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A simple stochastic model, based on a Poisson birth-death process, is proposed
as a test-bed for convective-scale data assimilation methods. The simple
model mimics the extreme nonlinearity and non-Gaussianityassociated with
rapidly developing and intermittent convective storms. In this framework,
we evaluate the ETKF (Ensemble Transform Kalman Filter) and SIR
(Sequential Importance Resampling) filters, and assess theimpact of two
strategies to improve their performance and efficiency: localization and
observation averaging. In their basic implementations, both filters perform
poorly. The SIR filter rapidly collapses, then very gradually converges to the
observations as random perturbations introduced by resampling occasionally
improve the analysis. The ETKF rapidly assimilates the correct locations of
convective storms, but has large errors due to creation of spurious clouds by
nonlinear amplification of small data assimilation increments. Localization, i.e.
assimilating only local observations to produce the analysis at a given grid
point, dramatically improves the performance of the SIR filter, but does not
reduce errors in the ETKF. Observation averaging, i.e. spatially smoothing
the observations before assimilation and thus making the distribution more
Gaussian, is also effective for the SIR filter, and improves convergence of the
ETKF. Copyright c© 2011 Royal Meteorological Society
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1. Introduction

Convective-scale NWP (Numerical Weather Prediction),
based on models with a horizontal resolution of order 1 km,
is motivated to a large extent by the desire to predict pre-
cipitation and winds associated with cumulus convection.
As conventional observations are sparse at the convective-
scale, radar is an important source of information. The first
operational NWP systems kilometre-scale resolution use
simple methods to assimilate radar data, such as Latent Heat
Nudging (LHN) (Jones and Macpherson 1997; Macpherson
2001; Leuenberger and Rossa 2007; Stephanet al. 2008),
but research is ongoing using more sophisticated tech-
niques.

In a perfect model context, simulated observations
of convective storms have been assimilated using

four-dimensional variational assimilation (4DVAR)
(Sun and Crook 1997, 1998) and Ensemble Kalman Filter
(EnKF) methods (Cayaet al. 2005). Real observations
of an isolated storm have been assimilated using EnKF
by Dowell et al. (2004, 2010) and Aksoyet al. (2009,
2010). These studies represent significant progress towards
operational systems, but also indicate the difficulty
of inserting observed storm cells into the models and
suppressing spurious simulated cells.

In general one would expect problems, since the
dynamics of convective clouds at small scales strongly
violate key assumptions that the methods depend on. In
4DVAR (Talagrand and Courtier 1983; Bouttier and Rabier
1998; Bouttier and Kelly 2001) and Kalman Filtering
(Kalman 1960; Kalman and Bucy 1961), it is assumed
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that the background error has a Gaussian distribution
and can thus be described by an error covariance
matrix. The size of this matrix can then be reduced
to a manageable number of degrees of freedom by
balance assumptions and observations of correlations, or
through representation with a small ensemble in EnKF
(Evensen 1994; Houtekamer and Mitchell 1998, 2001).
Furthermore it is assumed that the temporal evolution
of the error distribution can be represented by tangent
linear dynamics or the evolution of a small ensemble of
forecasts. Alternatively, more general methods such as the
particle filter (Van Leeuwen 2009) do not require these
assumptions, although they gain generality at the cost of
computational efficiency, potentially requiring prohibitively
large ensemble sizes (Snyderet al.2008; Bickel et al.2008;
Bengtssonet al. 2008). These issues are reviewed by
Bocquetet al. (2010).

In exploring new data assimilation methods, it is often
convenient to complement tests using full atmospheric
models with test problems using idealised models. Popular
choices include the models ofLorenz(1963, 1995, 2005),
which include coupling of fast and slow variables in a
low-dimensional dynamical system, or the quasigeostrophic
equations (Ehrendorfer and Errico 2008). However both of
these systems were designed to represent key processes
of synoptic-scale dynamics, rather than to capture the
particular characteristics of the convective-scale that
make data assimilation difficult. To make progress, it is
necessary to consider the nature of the non-Gaussianity and
nonlinearity found in the convecting atmosphere.

