly above that at the surface, the meridional velocity
perturbation of each waves is zero where the meridional displacement of the
other is an extremum, and like the Rossby wave, no growth occurs. This
is exactly the structure of neutrally stable solutions to the Eady problem.
Interestingly, it corresponds also with a result of forecasting experience: when
the surface low lies beneath the upper trough, further deepening of the low is
not to be expected. This is also a result of Sutcliffe’s theory.

To answer the question as to how two such waves end up in a particular
phase configuration we must turn to the initial value problem and consider
how an arbitrary initial disturbance can be decomposed in terms of the ele-
mentary sinusoidal modes about which I have been talking. Time does not
allow me to pursue this question. Nor do I have time to present an elegant
argument as to why two waves, when once in phase, remain “locked-in-phase”
as they grow. Accordingly, I refer you to McIntyre (l9SSb, §9). However,
we have now developed the building blocks to understand other types of
cyclogenesis to the one I described in chapter 1.

2.5 Applications to understanding cyclogen-

esis

At the end of chapter 1, I described one very simple mechanism for cyclo-
genesis which does not involve the baroclinic instability process. Baroclinic
instability as described above may be responsible for the growth of some
cyclones from incipient disturbances to a baroclinic shear flow, but this is
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Figure 2.5: A schematic picture of cyclogenesis with the arrival of an upper-
air PV anomaly over a low level baroclinic zone. (after HML)

difficult to establish because we cannot observe the incipient disturbance. It
seems in the majority of cases, cyclogenesis takes place in the presence of
finite amplitude perturbations. However, the ideas we have just described
can be extended to this more realistic case.

Based again on results that go back to Sutcliffe (1947), synopticians pay
attention to the presence of a “short wave” or “short-wave trough” on upper
air charts. In PV terms, these are associated with cyclonic PV anomalies,
usually around the tropopause level. Examples were shown in Figs. 1.6 and
1.7. They can be expected to have a similar vertical structure to that shown
in Figs. 1.10-1.11.

HMR discuss what happens when an upper-air PV anomaly is advected
over a low-level baroclinic region as shown in Fig. 2.5.

It is supposed in (a) that the anomaly, indicated by a solid plus sign and
associated with the low tropopause shown, has just arrived over a region of
significant low-level baroclinicity. The circulation induced by the anomaly is
indicated by solid arrows, and potential temperature contours are shown on
the ground. The low-level circulation is shown above the ground for clarity.
The advection by this circulation leads to a warm temperature anomaly to the
east of the upper PV anomaly as indicated in (b), and marked with an open
plus sign5. This warm anomaly induces the cyclonic circulation indicated by
the open arrows in (b). If the equatorward motion at upper levels advects
high PV polar lower-stratospheric air, and the poleward motion advects low

5The structure of the low-level PV anomaly, associated with the surface temperature
anomaly, becomes clearer when a suitable zonal average of the temperature field is re-
moved. An example is given by Davis and Emanuel (1991, Fig. 6

31



PV sub-tropical upper tropospheric air6, then the action of the upper-level
circulation induced by the surface PV anomaly will, in effect, reinforce the
upper-air PV anomaly. It will also slow down its eastward propagation as
discussed by McIntyre (1988b).

(i) The degree of cyclogenesis will depend on a number of factors.

(ii) The strength of the upper-air PV anomaly.

(iii) The Rossby depth scale, D = fL/N , in relation to the altitude of this
anomaly above the surface. Here H is the horizontal length scale of
the anomaly.

(iv) The strength of the low-level anomaly, which will depend inter alia on
the amount of low-level warm advection, and

(v) The extent to which phase-locking and mutual amplification of the
surface and upper-air anomalies is significant.

The last three factors are all profoundly affected by latent heat release
which inter alia affects the static stability N and hence the vertical penetra-
tion of the two separate PV anomalies.

In connection with (iv), it may not be the case that the upper and lower
disturbances remain in phase for long enough for the development to corre-
spond closely with the baroclinic wave mechanism described earlier. How-
ever, even a temporary interaction of the two disturbances may lead to a
degree of cyclogenesis of significant interest to the forecaster.

In the example described above, it was assumed that both upper and lower
anomalies were embedded in an environment with a large-scale PV-gradient.
If this is not the case, the baroclinic instability mechanism cannot operate.
However as one anomaly passes over the other, there will be a temporary
reinforcement of each during the period that they are in phase and this may
lead also to a cyclogenetic event of significance to the forecaster.

Some interesting three-dimensional depictions of the interaction between
upper and lower PV anomalies associated with extratropical cyclogenesis are
contained in a paper by Bleck (1990).

