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Use of Artificial Neural Networks to Retrieve TOA
SW Radiative Fluxes for the EarthCARE Mission

Carlos Domenech and Tobias Wehr

Abstract—The Earth Clouds, Aerosols, and Radiation Explorer
(EarthCARE) mission responds to the need to improve the un-
derstanding of the interactions between cloud, aerosol, and radia-
tion processes. The fundamental mission objective is to constrain
retrievals of cloud and aerosol properties such that their impact
on top-of-atmosphere (TOA) radiative fluxes can be determined
with an accuracy of 10 W · m−2. However, TOA fluxes cannot be
measured instantaneously from a satellite. For the EarthCARE
mission, fluxes will be estimated from the observed solar and ther-
mal radiances measured by the Broadband Radiometer (BBR).
This paper describes an approach to obtain shortwave (SW) fluxes
from BBR radiance measurements. The retrieval algorithms are
developed relying on the angular distribution models (ADMs)
employed by Clouds and the Earth’s Radiant Energy System
(CERES) instrument. The solar radiance-to-flux conversion for
the BBR is performed by simulating the Terra CERES ADMs us-
ing a backpropagation artificial neural network (ANN) technique.
The ANN performance is optimized by testing different architec-
tures, namely, feedforward, cascade forward, and a customized-
forward network. A large data set of CERES measurements used
to resemble the forthcoming BBR acquisitions has been collected.
The CERES BBR-like database is sorted by their surface type,
sky conditions, and scene type and then stratified by four input
variables (solar zenith angle and BBR SW radiances) to construct
three different training data sets. Then, the neural networks are
analyzed, and the adequate ADM classification scheme is selected.
The results of the BBR ANN-based ADMs show SW flux retrievals
compliant with the CERES flux estimates.

Index Terms—Angular distribution models (ADMs),
anisotropic correction, artificial neural network (ANN), Earth
Clouds, Aerosols, and Radiation Explorer (EarthCARE), remote
sensing, solar radiative flux.

I. INTRODUCTION

THE Earth Clouds, Aerosols, and Radiation Explore (Earth-
CARE) is a forthcoming space mission planned by the

European and Japanese space agencies which addresses the
need to improve the understanding of the interactions between
cloud, aerosol, and radiation processes. These elements play a
critical role in the Earth’s radiative balance. According to the
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scientific goals established for EarthCARE in the User Consul-
tation Meeting at the ESA-European Space Research Institute
(ESRIN), in April 2004, the overarching mission requirement
is to constrain retrievals of cloud and aerosol parameters such
that their impact on top-of-atmosphere (TOA) broadband (BB)
radiative fluxes is accurate to within 10 W · m−2 for a footprint
of 100 km2 [1]. The required accuracy refers to the total
radiative flux error, including instrument and unfiltering errors.

TOA fluxes cannot be measured instantaneously and directly
from a satellite; instead, they have to be estimated from ra-
diance measurements acquired by the BB Radiometer (BBR)
onboard the EarthCARE spacecraft. The BBR provides quasi-
instantaneous measurements of BB reflected solar and emitted
thermal TOA radiances of the same target at three fixed viewing
angles: nadir, fore, and aft views (along track (AT) at ±50◦).
This additional angular information on the radiation field can
be exploited to construct radiance-to-flux inversion schemes
more accurate than those using a single radiance. This paper
describes a promising approach to obtain instantaneous radia-
tive shortwave (SW) fluxes from BBR radiance measurements.

II. BBR FLUX-RETRIEVAL ALGORITHM DEVELOPMENT

A robust and reliable TOA radiance-to-flux conversion
methodology has to be developed for the BBR prior to mission
launch so that the retrieval algorithm would be available from
day one of the EarthCARE mission in orbit. Thus, the method
has to be based on well-proven methods, such as making
use of the so-called angular distribution models (ADMs) [2],
[3]. These models cannot achieve the required EarthCARE
radiative accuracy for all-sky conditions. However, they are
consistent with the instantaneous TOA flux accuracy of current
Earth-radiation budget missions. ADMs describe the angular
dependence of the TOA Earth’s radiation field, however, in-
volve errors related to the departures of the instantaneous local
anisotropy from the mean anisotropy represented by the ADM.
Empirical and theoretical angular models can be used to define
the BBR flux-conversion procedure. The former consists in
using accumulated satellite data and existing conversion pro-
cedures, and the latter is based on radiative-transfer (RT) simu-
lations to relate modeled radiances to corresponding fluxes.