The essence of this problem can be seen by considering
assimilation of radar reflectivity for convective storms.
Radar data has a high spatial resolution comparable to the
model resolution, but the field of precipitation particles
it observes is highly intermittent. Large areas contain no
precipitation at all, and strong gradients over distances
comparable to a couple of grid points are common.
This results in a highly non-Gaussian forecast error
distribution, with long tails associated with displacement
errors, where a position error of a few grid points produces
an order one error in reflectivity. A consequence of
this spatial intermittency of precipitation fields is a lack
of spatial correlations, that would reduce the effective
number of degrees of freedom. This can be contrasted
with the situation on synoptic scales, where dynamical
balance introduces correlations in space and between model
variables. The problem is a version of the ”curse of
dimensionality” – the number of possible states of the
system increases exponentially as the dimensionality of the
system grows (Bellman 1957, 1961).

A second issue is that the typical temporal resolution of
radar observations of 5-15 minutes is coarse in comparison
to the model time step, which is determined by the
numerical requirement that the model state does not change
too much over the interval, and is typically less than a
minute. Furthermore, clouds do not appear on radar until
large precipitation particles have had time to form, by
which time the dynamical circulation of the cloud is well
developed. The result is that there is significant error growth
between observation times, and indeed well developed
cumulus clouds can appear from one observation time to the
next. This lack of temporal correlation between observation
times results in an essentially stochastic evolution of the
field between observation times, as previously unobserved
features suddenly appear as precipitating clouds.

Two potential strategies have been discussed to
cope with the lack of spatial and temporal correlations.
The first is localization, where the analysis at a given
location is only influenced by observations that are
close by in space and time (Ott et al. 2004). Patil et al.
(2001) showed that the atmosphere often has a local
low dimensionality and therefore localization reduces a
high dimensional problem to a set of problems of lower
dimension. The second strategy is observation averaging.
By averaging the observations over a region in space
to create a so-called super-observation (Alpert and Kumar
2007; Zhanget al. 2009), the intermittency is reduced.
Upscaling the observations not only reduces the effective
dimensionality of the system by introducing spatial
correlations, it also produces more smoothly varying fields
leading to better (more Gaussian) error statistics. The cost
of this improvement is that the observations lose detail
and may no longer resolve individual convective cells, so
that even an analysis that ”perfectly” matches the averaged
observations is not a perfect analysis when considered at
full resolution.

The purpose of this paper is to introduce a minimal
model that represents these key features of spatial
intermittency and stochastic time evolution. This will
provide a simple testbed to examine the performance of
various data assimilation methods. The model can be
regarded as a minimal version of the stochastic cumulus
parametrisation scheme ofPlant and Craig(2008), which
is based on a statistical mechanics theory of convective
fluctuations (Craig and Cohen 2006). The convecting
atmosphere is represented by a stochastic birth-death
process in space, where cumulus clouds appear at random
locations with a certain triggering frequency, and existing
clouds disappear with a certain frequency. The result is a
field of randomly located clouds (a spatial Poisson process)
that have a random lifetime, but with the average density of
clouds in space and the average cloud lifetime determined
by the birth and death rates. This highly simplified model
does not attempt to provide a detailed description of the
processes responsible for triggering convective clouds, nor
to represent the coupling of convection to the larger-scale
flow.

Two data assimilation methods will be applied to
this simple model, in basic and localized forms, and with
averaged observations. These are the Ensemble Transform
Kalman Filter (ETKF) ofBishop and Toth(1999) and its
local version as described byHuntet al. (2007), and the
Sequential Importance Resampling (SIR) particle filter
(Van Leeuwen 2009) and its local version. These two
methods were chosen because they have a very different
theoretical basis and are likely to show different behaviours.
The behaviour of the SIR filter should be easy to anticipate
since it is expected respond directly to the effective
dimensionality of the system, while the ETKF is being
applied well outside of its regime of validity and may not
work at all.

