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A simple stochastic model, based on a Poisson birth-death peess, is proposed
as a test-bed for convective-scale data assimilation mettis. The simple
model mimics the extreme nonlinearity and non-Gaussianityassociated with
rapidly developing and intermittent convective storms. In this framework,
we evaluate the ETKF (Ensemble Transform Kalman Filter) and SIR
(Sequential Importance Resampling) filters, and assess thenpact of two
strategies to improve their performance and efficiency: loalization and
observation averaging. In their basic implementations, bth filters perform
poorly. The SIR filter rapidly collapses, then very gradually converges to the
observations as random perturbations introduced by resamfing occasionally
improve the analysis. The ETKF rapidly assimilates the corect locations of
convective storms, but has large errors due to creation of spious clouds by
nonlinear amplification of small data assimilation increments. Localization, i.e.
assimilating only local observations to produce the analys at a given grid
point, dramatically improves the performance of the SIR filter, but does not
reduce errors in the ETKF. Observation averaging, i.e. spaally smoothing
the observations before assimilation and thus making the diribution more
Gaussian, is also effective for the SIR filter, and improves anvergence of the
ETKF. Copyright (©) 2011 Royal Meteorological Society
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1. Introduction four-dimensional variational assimilation (4DVAR)

Sun and Crook 19971998 and Ensemble Kalman Filter
Convective-scale NWP (Numerical Weather Predictior‘((EnKF) methods Cayaetal. 2009. Real observations
based on models with a horizontal resolution of order 1 kg an isolated storm have been assimilated using EnKF
is motivated to a large extent by the desire to predict Pi% Dowelletal. (2004 2010 and Aksoyetal. (2009

cipitation and winds associated with cumulus convectiosy ) These studies represent significant progress towards
As conventional observations are sparse at the convectiys 2iional systems, but also indicate the  difficulty

3;2'3,[{;?? ;\?ﬁg'?ﬁ;gﬁg Skﬁg:ggt?; 'Qéglr??gggl'ul}gﬁ fllj' inserting observed storm cells into the models and
simple methods to assimilate radar data, such as Latent Ffﬁe%)lpressmg spurious simulated cells.
Nudging (LHN) Jones and Macpherson 199Tacpherson In general one would expect problems, since the
2001 Leuenberger and Rossa 20(Btepharet al. 2009, dynamics of convective clouds at small scales strongly
but research is ongoing using more sophisticated tetfiplate key assumptions that the methods depend on. In
nigues. 4DVAR (Talagrand and Courtier 198Boulttier and Rabier

In a perfect model context, simulated observatiod®98 Bouttier and Kelly 200} and Kalman Filtering
of convective storms have been assimilated usifigalman 1960 Kalman and Bucy 1961 it is assumed
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that the background error has a Gaussian distribution Two potential strategies have been discussed to
and can thus be described by an error covarianmgpe with the lack of spatial and temporal correlations.
matrix. The size of this matrix can then be reduceéthe first is localization, where the analysis at a given
to a manageable number of degrees of freedom lbgation is only influenced by observations that are
balance assumptions and observations of correlationsclase by in space and timeDftet al. 2004). Patilet al.
through representation with a small ensemble in EnKF001) showed that the atmosphere often has a local
(Evensen 1994 Houtekamer and Mitchell 19982001). low dimensionality and therefore localization reduces a
Furthermore it is assumed that the temporal evolutipigh dimensional problem to a set of problems of lower
of the error distribution can be represented by tangefitnension. The second strategy is observation averaging.
linear dynamics or the evolution of a small ensemble Bfy averaging the observations over a region in space
forecasts. Alternatively, more general methods such as thecreate a so-called super-observatidipért and Kumar
particle filter (/an Leeuwen 2009do not require these2007 Zhanget al. 2009, the intermittency is reduced.
assumptions, although they gain generality at the costiiscaling the observations not only reduces the effective
computational efficiency, potentially requiring prohibély dimensionality of the system by introducing spatial
large ensemble sizeSifyderet al.2008 Bickel et al.2008 correlations, it also produces more smoothly varying fields
Bengtssoret al. 200§. These issues are reviewed bjeading to better (more Gaussian) error statistics. The cos
Bocquetet al.(2010. S o of this improvement is that the observations lose detail