Domenech et al. [4], [5] developed theoretical angular mod-
els for the BBR, where anisotropic coefficients are retrieved
from RT Monte Carlo simulations to construct a synthetic
ADM specifically defined for the multipointing capability of
the BBR. The comparison between flux estimates obtained
with the BBR theoretical models and the empirical methods
were not totally satisfactory, and the conclusions stated that
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methodologies based on simulated databases are limited and
difficult to extrapolate to real situations. Following the same
line, the BBR thermal-flux-retrieval algorithm was developed
using theoretical ADMs [6]. The reduced anisotropic effect in
the longwave (LW) domain makes the use of theoretical models
easier. In that study, a synthetic database of spectral radiances
is computed using RT calculations. Then, the combination of
both nadir and off-nadir observations into a modelled effective
radiance, and the correlation between the angular and the
spectral behaviour of the radiation field are exploited to develop
the retrieval algorithms.

In principle, the creation of a sufficiently large satellite BBR-
like database that accomplishes the BBR viewing requirements
would allow building an empirical ADM. However, given the
peculiarity of the BBR AT geometry, it is not possible to obtain
enough angular sampling to perform the hemispheric radiance
integration. Thus, the selection of a representative satellite data
set does not permit the construction of BBR angular models. An
alternative solution would be to use existing angular models.
The Clouds and the Earth’s Radiant Energy System (CERES)
instrument [7] employs ADMs constructed from data observed
by CERES itself. The CERES rotating azimuth capability used
to sample the anisotropic radiance field from all directions pro-
vides a greatly adequate data set from which to develop ADMs
[8], [9]. By using the sorting-into-angular-bins approach, a
large ensemble of observations is sorted into discrete angular
ranges and parameters that define an angular bin. Then, the
radiative flux is computed for every bin. Each of those bins
is defined by the surface type and atmospheric parameters that
are distinguishable by the onboard multispectral imager. Con-
siderable efforts have been devoted to improve these angular
models [10], [11]. However, ADMs are sensor dependent, i.e.,
they are influenced by the spatial resolution of the sensor and
the satellite orbit, which is also a sampling issue. For instance,
the CERES Protoflight Model onboard the Tropical Rainfall
Measuring Mission (TRMM) acquired radiances from a 35◦ in-
clined orbit, thus providing sampling in the tropical region only.
This constrains the creation of an angular model applicable to
the whole planet. The sampling is biased and unacceptable for
the polar low Earth orbit defined for EarthCARE. The CERES
Terra angular models [9] would be a better solution for the SW
BBR flux derivation. Nevertheless, the Terra ADM cannot be
easily adapted to the BBR due to the great complexity of the
algorithm. Thus, the artificial neural network (ANN) method
described by Loukachine and Loeb [12], [13] and used in
ScaRaB-3 by Viollier et al. [14] has been adopted and further
develop for the L2 BBR SW flux-retrieval algorithms. The
ANN performance has been optimized by testing three different
architectures with three hidden neuron layers, namely, feed-
forward, cascade forward, and a customized-forward network
and trained all of them with backpropagation. The network is
constructed as function of the solar zenith angle (SZA), the
three quasi-instantaneous BBR measurements, and the coinci-
dent imager measurements over the BBR field of view (FOV).

Three different ADM schemes have been considered in
this paper, defining the angular bins by their surface type,
sky conditions, and CERES scene identification parameter
(CERES ID). Thus, the BBR-like database of CERES data

has been sorted by those conditions and then stratified in the
four input variables (SZA, forward, backward, and nadir SW
radiances) to build up three different training data sets.

This study is limited to the SW domain, the most critical case.
An exhaustive error analysis has been done by comparing ANN-
derived TOA fluxes with TOA fluxes obtained from CERES
Terra ADMs and the most optimized network, and the adequate
ADM classification scheme has been selected. The BBR ANN-
based ADM shows results compliant with the EarthCARE
requirements for many different conditions when applied to the
2× 106 CERES observations collected during the study.