The organisation of the paper is as follows. First the
simple model is introduced, along with the implementation
details of the two data assimilation algorithms. The ability
of the basic schemes to converge to the correct state for
stationary and time-varying cloud fields is then examined in
detail for a representative ensemble size. The dependence
on ensemble size is then considered, followed by the impact
of localization and averaging.
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2. Methods

2.1. The stochastic convection model

A simple stochastic model is used to produce a changing
number of clouds at a set ofn grid points. At each grid
point we define an integer number of clouds present. The
convective dynamics is specified as a birth-death process,
with, at every time step, a given probability,λ, of a cloud
being initiated at each grid point, and a given probability,µ,
of each existing cloud disappearing. The probabilitiesλ and
µ are chosen to give a desired mean cloud half life (hl) and
an average density of clouds per grid point (ρ). In this initial
study we assume that the grid points are arranged on a one-
dimensional line, but since cloud positions are uncorrelated
we could equally have arranged the grid points in a two-
dimensional array.

One realization of this model is integrated as a truth
simulation, and an ensemble ofk simulations is used for
data assimilation. The initial distribution of the truth and the
ensemble members is given by drawing at every grid point
from a Poisson distribution with the average cloud density
ρ. This is a perfect model scenario in the statistical sense
that all ensemble members are governed by the same rules
as the truth run, but since the random numbers are different
in each member, model unpredictability plays a key role. At
each time step, the stochastic birth-death process is updated,
and observations are taken.

For the experiments in this paper, the number of
grid points is fixed atn = 100, and the birth and death
probabilities are chosen to give a mean cloud density of
ρ = 0.1 clouds per grid point, thus providing a realistic
degree of intermittency. The birth-death parameters are also
chosen to give an average cloud lifetime ofhl = 30 time
steps, or in some experimentshl = 3000 time steps, as
discussed below.

Each time step of the model corresponds to an
observation time. An observation is the complete state of
the truth run at that instant, i.e. the number of clouds at each
grid point, with no added error. This is motivated by the
characteristics of network radar observations that provide
a spatially complete view of precipitation, but relatively
little information about the dynamical variables associated
with its evolution. Indeed, for the stochastic dynamics used
here, the observations contain no information about which
clouds will die out in future or where new clouds will later
be initiated. If radar observations were available every 5
minutes, the mean cloud lifetime ofhl = 30 steps would
correspond to 2.5 hours, making it possible, in principle,
for the data assimilation to lock on to an observed cloud
before it randomly disappears. For comparison, experiments
were also done with a mean cloud lifetime ofhl = 3000
observation times, which will be referred to as a stationary
cloud field since the mean lifetime is much longer than the
duration of the experiments. For the runs with observation
averaging, the observations are computed as the total
number of clouds in non-overlapping subregions of size 10
grid points. Synthetic observations are computed from the
ensemble members in the same way.

2.2. Sequential Importance Resampling Filter

The first data assimilation method to be used is a
Sequential Importance Resampling (SIR) particle filter, as

representative of methods that are, in principle, appropriate
for very nonlinear, non-Gaussian problems.

The implementation of the SIR filter follows
Van Leeuwen (2009), and in particular the five steps
listed in section 3a of that paper, with probabilistic
resampling. In the analysis step at timet, each ensemble
memberk is assigned a weight,w(t, k), according to

w(t, k) = w(t− 1, k) exp[−erms(k)/σ],

whereerms(k) is the root mean square difference between
the ensemble member and the truth run, andσ = 0.05 is
a memory timescale for the weights. The weights are then
normalized so that the sum over all ensemble members is
equal to one.

The new analysis ensemble is then formed by
resampling. New ensemble members are chosen by
randomly drawing from the old ensemble, with each
member given a probability according to its weight. If one
member has a sufficiently high weight, it is possible that all
other members will be replaced by its copies. To maintain
diversity in the ensemble all members are then perturbed
with an additive noise of the forma · ǫ · erms(k), wherea
is an amplitude factor set to 0.1 for the global particle filter
and 0.25 for the local version,ǫ is a random number drawn
from a uniform distribution between -0.5 and 0.5. The local
version of the filter is obtained by dividing the domain
into equally sized subregions, and performing the analysis
and resampling steps described above on each subregion
individually.

