On the Benefits of a High-Resolution Analysis for Convective Data Assimilation of Radar Observations using a Local Ensemble Kalman Filter

Heiner Lange and George C. Craig

Hans-Ertel-Centre for Weather Research, Data Assimilation Branch LMU Munich in Co-Operation with DWD, Offenbach (Hendrik Reich, Andreas Rhodin)

Reading, 13.09.2013

< ロ > < 同 > < 回 > < 回 >

Scale dependent predictability Analyses on different scales

Limited predictability, scale-dependent

Obstacles of forecasts:

- Forecasts tainted by model error
- Predictability limited by error growth in the chaotic atmospheric system

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Scale dependent predictability Analyses on different scales

Limited predictability, scale-dependent

Obstacles of forecasts:

- Forecasts tainted by model error
- Predictability limited by error growth in the chaotic atmospheric system

Question:

Is an ensemble forecast (a) from a fine EnKF analysis **better than** (b) from a coarse analysis?

Forecast window: 3 hours

Scale dependent predictability Analyses on different scales

Limited predictability, scale-dependent

Obstacles of forecasts:

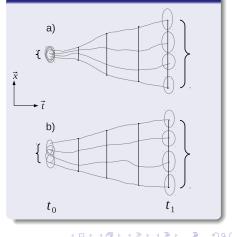
- Forecasts tainted by model error
- Predictability limited by error growth in the chaotic atmospheric system

Question:

Is an ensemble forecast (a) from a fine EnKF analysis **better than** (b) from a coarse analysis?

Forecast window: 3 hours

Expected behavior:



Scale dependent predictability Analyses on different scales

OSSE: Fine vs. Coarse Assimilation

Local analyses of storm systems using LETKF (Hunt el al, 2007)

Nature Run single cells of an elongated squall line

Fine Analysis R4 single cells taken from best fitting member(s)

イロト イヨト イヨト イヨト

Scale dependent predictability Analyses on different scales

OSSE: Fine vs. Coarse Assimilation

Local analyses of storm systems using LETKF (Hunt el al, 2007)

Nature Run single cells of an elongated squall line

Fine Analysis R4 single cells taken from best fitting member(s)

Coarse Analysis R16 coarse fit from coarsely fitting member(s)

イロト イヨト イヨト イヨト

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Nature Run and Ensemble

COSMO model setup

Domain: 198 x 198 x 50 gridpoints periodic lateral boundaries conditions

Resolution: 2 km horizontally

ヘロト ヘヨト ヘヨト ヘヨト

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Nature Run and Ensemble

COSMO model setup

- Domain: 198 x 198 x 50 gridpoints periodic lateral boundaries conditions
- Resolution: 2 km horizontally

Initial state: Horizontally homogenous sounding, $\begin{array}{l} CAPE = 2200 \frac{J}{kg}, \\ random \ white \ noise \ on \ T \ (0.02 \ K) \ and \ W \ (0.02 \ \frac{m}{s}) \\ in \ the \ boundary \ layer \end{array}$

・ロト ・回ト ・ヨト

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Nature Run and Ensemble

COSMO model setup

- Domain: 198 x 198 x 50 gridpoints periodic lateral boundaries conditions
- Resolution: 2 km horizontally

Initial state: Horizontally homogenous sounding, $\begin{array}{l} CAPE = 2200 \frac{J}{kg}, \\ random \ white \ noise \ on \ T \ (0.02 \ K) \ and \ W \ (0.02 \ \frac{m}{s}) \\ in \ the \ boundary \ layer \end{array}$

Model: Full COSMO physics with active radiation scheme

Forecast: 8 hour spinup until convection evolves:

- long-lived cells, lifetime \geq 6 h
- horizontal position fully random in ensemble

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Fine vs. Coarse Assimilation

Assimilation setup

- 50 member ensemble (perfect model)
- simulated observations of radial wind and (no)-reflectivity
- analysis produced by LETKF (Hunt el al, 2007) in KENDA^a

^a Kilometre-scale ENsemble Data Assimilation, developed at DWD Offenbach (Hendrik Reich, Andreas Rhodin)

ヘロト ヘヨト ヘヨト ヘヨト

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Fine vs. Coarse Assimilation

Assimilation setup

- 50 member ensemble (perfect model)
- simulated observations of radial wind and (no)-reflectivity
- analysis produced by LETKF (Hunt el al, 2007) in KENDA^a
- 3 hours cycled assimilation
- 3 hours ensemble forecast

^a Kilometre-scale ENsemble Data Assimilation, developed at DWD Offenbach (Hendrik Reich, Andreas Rhodin)

イロト イヨト イヨト イヨト

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Fine vs. Coarse Assimilation

Assimilation setup

- 50 member ensemble (perfect model)
- simulated observations of radial wind and (no)-reflectivity
- analysis produced by LETKF (Hunt el al, 2007) in KENDA^a
- 3 hours cycled assimilation
- 3 hours ensemble forecast
- Fine assimilation scheme R4
- Coarse assimilation scheme R16