III. CERES BBR-LIKE DATA

The CERES data employed in the construction of the ANN
training data sets have to simulate the forthcoming EarthCARE
BBR observations, i.e., the angular viewing geometry and
the spectral-band specification designed for the instrument.
In particular, there is a CERES data product that fulfills the
requirements: CERES Single Scanning Footprint TOA/Surface
Fluxes and Clouds (SSF) Edition2B-Rev1. Each SSF file con-
tains footprints from a single hour (which is approximately two-
thirds of an orbit) of CERES BB unfiltered radiances, scene
type, derived fluxes, and viewing geometry. However, not all
these CERES acquisitions are useful for this study. Three BB
quasi-instantaneous radiances pointing to the same scene at
nadir and ±50◦ are a request; thereby, only radiances acquired
in AT scanning after the Earth-rotation correction patch [15] is
applied can be valid. Otherwise, the AT colocation between the
off-nadir views is hardly possible to achieve.

Eight days of CERES AT data have been employed in this
paper, namely, two days for January 2005: January 11 and 25
(not corrected AT scanning) and six days for February 2005:
February 8, 22, 25, 26, 27, and 28 (true AT (TAT) scanning).
The TAT scans in February 2005 were incited by the ESA study
[16] with a specific instrument coverage request. The CERES
instrument (FM2) used to switch to AT operation mode during
daytime every 15 days. However, different problems regarding
the early aging of the CERES sensor led to the decision to
restrict the CERES scanning modes to cross-track mode. Thus,
the entire data set of CERES TAT data available at the National
Aeronautics and Space Administration (NASA) Atmospheric
Sciences Data Center (ASCD) is analyzed in this study.

The TAT CERES data sets are scanned to select the CERES
BBR-like data. It is necessary to find spatial/temporal collo-
cated observations in the nadir and off-nadir backward and
forward views. The algorithm selects oblique and nadir angles
between 45◦ and 55◦, and 0◦ and 5◦, respectively, being the rela-
tive azimuth between the off-nadir views in the range [170–190]
degrees. The distance between FOV centers of those measure-
ments is forced to be less than 10 km. Several filters have
been applied to verify the consistency between nadir and off-
nadir radiances, specifically, over the cloud-classification pa-
rameter (parameter to identify the cloud type) and the CERES
ID for the nadir and off-nadir targets. The coherence in the
CERES-derived fluxes is evaluated as well. The bias between
the CERES off-nadir flux estimates (theoretically equal) is
computed, and the system filters the data when the bias exceeds
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5% of the maximum flux estimated for the target. At the end, a
large data set of SW CERES triplets that reproduces the BBR
acquisitions (hereafter called as BBR-like CERES database)
has been collected and thoroughly filtered to avoid noise.

IV. FLUX ESTIMATION

A neural network has been trained with specific training
sets in order to obtain ANN-based SW fluxes from CERES
BBR-like measurements. Moderate-Resolution-Imaging-
Spectroradiometer-based cloud and aerosol properties
convolved over the CERES FOV [17] are used to create
and test several schemes of scene definitions. After an adequate
training, the ANN is capable of reproducing the original
CERES flux estimates (inferred from CERES Terra ADMs
[9]). Then, the ANN-based ADM is ready to operate as a
scene-dependent function of four input variables. The ADM
scene type is selected based on the particular ADM scheme
employed, while the SZA and the three BB SW radiances are
used as inputs for the conversion procedure

FANN = f(θ0, L0, L+50, L−50, scene) (1)

where FANN is the ANN-derived TOA flux, scene refers to the
combination of surface type (which does not depend on imager
retrieval) and atmospheric properties (which depends on imager
retrievals), θ0 is the SZA, and L0, L+50, and L−50 are the
measured BB radiances for nadir, forward, and backward views,
respectively. The viewing zenith angle and relative azimuth
angle are fixed due to the BBR viewing geometry.

V. BACKPROPAGATION NEURAL-NETWORK STRUCTURE

This section describes the backpropagation network archi-
tectures used to characterize the CERES Terra ADMs. Back-
propagation is the generalization of the Widrow–Hoff learning
rule to multiple-layer networks. Input vectors and the corre-
sponding target networks are used to train a network until it
can approximate a function that associates the input vectors
with specific output vectors. The standard backpropagation is
a gradient descent algorithm in which the network weights are
moved along the negative of the gradient of the performance
function.