2.3. Ensemble Transform Kalman Filter

The second data assimilation method is an Ensemble
Transform Kalman Filter (ETKF), as an example of
methods that depend on linear and Gaussian assumptions.
The ETKF and its local version (LETKF) are implemented
as described byHuntet al. (2007), but with one additional
step required by the stochastic dynamics. The LETKF
decomposes the initial ensemble into a mean and deviations.
To construct a new analysis ensemble, an updated ensemble
mean is produced, and the updated ensemble members are
constructed by adding linear combinations of the deviations.
The cloud number acquired in this way will contain non-
integer values which must be converted to integers to
produce a valid model state. This is done by treating the
non-integer part of the cloud number as a probability for
a cloud being present, and randomly choosing to assign a
cloud or not according to this probability. No covariance
inflation factor is used, except for the simulations with
observation averaging, where it was found useful to use
a deflation of 0.7 to avoid an excess of spread due to the
probabilistic conversion to integer cloud numbers.

In the local version of the filter, the size of the local
region used is one grid point, as inHuntet al. (2007),
but only one observation is used for each region. This is
contrary to the recommendation ofHuntet al. (2007), who
suggest using observations from a region centred on the grid
point being updated in order to ensure that the increments at
neighbouring grid points vary smoothly. However, concerns
about smoothness do not arise for the stochastic birth-
death process used here, since it produces fields that are
uncorrelated between grid points.

Since we seek to investigate generic behaviours of
the two data assimilation methods, rather than make
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Figure 1. Root mean squared error (solid lines) and ensemble spread
(dashed lines) as function of time, for an ensemble size of 50, for (a)
SIR and (b) ETKF with half-lives of 3000 (thick) and 30 (thin)time steps.
Vertical lines indicate regime boundaries (see text). Greylines in (b) show
RMS error of the ensemble mean.

judgements that one is better than the other, no attempt has
been made to tune parameters or otherwise optimize the two
schemes.

3. Results

3.1. Convergence for stationary and time-varying cloud
fields

We first consider the ability of the two assimilation
schemes, in their basic forms, to converge to the observed
state. A representative ensemble size of 50 members is
used. The RMS error of the individual ensemble members
is computed at every timestep. To reduce the noise level in
the figures, the errors are averaged over 100 repetitions of
the experiment with different realisations of the stochastic
process (400 repetitions in the case of the SIR hl30
experiment). The average error is then scaled so that a value
of one corresponds to the RMS average difference between
two randomly chosen realisations of the model state.

The thick solid line in Fig.1a shows the evolution of
the mean error of the SIR filter for the stationary cloud
field. The SIR filter converges, although rather slowly, and
the decrease in error continues beyond 100 time units,
eventually saturating at a value close to zero. The ensemble
spread (thick dashed line) shows an initial rapid decrease to
a fixed fraction of the error, which is maintained through the
rest of the experiment.

One can identify three phases in this process, separated
by the vertical lines in Fig.1a. In the first stage, resampling
removes members with no correct clouds, replacing them
with perturbed copies of members with a correct cloud
(with the parameters used here it is rare to obtain a member
with more than one correct cloud in the initial ensemble).
By the end of the first phase, the ensemble consists of
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Figure 2. Ensemble mean cloud number (black line) and spread (grey
line) for a sample run of the SIR filter with stationary cloud field and 50
ensemble members at time step (a) 3, (b) 7, and (c) 45. Thin vertical lines
indicate locations of clouds in the observations.

descendents of only a few members of the initial ensemble.
An example realisation at the end of the first phase is shown
in Fig. 2a, where a set of 3 clouds (two correct) is seen
to be present in about 60% of the members, showing their
common parentage. The average error and spread decrease
rapidly during this phase as the members with no correct
cloud are eliminated.