^a Kilometre-scale ENsemble Data Assimilation, developed at DWD Offenbach (Hendrik Reich, Andreas Rhodin)

< ロ > < 同 > < 三 > < 三 >

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Fine vs. Coarse Assimilation Scheme: Setup

Fine Analysis Scheme (R4)

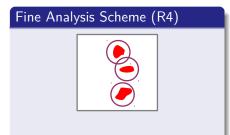
- Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance

Coarse Analysis Scheme (R16)

・ロト ・日下・ ・ ヨト

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Fine vs. Coarse Assimilation Scheme: Setup



- Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance

• Position of clouds roughly coincident with observations

< ロ > < 同 > < 三 > < 三 >

- Spurious clouds allowed
- Larger error and variance

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Fine vs. Coarse Assimilation Scheme: Setup

Fine Analysis Scheme (R4)

- 4 km Localization length
- 2 km Observations
- 8 R-matrix:
 - $$\label{eq:refl-obs} \begin{split} & \textbf{R}_{\textit{wind-obs}} = (5 \frac{m}{s})^2 \\ & \textbf{R}_{\textit{refl-obs}} = (20 \text{ dBZ})^2 \end{split}$$
- 9 5 min assimilation interval
 - Convergence of analysis onto observed clouds
 - Spurious clouds suppressed
 - Small error and variance

Coarse Analysis Scheme (R16)

- Position of clouds roughly coincident with observations
- Spurious clouds allowed
- Larger error and variance

イロト イヨト イヨト イヨト

COSMO-Model: idealized convection LETKF Fine and Coarse Analysis Scheme

Fine vs. Coarse Assimilation Scheme: Setup

Fine Analysis Scheme (R4)

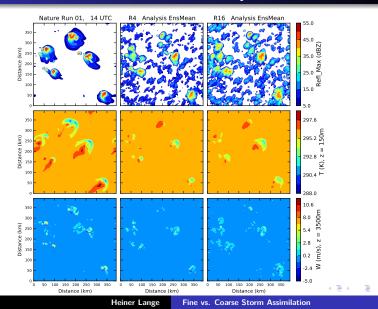
- 4 km Localization length
- 2 km Observations
- R-matrix: $R_{wind-obs} = (5\frac{m}{s})^2$ $R_{refl-obs} = (20 \text{ dBZ})^2$
- 9 5 min assimilation interval
 - Convergence of analysis onto observed clouds
 - Spurious clouds suppressed
 - Small error and variance

Coarse Analysis Scheme (R16)

- 16 km Localization length
- 2 8 km SuperObservations
- $\begin{array}{l} \textbf{0} \quad \textit{Inflated} \ \ \textbf{R}\text{-matrix:} \\ \textbf{R}_{\textit{wind-SuperObs}} = (5\frac{\text{m}}{\text{s}})^2 \\ \textbf{R}_{\textit{refl-SuperObs}} = (20 \ \text{dBZ})^2 \end{array}$
- 20 min assimilation interval
 - Position of clouds roughly coincident with observations
 - Spurious clouds allowed
 - Larger error and variance