This technique has been widely used in the atmospheric
community, Chevallier et al. [18] employed the NeuroFlux
scheme to derive the LW radiative budget, Yongxiang et al.
[19] described the narrow-to-broad radiance conversion using
a neural network, Loukachine and Loeb [12] reproduced the
CERES TRMM ADMs with a feedforward error backprop-
agation network, and Loukachine and Loeb [13] applied the
same methodology to the CERES Terra ADMs to deal with
CERES FOV with insufficient imager information. Recently,
Viollier et al. [14] have adopted the ANN method described by
the CERES team, replacing the BB radiances by narrowband
radiances from the auxiliary channels of ScaRaB as input
variables of the model.

A general layout of one-hidden-layer network is shown in
Fig. 1. Neural networks usually have one or more hidden layers

Fig. 1. One-layer network structure with R input elements (p) and S
neurons (n): weight (W ), bias (b), transfer function (F ), and output (a).

of sigmoid neurons followed by an output layer of linear neu-
rons. Each neuron of the nth layer is connected with all neurons
of the previous layer with an assigned weight. The sum of the
weighted inputs and the bias forms is the input to the transfer
function. Multiple layers of neurons with nonlinear transfer
functions allow the network to learn nonlinear relationships
between input and output vectors.

Three different network architectures have been performed
for this study. In particular, the angular models have been opti-
mized for a feedforward network structure, a cascade-forward
network structure and a custom-forward network structure. To
reduce the number of neurons (and computational time), at least
two hidden layers have been used in every ANN [25]. The
neurons in the hidden layers use a tan-sigmoid transfer function
and a linear transfer function in the last layer.

The four ANN input variables are the SZA and the three
BBR-like CERES radiances. These are introduced in two input
vectors to distinguish the different anisotropy dependence of the
radiance field to the variables. Specifically, the nadir, forward,
and backward radiances are grouped in a vector input, and the
SZA is included in a second vector input.

A. Feedforward ANN

The feedforward network is commonly employed to ap-
proximate nonlinear problems. It can approximate a complex
function (with a finite number of discontinuities) with arbitrary
accuracy, given enough number of neurons in the hidden layers.
The network of this study has been constructed for two input
vectors with two hidden neuron layers and one output neuron
layer.

Fig. 2 shows the feedforward scheme employed to create
the network. The rectangles show the layer neurons, and the
input/outputs are indicated by circles. The two vector inputs are
connected to the first hidden layer of five neurons, Layer 1.
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Fig. 2. Feedforward network structure with error backpropagation. Circles
show the four normalized inputs introduced by two vector inputs, and rectangles
show the ANN neurons, which form two hidden layers, Layer 1 and Layer 2, of
5 and 11 neurons, respectively, and the output layer, Layer 3.

Fig. 3. Simplified scheme of the cascade-forward network structure. Rectan-
gles represent the layer neurons, and circles represent the inputs/outputs of the
system. L1 and L2 correspond to hidden layers with hyperbolic tangent sigmoid
transfer functions, and L3 is an output layer with a linear transfer function.

The output of Layer 1 is connected to the second layer of
11 neurons. An output layer with a linear transfer function
receives the Layer 2 weights and provides the flux estimates.
A random bias is defined in every layer.

B. Cascade-Forward ANN

A cascade-forward network with three layers (two hidden
layer + one output layer) has been built as well. Cascade-
forward ANNs are similar to feedforward networks but include
a weight connection from the input to each layer and from each
layer to the successive layers. The network used in this study
has connections from Layer 1 to Layer 2, Layer 2 to Layer 3,
and Layer 1 to Layer 3. There are also connections from the
inputs to all three layers.

Fig. 3 represents the cascade-forward ANN architecture ana-
lyzed in this section. The layout has been abbreviated to clearly
show the connections. The hidden layers, Layer 1 and Layer 2,
have been defined with 5 and 11 neurons, respectively.

C. Custom-Forward ANN

The custom-forward network is a feedforward ANN where
the input and layer connections has been altered for our pur-
poses. The ANN inputs are partially connected to the first

Fig. 4. Feedforward customized network structure. Four layers are used in the
ANN, namely, three hidden layers, Layer 1, Layer 2, and Layer 3, with 5, 2, and
11 neurons, respectively, and the output layer, Layer 4.