6This requires that the upper-air anomaly lie within an environment with large-scale
meridional PV gradient.
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Chapter 3

Invertibility, iso-PV charts,
diabatic and frictional effects.

3.1 Invertibility of EPV

In the last lecture I discussed an extension of ideas based on quasi-geostrophic
dynamics to real cyclones where the quasi-geostrophic approximation may
be rather inaccurate. In atmospheric applications it is preferable to work
with EPV instead of PV as it is conserved under more general conditions.
Unfortunately, unlike PPV, EPV cannot be inverted to diagnose the flow
associated with EPV anomalies, unless we make some assumption of bal-
ance. Geostrophic balance may not be sufficiently accurate for quantitative
analysis, but there are other possibilities available. It is inappropriate here
to go into details and I refer you to HMR and to Davis (1992) for a rather
complete discussion and to Davis and Emanuel (1991) for an example. For
qualitative insights, one can get a long way by assuming quasi-geostrophic
balance.

3.2 Iso-PV charts

In Lecture 1 we saw that for adiabatic frictionless motion, P is materially con-
served, i.e. conserved following an air parcel. But θ is materially conserved
also, so that not only is P conserved on an isentropic surface, q is conserved
on an iso-P surface. In particular, θ is conserved on the P = 2PV U surface
which, as noted earlier, coincides closely with the tropopause in extra-tropical
latitudes. We have seen that quasi-horizontal PV-gradients tend to be large
in the vicinity of the tropopause so that this level is one of particular in-
terest vis-á-vis upper-level PV anomalies. We have seen also (albeit in a
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quasi-geostrophic framework) that horizontal PV gradients are analogous to
horizontal temperature gradients. Therefore, instead of plotting a whole lot
of PV-chart on isentropic surfaces, it may be sufficient to have one iso-PV =
2 chart of selected isentropes. While is PV = 2 charts and PV-charts show
similar features, the former have the added a advantage that inspection of the
θ-values gives an idea of the height of the tropopause, i.e., the tropopause
“topography”. Such charts could be used in conjunction with a low-level
chart indicating low-level baroclinicity, such as potential temperature at 850
mb. An example is given by Hoskins and Berrisford (1988).

3.3 Diabatic and frictional effects

When diabatic and/or frictional effects are present, PV is no longer materially
conserved, but is governed by the equation

DP

Dt
=

1

ρ
ζa · ∇θ̇ +

1

ρ
K · ∇θ =

1

ρ
∇ ·Y, (3.1)

where ζa is the absolute vorticity, θ̇ is the diabatic heating rate, K represents
the curl of the frictional force F per unit mass (i.e. K = ∇ · F) and

Y = −θ̇ζa + ∇θ ∧ F. (3.2)

When integrated over a region of space V , Eq.(3.1) gives

d

dt

∫
V

ρPdV =

∫
S

(θ̇ζa + θK) · n̂dS, (3.3)

where S is the surface of V and n̂ is the unit normal to S, outward from V .
An important result that follows from (3.3) is that purely internal diabatic

heating or friction cannot change the mass-weighted PV distribution within
V , i.e., if θ̇ and K are zero on S, then

d

dt

∫
V

ρPdV = 0. (3.4)

Thus internal diabatic heating or friction can only redistribute the PV that
is there. Equation (3.2) shows that diabatic heating in a localized region
produces a dipole anomaly of PV with its axis oriented along the absolute
vorticity vector ζa and in the opposite direction to it (Fig. 3.1a). Cooling
instead of heating reverses the direction of the dipole (Fig. 3.1b). An alter-
native interpretation of the effects of diabatic heating and cooling is given
by Haynes and McIntyre (1987), based on the result that there can be no
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Figure 3.1: PV dipole produced by localized diabatlc heating (a), or cooling
(b). (c) shows the force-curl dipole associated with a localized farce F.

transport of “PV-substance” across isentropic surfaces, even in the presence
of diabatic effects (see also Haynes and McIntyre, 1990).