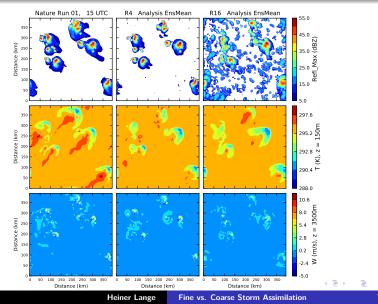
Cycled Assimilation Ensemble Forecasts

Assimilation Results: Nature vs. Analysis Ensemble Means



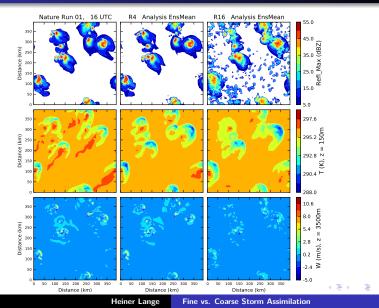
Cycled Assimilation Ensemble Forecasts

Assimilation Results: Nature vs. Analysis Ensemble Means



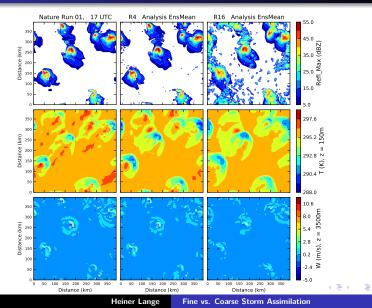
Cycled Assimilation Ensemble Forecasts

Assimilation Results: Nature vs. Analysis Ensemble Means



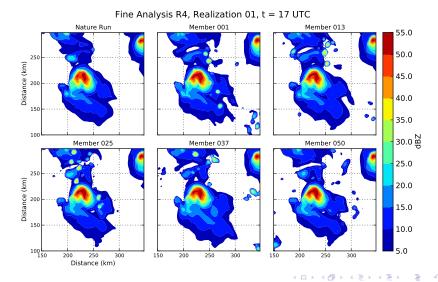
Cycled Assimilation Ensemble Forecasts

Assimilation Results: Nature vs. Analysis Ensemble Means



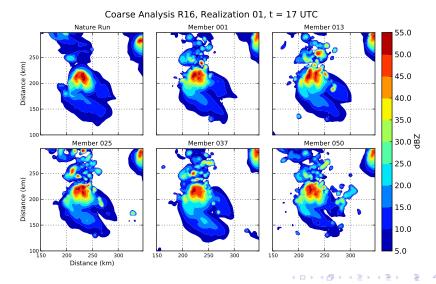
Cycled Assimilation Ensemble Forecasts

Analysis Members R4



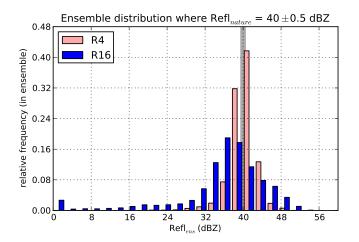
Cycled Assimilation Ensemble Forecasts

Analysis Members R16



Cycled Assimilation Ensemble Forecasts

Analysis Ensemble Distributions



Cycled Assimilation Ensemble Forecasts

RMSE-Statistics: U, W

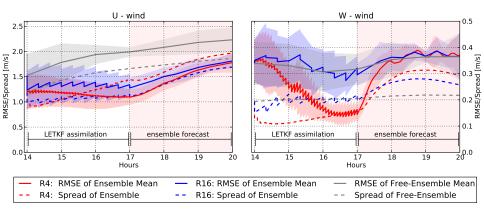
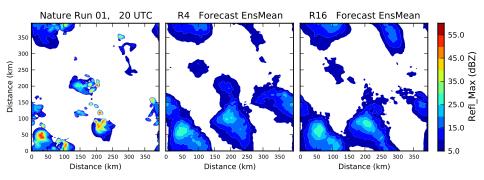


Image: A math a math

Cycled Assimilation Ensemble Forecasts

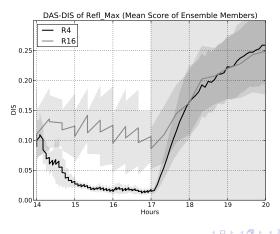
Forecast Results: Nature vs. Forecast Ensemble Means



Cycled Assimilation Ensemble Forecasts

DAS-DIS Displacement Score

Displacement of forecast field with respect to observations, measured by the amplitude of the morphing vector field:



Summary Conclusions, Outlook

Summary

Methods:

- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

イロト イヨト イヨト イヨト

≣ •ી ૧.૯ 13 / 14

Summary Conclusions, Outlook

Summary

Methods:

- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

Fine scheme R4

- precise fit onto observed clouds
- low analysis errors and spread
- skillful 3-h ensemble forecasts

イロン イヨン イヨン イヨン

Summary Conclusions, Outlook

Summary

Methods:

- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

Fine scheme R4

- precise fit onto observed clouds
- low analysis errors and spread
- skillful 3-h ensemble forecasts

Coarse scheme R16

- initializes equally good 3-h forecasts
- needs much less computational power

Summary Conclusions, Outlook

Conclusions, Outlook

Conclusions

- less overfitting in coarse scheme
- coarse analysis possibly closer to model climatology

イロト イヨト イヨト イヨト

3

Summary Conclusions, Outlook

Conclusions, Outlook

Conclusions

- less overfitting in coarse scheme
- coarse analysis possibly closer to model climatology

Outlook

- radar assimilation schemes in KENDA of COSMO-DE and COSMO-MUC
- predictability horizons of convection in real-world model

イロト イヨト イヨト イヨト

Summary Conclusions, Outlook

Conclusions, Outlook

Conclusions

- less overfitting in coarse scheme
- coarse analysis possibly closer to model climatology

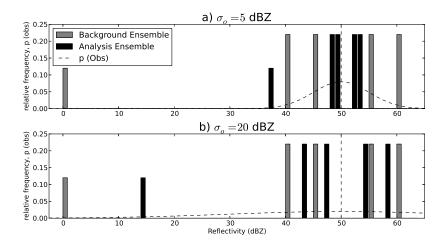
Outlook

- radar assimilation schemes in KENDA of COSMO-DE and COSMO-MUC
- predictability horizons of convection in real-world model

References Image: Hunt et al 2007 Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter Physica D, 230, 112-126, 2007 Image: H. Lange and G.C. Craig 2013 On the Benefits of a High-Resolution Analysis for Convective Data Assimilation of Radar Observations using a Local Ensemble Kalman Filter Monthly Weather Review, to be submitted Heiner Lange Fine vs. Coarse Storm Assimilation

Summary Conclusions, Outlook

Rigourous Convergence vs. Relaxation



臣

э.