TABLE I
INPUT VARIABLES, STRATIFICATION INTERVALS, AND NORMALIZATION

FACTOR FOR THE TRAINING SETS

and second layers. The reason for this division is to separate
the anisotropic contributions of the input parameters. The four
inputs, radiances and geometry, are connected to the first layer
of five neurons, whereas the two neurons of Layer 2 are only
connected to the SZA. The SW flux is strongly dependent on
the four parameters, but it has been proved that the network
performs better if this strong correlation is separated into these
two branches.

The custom-forward layout is shown in Fig. 4. The first and
second hidden layers are connected to the third layer, and the
third is connected to the output layer. The ANN is connected to
the external world by the output layer.

VI. TRAINING

Having all network weights and biases initialized, the ANN
is prepared for training. There are many variations of the
backpropagation algorithm, and it is difficult to know a priori
what will be best suited for a specific problem. It depends
on many factors, the complexity of the problem, the number
of data points, the error goal, etc. After testing several high-
performance algorithms, the Levenberg–Marquardt training al-
gorithm [20] seemed to be the best option. The algorithm shows
the fastest convergence, and it is recommended when very
accurate training is required. To prevent overfitting, the early
stopping technique with random data division is employed in
the training. The input data set is randomly divided so that
the network is trained on the 60% of the training data until its
performance begins to decrease on the validation data (20% of
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TABLE II
ENTRY VECTORS IN THE TRAINING SETS AND NUMBER OF CERES FOOTPRINTS EVALUATED

IN EVERY SCENE TYPE FOR THE THREE ADM SCHEMES EMPLOYED

the samples). The last 20% is assigned to the test set which
gives a completely independent test of network performance.

A. Training Sets

A useful BBR-like CERES data set which contains almost
two million CERES footprints can be obtained from the CERES
satellite data. The high computational cost of the ANN training
makes it impossible to use directly the whole volume. It is
then necessary to create compact training sets. However, the
ANN-based ADM needs to faithfully represent all kind of at-
mospheric scenes. Thus, it is important to construct training sets
large enough to represent the complexity of the data and obtain
a high degree of generalization [12]. This can be achieved if
the data set is stratified in the variable of interest, and the
corresponding mean is computed.

For the atmospheric/surface scene, SW radiance and sun
position are the parameters with the highest influence in the flux
anisotropy considering that the relative azimuth and viewing
zenith angles are fixed due to the BBR viewing geometry. Those
are the parameters selected in the CERES ANN-based ADMs
[12], [13], but the BBR is allowed to go one step further in
the ADM building. Due to the multipointing capability, three
measurements are obtained for the same target. This can be
used for a better scene anisotropy representation and to infer
more accurate fluxes. Thus, the ANN input variables selected
are the following: SZA, CERES nadir, and forward and back-
ward unfiltered radiances. To create the training sets for these
constituents, the CERES database is stratified by these variables
using the intervals shown in Table I. The number of intervals
and their widths are chosen by a compromise between reducing
natural noise, keeping good representation of the data, and the
required computer processing time for the training process.
Once the ADM scene scheme is defined, for every scene type
and in every interval, the mean and standard deviation (STD)
of the original CERES apparent fluxes and the mean of all four
variables are calculated. A minimum of five CERES footprints
is required in every data bin. The means of the input variables
are normalized to their maximum allowed value in the training
set, as shown in Table I, in order to avoid operations with large
numbers in the process of network training.

Actual fluxes are ideal output target in the ANN training;
however, they are not known. Instead, the CERES Terra flux

Fig. 5. Inputs and targets are divided into three sets. Of the vectors, 60%
are used to train the network, 20% are used to validate how well the network
performs, and the last 20% provide an independent evaluation of network
performance with data that the network does not know.

estimates are employed. Three fluxes are collected for every
footprint corresponding to the three BBR views. To reduce
noise, the training data set is filtered according to the flux
dispersion in the bins. An upper limit of 8% is set for the relative
STD of the three angle-biased fluxes within the same bin. The
exclusion of noisy data from the training sets helps to use
more appropriate data to train the networks. Considering that
fluxes estimated from off-nadir views (±50◦) are more accurate
in cloudy-sky conditions than those obtained from nadir [21],
[22], mean flux values are computed only with the oblique
views. The flux values are also normalized to the maximum
CERES flux expected (950 W · m−2) in order to optimize the
network performance.