The action of a localized force F produces positive relative vorticity to its
left and negative relative vorticity to its right (Fig. 3.1c), at a rate K equal
to ∇ ∧ F. Recalling that P = (1/ρ)ζa · ∇θ and noting that the frictional
generation term in (3.1) has the form (1/ρ)∇∧F · ∇θ, we see how the latter
contributes to a change in and hence a change in (1/ρ)ζa · ∇θ. Note that
again, a localized force produces a dipole anomaly of PV, being the projection
of the dipole anomaly of ζa, i.e. ∇∧F, on the potential temperature gradient,
∇θ. Consider the case of an axisymmetric vortex with tangential velocity
distribution v(r), and assume a linear frictional force F = −µv(r), µ(> 0)
acts at the ground z = 0. Then K = −µζk, where ζ is the vertical component
of relative vorticity. Then PV is destroyed locally at the boundary at the rate
(1/ρ)(K · ∇θ) = −(1/ρ)µζ(∂θ/∂z)z=0. The frictional force-curl term may be
expected to be important in the boundary layer.
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3.4 The effects of diabatic heating on cyclo-

genesis

Moist processes can greatly enhance surface development by reducing the ef-
fective static stability N . This increases the penetration depth D (= fL/N)
of disturbances with a particular horizontal scale L. The result is to enhance
the dynamical interaction between upper and lower level PV anomalies, lead-
ing to a more spectacular development. The enhanced interaction has the
effect also of slowing down the relative motion of the upper anomaly to the
lower one, i.e. it accentuates the degree of phase-locking (McIntyre, 1988b,
§11). Latent heat release in the middle troposphere will tend also to lower
the PV anomaly as suggested by Fig. 3.1a.

3.5 The demise of cutoff lows and blocking

anticyclones

Consider a cutoff cyclone associated with an upper level PV anomaly of
the type discussed in Lecture 1 (see Figs. 2.4 and 2.5). HMR point out
that the area of reduced static stability below the anomaly (c/f Figs. 1.10a
and 1.11) is a preferred one for deep convection to occur. Associated latent
heat release will produce a PV dipole anomaly, negative aloft, tending to
weaken the upper anomaly, and positive below, strengthening the anomaly
at lower levels. In other words, the net effect of the convection is to move the
cyclonic PV anomaly down to lower tropospheric levels. HMR argue that, in
order to annihilate the cyclone completely, the diabatically-induced vertical
redistribution of PV would have to extend all the way down to the surface,
and be accompanied by the destruction of mass-integrated PV by surface
friction as discussed in section 3.3. They show that latent heat release in
deep tropospheric convection can lead to the efficient diabatic decay of an
upper PV anomaly on a time scale of a few days.

A unifying aspect of ‘PV thinking’ is the conceptual duality it provides
between cutoff lows and blocking highs. The latter are associated with an-
ticyclonic upper-air anomalies of PV and have a vertical structure typified
by Fig. 1.10b, i.e. a raised tropopause with depressed isentropes below the
anomaly consistent with enhanced static stability there. However, there is
no duality for their diabatic modification which tends to be much faster for
cyclones than anticyclones. HMR point out that the crucial difference is the
tropospheric static stability induced by the PV anomaly. This suppresses
deep convection, leaving radiative cooling as the main diabatic process. This
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gives a decay time scale of a week or so.

3.6 Advantage of PV analysis of cutoff lows

Meteorologists have traditionally considered the difference between “cutoff”
and “non-cutoff” weather systems in terms of the existence or nonexistence
of closed geopotential contours at middle and upper tropospheric levels. As
noted by HMR, this distinction is unsatisfactory because it is not Galilean-
invariant; i.e. if one adds a uniform translation speed to the whole system,
its classification may change although the dynamics would not. In contrast,
the PV structure is Galilean-invariant and should provide a better basis for
distinguishing between cutoff and non-cutoff systems.

3.7 The PV structure of tropical cyclones

A key aspect of tropical cyclogenesis is the release of latent heat associated
with vigorous deep convection. We have seen that such heating tends to
produce a low-level cyclonic PV anomaly and an anticyclonic anomaly in
the upper troposphere (Fig. 3.1a). In the case of a tropical cyclone, this
distribution is subject to advection by the meridional circulation so that the
low-level anomaly extends through much of the depth of the troposphere and
the anticyclonic anomaly is spread in a wide, but shallow layer in the outflow
layer, just below the tropopause. The way in which these structures evolve,
is illustrated in a simple model calculation by Schubert and Alworth (1987).
Figure 3.2 shows the results of a similar calculation by Möller and Smith
(1994) in which a vortex is generated by switching on a fixed heat source in
an annular region around the axis of rotation, a configuration that attempts
crudely to represent the effect of latent heat release in the tropical cyclone’s
eye-wall clouds.
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Figure 3.2: Isolines of the dimensionless PV(upper diagram and the tangen-
tial wind speed (lower diagrams) induced by a fixed symmetric heat source
surrounding the axis of a uniformly rotating fluid. The heat source is im-
posed at the initial time and panels show the evolution of fields at 24 hour
intervals. The calculation illustrates the evolution PV structure In a tropical
cyclone. In these diagrams, Isentropic coordinates are used in the vertical
and a stretched radial coordinate in the horizontal direction. (From Schubert
and Alworth, 1987).
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