The second stage in Fig.1a is characterised by a
slower rate of decrease in error, but a continuing rapid
decrease in spread. Since the correct clouds are part
of the subset common to most members, differences in
error between the members are determined by the number
of incorrect clouds. Resampling removes the members
with the largest error, which are those with the largest
number of clouds. The number of gridpoints without a
cloud in any member increases, corresponding to a rapid
drop in spread. By the end of this phase, the filter has
essentially collapsed, with spread only being maintained by
the stochastic perturbations introduced at each resampling
stage. The example state shown in Fig.2b shows that nearly
all members have a common subset of eight clouds (three
in correct locations), and at many locations there are no
clouds in any ensemble member. The mean error decreases
slowly during this phase, since occasionally a perturbation
during the resampling will change the subset of clouds
common to all members, producing a member that has
an additional correct cloud, or one that does not have an
incorrect cloud that all other members have. Descendents
of this better member take over the ensemble within a few
resampling steps, but since such events are rare, the average
error decreases slowly.

In the third phase, the mean error and spread both
decrease slowly (Fig.1a). The rate of creation of new
clouds by resampling perturbations approximately balances
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the tendency to reduce the number of clouds by selectively
removing the members with the most clouds, and further
changes in error and spread are associated only with
occasional changes to the common subset of clouds. Each
time a new correct cloud is produced by the resampling
perturbations it rapidly spreads to the rest of the ensemble,
but since the number of possible locations is large, many
timesteps are required until all the correct cloud locations
are found. In the example in Fig.2c, most members have the
correct solution at most locations, with one incorrect cloud
and occasional additional clouds at random locations.

The rapid collapse of the SIR filter to include a
common subset of clouds in all members is as expected for
small ensemble sizes. Subsequently, the filter behaves as a
Markov Chain Monte Carlo simulation, randomly exploring
the state space, but retaining correct information from
previous timesteps. The effectivelness of this behaviour
depends crucially on the strategy for perturbing duplicate
members introduced during resampling. In this simple
model, the resampling perturbations have been chosen
consistently with the stochastic model dynamics, and the
filter continues to converge, albeit slowly.

Figure 1a shows that the time to converge for a
stationary cloud field is long compared to the physically
motivated mean cloud lifetime of up to 30 time steps. This
suggests that, for this ensemble size, the SIR filter will not
be able to track changes in a time-varying cloud field. As
seen in the thin line in Fig.1a, the error initially decays
at a rate similar to that for stationary clouds, but reaches
a minimum value of about 55% of the error of a random
field. The initial behaviour of the filter is similar, with the
initial random noise disappearing within a few time steps
and a common subset of clouds appearing in the majority of
ensemble members. However, the evolution of the common
subset is too slow to track changes in the evolving observed
state and the error remains large.

Fig. 1b shows the corresponding results for the ETKF.
For the stationary cloud field, the mean error eventually
approaches a small value (well beyond the 100 timesteps
shown in the figure), with spread very similar to the
error. Also shown is the error in the ensemble mean,
which should represent the ”best estimate” of the observed
state. Two stages are visible in the figure, distinguished
mainly by the behaviour of the ensemble spread. While the
error decreases continuously, the spread remains roughly
constant for approximately 15 timesteps, then decreases
together with the error.

As shown for an example realisation in Fig.3b, by the
end of the first phase clouds appear at the correct locations
in the majority of the ensemble members. However, the
variability at other locations, associated with incorrect
clouds in random members, remains largely unchanged.
Since the incorrect clouds are at different locations in the
different ensemble members (in contrast to the common
subset in the SIR filter), the error of the ensemble mean
(also shown in Fig.1b) is smaller than the mean of the
errors of the individual ensemble members. This reflects
the well-known reduction of RMS error for smoother fields,
and does not imply that the ensemble mean is a satisfactory
estimate of the observed state since the presence of low
rainrates everywhere in the domain is not consistent with
the dynamics of the physical model.