B. ADM Scene Schemes

The angular models are obtained for specific scene types
in order to optimize the performance of the flux conversion.
The scene ID required to use the models and the ability
of the models to characterize the target anisotropy are the
factors to be considered in the scene selection. Three scene
schemes have been created employing the CERES ADM
ID. This CERES classification is composed of 11 classes:
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Fig. 6. Error-frequency-distribution histograms for the ADM scheme 1.

Fig. 7. Error-frequency-distribution histograms for the ADM scheme 2.

Clear water (clwat), Clear Mostly Water + Land/Desert/Snow
(clmostwat), Clear Land/Desert (clland), Clear Mostly Land/
Desert + Water/Snow (clmostland), Clear Mostly Snow +
Water/Land/Desert (clmostsnow), Clouds Over Water (cld-
wat), Cloudy Mostly Water + Land/Desert/Snow (cldmost-
wat), Clouds over Land/Desert (cldland), Cloudy Mostly
Land/Desert + Water/Snow (cldmostland), Clear Snow and
Cloudy (clcldsnow), and Cloudy Mostly Snow + Water/
Land/Desert (cldmostsnow). In particular, the training sets have
been stratified as follows:

1) ADM scheme 1. Three wide training sets have been
constructed in this scheme corresponding to the CERES
surface types. The scheme is composed of ocean, land,
and snow/ice surfaces. Cloudy conditions are not consid-
ered and belong to the statistical background data. The
scene identification would not require information from
the imager.

2) ADM scheme 2. In the second scheme, the scene types
are defined as a function of the atmospheric conditions,
namely, clear sky or cloudy sky. It is assumed that the
effect of bidirectional surface reflectance is less important
than cloud anisotropy in the anisotropic nature of scenes.
This scheme depends on the imager retrievals to identify
the scene.

3) ADM scheme 3. The third scheme is a set of nine types
that corresponds to the 11 CERES ID definitions. Clouds,
as well as surface properties, are taken into account in this
scene definition. The cldmosland and cldmostsnow scene

types are not considered in the study because not enough
data were found to reach the sampling threshold. In this
case, imager-retrieved products would be necessary to
select the angular model.

The number of entry vectors in the training sets and the
number of CERES footprints for every scene type are shown
in Table II.

C. ANN Training

Once the ADM schemes are defined and the training sets con-
structed, the networks are ready to be trained. The three ANNs
are trained using the Levenberg–Marquardt algorithm in every
training subset. The weights and biases have to be initialized
before training the network, and each time the ANN is initial-
ized, the network parameters are different and might produce
different solutions. Therefore, 50 networks corresponding to
50 different initializations have been trained for every consid-
ered architecture.

After training the networks for every training data set,
800 trained neural networks are obtained corresponding to the
3, 2, and 11 training sets of the ADM schemes 1, 2, and 3,
respectively. Fig. 5 shows an example of an output plot after
training the network. The plot shows the mean-square error of
the network starting at a large value and decreasing to a smaller
value, i.e., it shows that the network is learning. An exhaustive
error analysis is necessary to carry out to determine the network
and the ADM scheme that provide the best performance.
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Fig. 8. Error-frequency-distribution histograms for the ADM scheme 3.

VII. RESULTS AND VALIDATION

The validation of results and selection of the best ANN archi-
tecture and ADM scene scheme have been done by employing
CERES original radiance measurements and the corresponding
retrieved fluxes. In order to select the most optimized model
from the 50 networks constructed for each backpropagation
architecture, the root-mean-square (rms) error between the
ANN-derived and mean CERES fluxes is calculated for every
network over the entire BBR-like database. First, it is necessary
to estimate the ANN-derived fluxes. This is done by creating
the input vectors, normalizing the input and output variables
to the factors used to create the training sets (Table I). Then,
the normalized input data are propagated through the trained
ANN, and finally, the normalization of the output is reversed
to obtain the estimated flux. Only one ANN is selected for
each architecture and per training set after this initial error
analysis.

