

Initial conditions provided by convective-scale ensemble data assimilation in the COSMO-DE model

Florian Harnisch¹,Christian Keil²

¹Hans-Ertel-Centre for Weather Research, Data Assimilation, LMU München, Germany ²Meteorologisches Institut, LMU München, Germany

Limited Area Model Ensemble Prediction System

COSMO-DE-EPS

 $\Delta x = 2.8$ km (50 levels)

~ 1250 x 1150 km

- No parametrization of deep convection
- 20 ensemble member
- 21 hours forecast length, initalized every 3 hours
- Operational since May 2012
- \rightarrow Good results for precipitation forecasts
 - (e.g. Gebhardt et al. 2011, Peralta et al. 2012, Kühnlein et al. 2013)

Setup of operational COSMO-DE-EPS

(1) ensemble of 4 LBCs (multi-model)

(2) ensemble of 4 ICs (multi-model)

(BCEPS perturbations + deterministic COSMO-DE nudging analysis; vertical filter)

(3) 5 perturbations of model physics parametrization

Ensemble data assimilation for COSMO-DE-EPS

So far: no data assimilation component in COSMO-DE-EPS

KENDA: <u>Kilometer-Scale En</u>semble <u>Data Assimilation</u> \rightarrow <u>Lokal Ensemble Transform Kalman Filter</u> (**LETKF**) (*Hunt el al. 2007*)

- Experimental setup for data assimilation of conventional observations
- LETKF yields an analysis ensemble (+ optional deterministic analysis)
 - \rightarrow Provides initial conditions for COSMO-DE-EPS forecasts
 - \rightarrow Improved representation of IC uncertainty in COSMO-DE-EPS
- → What effect do different initial conditions have on ensemble forecasts?

Overview of experiments

Period of interest: 12 UTC 10 June – 00 UTC 12 June 2012

- **KENDA:** 3-hourly LETKF data assimilation of conventional data (TEMP, AIREP, PILOT and SYNOP)
 - 3-hourly analysis ensemble with **20** ensemble members
 - 20 member ECMWF EPS boundary conditions ($\Delta x = 16$ km)
 - No physics parametrization perturbations (PPP)
 - 21 h forecasts at 00 UTC 11 / 12 June 2012
- COSMO-DE-EPS (boundary conditions: BCEPS) **OPER:**
 - ICPs from downscaled BCEPS + nudging analysis, vertical filter
 - 5 model physics parametrization perturbations

Ensemble mean error and ensemble spread

- Average over 11 cycles
- Verification against COSMO-DE analysis
- OPER has smaller error:
 → choice of verification
 - → initial ensemble constructed around COSMO-DE analysis
- Both experiments are under dispersive

Power spectrum of ensemble perturbations

- Variance at small scales (<100 km) is reduced OPER
- Most of the missing variance at small scales developes within 1 hour

Power spectrum of ensemble perturbations

- Variance at small scales (<100 km) is reduced OPER
- Most of the missing variance at small scales developes within 1 hour
- Vertical filter: dampening at lowest levels exists for more than 3 hours

Ensemble rank histogram

- Verification against COSMO-DE analysis (similar results against obs)
- All ensemble forecasts are under dispersive
- Signal of 4 global models dominate in OPER

Ensemble dispersion

Normalized variance difference (NVD):

var(eps 1) - var(eps 2) var(eps1) + var(eps 2)

10

HERZ Data Assimilation Branch, LMU München

Additional KENDA experiment

- Investigate the effect of model formulation uncertainty: KENDAppp: same as KENDA, but
 - \rightarrow including 10 physics parametrization perturbations

HERZ Data Assimilation Branch, LMU München

Summary & Outlook

- Current ICs in COSMO-DE-EPS based on downscaling
- KENDA: km-scale ensemble data assimilation by means of an LETKF for the COSMO model (experimental system)
- KENDA provides <u>consistent</u> ICs for ensemble forecasts
 - \rightarrow ICPs are present at <u>all scales</u> / <u>all levels</u> from the beginning

 \rightarrow Represent the approximated probability density function (PDF) around the high-resolution deterministic / ensemble mean analysis

Thanks also to Hendrik Reich, Andreas Rhodin for help with KENDA