The gradual decrease of spread and error in the second
phase is associated with the disappearance of incorrect
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Figure 3. As Fig.2, but for the ETKF at timestep (a) 15, and (b) 45.

clouds from more and more members. This process is
much slower than the introduction of clouds at the correct
locations. The ETKF analysis step takes each ensemble
member and adds positive and negative perturbations from
other members. Since clouds occupy a small fraction
of gridpoints in each member, there is more chance of
introducing a new incorrect cloud than to remove an existing
one. The slow convergence is thus a direct result of the non-
Gaussianity of the errors once the locations of the observed
clouds have been captured by the ensemble.

For time-varying cloud fields (thin line in Fig.1b), a
significant diversity is retained in the ensemble, but the error
saturates at a high level since the filter is not able to remove
the noise within the half-life of the clouds.

Although both the SIR filter and ETKF have large
errors with a time-varying cloud field, the nature of the
errors is quite different. The error in the SIR filter comes
primarily from wrongly positioned clouds that are present in
almost all ensemble members, while the error in the ETKF
is associated with a high level of background noise. This
suggests that the optimal method for producing probabilistic
predictions from the two ensembles will be different.

3.2. Ensemble size

With an ensemble size of 50, neither data assimilation
method is able to converge to the time-varying cloud field
with any degree of accuracy. To illustrate how the results
change with ensemble size, afinal error was computed for
each experiment. This was estimated as the error after 500
time steps for experiments with a stationary cloud field and
100 time steps for the 30 time step lifetime cases, since
changes after this time were found to be negligible.

In Fig. 4a it can be seen that any ensemble size greater
than about 10 is sufficient for the SIR filter to converge for
stationary clouds, while for the time-varying cloud field the
error decreases rapidly with increasing ensemble size up to
about 20 members, after which the decrease in error is slow.
Except for very small ensemble sizes, the spread is about
half the magnitude of the error.

The ETKF collapses (vanishing spread) for small
ensembles with a stationary cloud field (Fig4b). The results
improve significantly with ensemble size, up to about 40
members, with final error reaching about 20% of the random
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Figure 4. Final error (solid, as defined in text) and ensemble spread
(dashed) as function of ensemble size for (a) SIR and (b) ETKFwith half-
lives of 3000 (thick) and 30 (thin) time steps.

value and ensemble spread about half the final error. For
the time-varying cloud field there is almost no improvement
with ensemble size, and even for an ensemble size of 100,
the final error is only about 5% better than for an ensemble
size of 15.

The behaviour of ensemble spread relative to error
shown shown in Fig.4 is also found in the subsequent
experiments, therefore spread will not be plotted on the
remaining figures.

3.3. Localization

Assimilating data in local regions independently can
drastically reduce the number of degrees of freedom in
the system, potentially improving the performance of small
ensembles. As can be seen in Fig.5a, it has a major effect
on the performance of the SIR filter, leading to convergence
with even smaller ensemble sizes than achieved by the non-
local filter for the stationary cloud field. A major reduction
in final error is found for the time-varying cloud field, with
errors less than 20% for ensemble sizes larger than 20. This
result is not surprising: on average, the observations have
10 clouds scattered over 100 possible locations, for a totalof
10010 possible states. This is vastly larger than the ensemble
sizes used here. localization decomposes the domain into
100 subdomains, each with 2 likely states (cloud or no-
cloud), for a total of about100 · 2 possibilities. An ensemble
of a few tens of members can sample this space within the
cloud half-life of 30 timesteps.

On the other hand, the effects for the LETKF are
modest, with small improvements in final error, particularly
for smaller ensemble sizes. The primary source of error
for the ETKF is the continual creation of clouds at
incorrect locations by the assimilation increments, whichis
unaffected by localization.
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Figure 5. Final error as function of ensemble size for (a) SIR and (b)
ETKF, with half-life 30 (thin dash-dotted) and localisation (thin) and half-
life 3000 (thick dash-dotted) and localisation (thick)

3.4. Averaging

In contrast to localization, observation averaging should
have the effect of making the distribution of the errors
more Gaussian, potentially leading to better results for the
ETKF. Figure 6 shows the final errors for experiments
with observation averaging over 10 grid point regions.
For this figure RMS errors have been computed from
averaged observations and model states, and normalized by
the difference between two random states in this measure.
An error of zero would thus imply that the number of
clouds within each 10 grid point region was correct, but not
necessarily their locations. The errors thus reflect the ability
of the methods to solve the simpler problem of producing
the correct density of convective clouds over subregions,
and are not directly comparable to the errors shown on the
previous figures.