A. ANN Architecture Selection

The next step is to evaluate the three architectures over
the entire CERES BBR-like database and select the most
appropriate layout for every scene type. Figs. 6–8 show the
frequency-distribution histograms of the normalized bias be-
tween ANN-based and mean CERES fluxes for every scene
class used in the three ADM schemes. The mean and the STD
of the distribution and the mean absolute error (MAE) between
CERES flux estimates obtained for the forward and back-
ward off-nadir views are plotted in the figures to interpret the
results.

The plots show satisfactory results for all three ANN archi-
tectures, and none can be ruled out without further studies. Re-
sults for the three architectures show that ANN-derived fluxes
tend to slightly overestimate the original CERES estimates.
The networks perform particularly well over broad data sets.
However, as expected, higher errors are obtained when they
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TABLE III
ANN MODEL PERFORMANCE FOR ADM SCHEME 1

are applied over data sets with less amount of targets or for
individual samples. Remarkably, for the case of coastline in
clear-sky scenes (clmostwat), even though the CERES bias is
small, deviations up to 5% are found. Bertrand et al. [23]
formerly observed high flux uncertainties for coastal zones. The
proposed network architectures show a different performance
depending on the scene type. In particular, feedforward network
works slightly worse than the other two models in the ADM
scheme 1. The same argument can be applied to the ADM
scheme 2. More variability is found in the ADM scheme 3, nev-
ertheless the cascade-forward and custom-forward architectures
show a bit more accurate flux estimations. It is important to
note that the CERES flux MAE is usually higher than the MAE
obtained between the original CERES and ANN-based flux
estimations, which is a great estimator of the good performance
of the developed ANN-based angular models.

A routine to calculate a number of error metrics to select
the network with the best performance for each ADM scheme
has been constructed. The error metrics considered are the rms,
normalized rms error, STD(MAE), MAE, normalized mean
bias, normalized mean error (NME), mean fractional bias, mean
fractional error (MFE), the bias, and the intrinsic uncertainty
of the target ADM (STDmin). The intrinsic error associated to
each ANN can be inferred from

STDmin

=

√
STD(Fforw)

2
+ STD(Fback)

2
+ STD(MAE)2 (2)

where the STD(Fforw) and STD(Fback) are the averages in
every training set of the CERES fluxes STDs obtained from
forward and backward views, respectively. The STD(MAE)
is the STD of the difference in every training set between
the ANN-derived and mean CERES fluxes after training the
networks. As an example, Table III summarizes the results
achieved for the ADM scheme 1. A detailed description of
these error statistics can be found in Boylana and Russell [24].
The neural network presenting the highest number of minimum
errors is selected and stored. At the end of the process, a
single ANN is chosen for every ADM scheme and for each
scene type.

Fig. 9. Flux-estimate comparison between CERES and BBR ANN-derived
ADMs.

B. CERES Neural Network ADM

In the CERES BBR-like database building process, CERES
flux estimates obtained from neural-network-based ADMs [13]
were not used. The current ANN-derived ADMs have been
constructed without considering those models; only flux mea-
surements inferred from the empirical CERES Terra angular
models were employed. However, the CERES ANN-based flux
data collected that fulfill the BBR viewing-geometry require-
ments can be employed to be compared with the flux re-
trievals computed with the ANN BBR ADMs. This comparison
is meaningful because both angular models share the same
methodology.

Fig. 9 shows the comparison between fluxes derived from the
networks selected in the ADM scheme 1 and fluxes obtained by
the direct application of the CERES ANN-based ADM. RMS
errors up to 10 W · m−2 are obtained; however, these results are
coherent with the high discrepancies found between CERES
fluxes obtained from forward and backward views (around
10 W · m−2).

C. ADM Scheme Selection

The three schemes have been intercompared to decide which
is the most efficient ADM scene definition for the BBR flux
retrieval. The CERES BBR-like database is classified accord-
ing to the CERES ID, then the ANN models, corresponding
to schemes 1 and 2, are applied over the original CERES
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Fig. 10. Flux comparison between BBR ANN-derived estimates of scene data sets classified according to the CERES ID.

measurements, and the mean rms error and MAE are com-
puted for every scene type. The performance of the three
ANN-based angular models is shown in Fig. 10. In general, the
three models show a high correlation with respect to the CERES
flux estimates and present MAEs that are much lower than the
MAE values computed for the CERES oblique fluxes. The three
ANN models show their best results when they are applied
over clear homogenous scenes (clwat and clland scene types),
while the heterogenous scenes (clmost and cldmost scene types)
provide the worst matches.

The error metrics used in the previous sections have been
computed for every subset in order to select the most appropri-
ate ADM scheme and quantify the error. Table IV summarizes
the results obtained for every scene type. ε expresses the relative
error with respect to the best accuracy obtained with the rms
estimator, i.e., the improvement of the best model compared
with the other two methods. As expected, networks from ADM
scheme 3 guarantee the most accurate results since those mod-
els have been built from training sets corresponding to those
specific scene types. However, individual high errors (outliers)

are less significant when the error metrics are calculated for data
sets with high number of entries; thus, the model performance
show similar results in the three ADMs. This can be observed
in cloudy ocean scenes. A similar behavior is found again when
the models are applied over snow/ice surfaces. In this case, the
difficulty to obtain useful data sets around the poles causes
the high errors of the three models. A more efficient angular
sampling would be needed to improve the network-training
results.

According to these results, scheme 2 provides slightly lower
error values than scheme 1 mainly in clear-sky land surfaces.
However, the network models of ADM scheme 1 show sig-
nificant better results than models from the ADM scheme 2
over clear ocean and cloudy land surfaces. Thus, considering
that scheme 1 ADMs are a BBR stand-alone algorithm, i.e.,
only BBR radiance measurements are needed to convert radi-
ances into radiative fluxes, and the right results obtained with
scheme 1 in the comparison with the results from ADMs
scheme 2, it seems clear that the ADMs from scheme 2
can be discarded. Therefore, only angular models from ADM
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TABLE IV
ERROR METRICS OF THE ANN-BASED BBR ADMS OVER SCENES SORTED BY THE CERES ID PARAMETER

schemes 1 and 3 are recommended for the BBR algorithm
implementation. Thus, operational BBR SW radiance-to-flux
conversion algorithms could rely on the ANN-based ADMs
with scene scheme 1 when information from the EarthCARE’s
imager is not available, and the ANN-based ADMs with scene
scheme 3 is advisable when the flux-retrieval algorithm can
make us of the EarthCARE Multi-Spectral Imager (MSI) in the
BBR FOV due to the reliability, consistency, and accuracy of
the method.

VIII. CONCLUSION

The efficiency of the ANN-derived fluxes obtained with the
SW BBR angular models to reproduce the SW TOA CERES
Terra fluxes has been amply demonstrated in this paper. The
BBR flux retrievals accurately match the CERES ANN-based
fluxes under almost all the scene types considered. In addition,
two ADM scene schemes have been shown useful for a poten-
tial implementation in the BBR L2 algorithms. As conclusion
of this paper, BBR stand-alone fluxes can be derived with
an acceptable accuracy without imager information, and BBR

imager-dependent fluxes can be obtained with higher accuracy
when MSI data are available.

However, results obtained over ice/snow regions are not
fully satisfactory. More efforts are needed to optimize the flux-
retrieval performance in these critical surfaces. Enlarging the
CERES BBR-like database by reducing the demanding require-
ments or by increasing the number of CERES days analyzed
in polar regions could solve the problem. In the same line, the
ANN-based ADM works reasonably well with coastline scenes,
nevertheless, more developments are necessary to improve the
results.

It is important to remark that the SW ADMs developed
for the BBR rely on CERES Terra flux retrievals. The ANN-
derived fluxes simulate fluxes estimated with the empirical
CERES angular models, thus the accuracy expected for these
BBR ADMs will always be, at best, as high as the accuracy
given for the instantaneous CERES TOA fluxes. According to
Loeb et al. [11], [22], the CERES Terra instantaneous TOA flux
uncertainty of all-sky ocean and land is 6% (17 W · m−2) and
9% (26 W · m−2) in polar regions. A prototype methodology
should then be developed in next studies to be aimed at



DOMENECH AND WEHR: USE OF ANNs TO RETRIEVE TOA SW RADIATIVE FLUXES FOR THE EARTHCARE MISSION 1849

improving TOA flux accuracies in order to fulfill the overar-
ching EarthCARE goal.
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