With averaged observations the SIR filter converges
even with small ensemble sizes (Fig.6a). As with
localization, the problem is decomposed into a set of smaller
problems that are solved independently. Unlike localization,
averaging changes the statistical character of the smaller
problems, but the reduction in dimensionality is similar.

For a stationary cloud field, the AETKF (Fig.6b)
shows a large reduction in the ensemble size required to
obtain small errors in the region of small ensembles (10-20
members). The increase in error for larger ensemble sizes is
surprising, but preliminary experiments (not shown) suggest
that this could be corrected by increasing the covariance
deflation factor with increasing ensemble size to produce
errors at least as small as those for smaller ensembles.
Even for a time-varying cloud field the performance of the
ETKF is significantly improved by averaging, although for
the relatively small averaging region used here the errors
remain large.
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Figure 6. As Fig.5 but with dash-dotted lines indicating experiments with
observation averaging.

4. Conclusions

The aim of this work was to test convective-scale data
assimilation algorithms using a simple model based on
a stochastic birth-death process. The stochastic dynamics
models the extreme nonlinearity of the convecting
atmosphere, where a storm can appear from one observation
time to the next. The spatial Poisson distribution in the
simple model represents the intermittency and lack of
correlation characteristic of remote sensing observations
such as Radar. Since the model does not include any
dynamical balances that might or might not be present
at the convective-scale, it constitutes an extreme test
for data assimilation algorithms, and both the SIR filter
and ETKF fail to produce good results for realistic
parameter values of cloud density and lifetime. The
performance could undoubtedly be improved somewhat by
optimising parameters such as the covariance inflation or the
resampling probability in the particle filter, but the results
would be unlikely to change qualitatively.

The SIR filter rapidly collapses to a state in
which variance is only maintained by the perturbations
associated with resampling after members are eliminated.
Interestingly, the filter can eventually converge to the
observed state, since any correct cloud locations found
by the random perturbations are retained in the ensemble.
Since the rate of convergence is controlled by the
resampling perturbations, rather than the importance
weighting, strategies like an improved proposal distribution
(Van Leeuwen 2009) may have the greatest potential to
improve filter performance. In any case the true statistical
properties of the collapsed ensemble need to be taken into
account in generating probabilitstic forecast products, since
the weights of the ensemble members produced by the filter
provide little information.

Localization and observation averaging both produced
dramatic improvements in the performance of the SIR

filter since they both drastically reduce the dimensionality
of the space that must be explored by the resampling
perturbations. In more realistic models, however, these
methods might cause problems by violating dynamical
balances that couple different spatial regions.

The ETKF collapses for small ensemble sizes, but
otherwise captures the correct cloud locations quickly.
However, the ensemble is plagued by large numbers of
incorrect clouds that contaminate the ensemble mean. This
occurs because negative clouds are not possible, so that
the nonlinear dynamics rectify the analysis increments,
producing a non-Gaussian distribution of variability in the
ensemble. Averaging of observations has the potential to
correct this problem, since the Poisson distribution will
converge to Gaussian as the averaging region becomes
large enough to contain many clouds. Indeed, significant
improvement with averaging was found, although for the
relatively small averaging region used here, the errors
remain large. localization, on the other hand, seems to have
no benefit for the ETKF in this environment.

While the stochastic test problem proposed here is
highly idealised, the results point to specific problems
that are likely to limit the performance of particular data
assimilation methods for cumulus convection, and provide
indications regarding how the methods can be improved.
This could be a starting point for hierarchy of models, where
a stochastic process representing convection is introduced
into simple dynamical models (e.g. shallow water, or quasi-
geostrophic), and the convection is coupled to the large-
scale dynamics by a simple closure assumption, where the
rate parameter depends on the large-scale fields.
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