In exploring new data assimilation methods, it is oftegnd may no longer resolve individual convective cells, so
convenient to complement tests using full atmosphetigat even an analysis that "perfectly” matches the averaged
models with test problems using idealised models. Popusiyservations is not a perfect analysis when considered at
choices include the models abrenz (1963 1995 2009, | resolution.
which include coupling of fast and slow variables in a  The purpose of this paper is to introduce a minimal
low-dimensional dynamical system, or the quasigeost®pRigge| that represents these key features of spatial
equations chrendorfer and Errico 20Q8However both of jnermittency and stochastic time evolution. This will
these systems were designed to represent key procesg&fige a simple testbed to examine the performance of
of synoptic-scale dynamics, rather than to capture Hg, s data assimilation methods. The model can be
particular characteristics of the convective-scale t%tgarded as a minimal version of the stochastic cumulus
make data assimilation difficult. To make progress, it rametrisation scheme &flant and Craig(2008, which
necessary to consi_derthe hature of the non-Gaussianity ased on a statistical mechanics theory 01; convective
nonllnﬁarlty found '? Lhe cor;)\qectlng at';mosphebre. id fluctuations Craig and Cohen 2006 The convecting
s ssenceoftiproler can b sceny consdeifospnere 1s represented by . stochastc bith-deat
Radar data has a high spatial resolution comparable tos%qocess n space, Wh(_ere (_:umu_lus clouds appear at r_ar_ldom
model resolution, but the field of precipitation particleI ganons_ with a certain triggering frequency, and exsiin

' Souds disappear with a certain frequency. The result is a

it observes is highly intermittent. Large areas contain iy i .

o= ; . ield of randomly located clouds (a spatial Poisson process)
precipitation at all, and strong gradlgnts over distanc ?t have a random lifetime, but with the average density of
comparable to a couple of grid points are commo ’

. ) . . louds in space and the average cloud lifetime determined
This results in a highly non-Gaussian forecast err Irou ; . A
distribution, with long tails associated with displacemegy the b![rthttand ??ath rat%s. ThO||s th'.?hdly dS|mp!|f|t_ed m?‘iﬁl

errors, where a position error of a few grid points produc ges not attempt 1o provide a detailed description ot the

an order one error in reflectivity. A consequence ocesses responsible_ for triggering _convective clouds, n
this spatial intermittency of precipitation fields is a lac represent the coupling of convection to the larger-scale

of spatial correlations, that would reduce the effecti o i )
number of degrees of freedom. This can be contrasted WO data assimilation methods will be applied to
with the situation on synoptic scales, where dynamictgl's simple model,_ln basic and localized forms, and with
balance introduces correlations in space and between méy&raged observations. These are the Ensemble Transform
variables. The problem is a version of the “curse &@lman Filter (ETKF) ofBishop and Toth(1999 and its
dimensionality” — the number of possible states of t4@cal version as described kyuntetal. (2007, and the
system increases exponentially as the dimensionalityeof fpequential Importance Resampling (SIR) particle filter
system growsEellman 19571961). (Van Leeuwen 2009 and its local version. These two

A second issue is that the typical temporal resolution Bfethods were chosen because they have a very different
radar observations of 5-15 minutes is coarse in comparigBgoretical basis and are likely to show different behargou
to the model time step, which is determined by thEhe behaviour of the SIR filter should be easy to anticipate
numerical requirement that the model state does not chafi¢e it is expected respond directly to the effective
too much over the interval, and is typically less than @imensionality of the system, while the ETKF is being
minute. Furthermore, clouds do not appear on radar u@dplied well outside of its regime of validity and may not
large precipitation particles have had time to form, pyork atall.
which time the dynamical circulation of the cloud is well ~ The organisation of the paper is as follows. First the
developed. The resultis that there is significant error ¢imowsimple model is introduced, along with the implementation
between observation times, and indeed well developdgiails of the two data assimilation algorithms. The apilit
cumulus clouds can appear from one observation time to tifethe basic schemes to converge to the correct state for
next. This lack of temporal correlation between observatistationary and time-varying cloud fields is then examined in
times results in an essentially stochastic evolution of tHetail for a representative ensemble size. The dependence
field between observation times, as previously unobsenmdensemble size is then considered, followed by the impact
features suddenly appear as precipitating clouds. of localization and averaging.
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2. Methods representative of methods that are, in principle, appabgri
for very nonlinear, non-Gaussian problems.
2.1. The stochastic convection model The implementation of the SIR filter follows

Van Leeuwen (2009, and in particular the five steps

A simple stochastic model is used to produce a changiided in section 3a of that paper, with probabilistic
number of clouds at a set of grid points. At each grid resampling. In the analysis step at tifieeach ensemble
point we define an integer number of clouds present. Timemberk is assigned a weighty(¢, k), according to
convective dynamics is specified as a birth-death process,
with, at every time step, a given probability, of a cloud w(t, k) = w(t — 1, k) exp[—erms(k) /0],
being initiated at each grid point, and a given probability, _ )
of each existing cloud disappearing. The probabiliiesd Wheree,,,.s(k) is the root mean square difference between
11 are chosen to give a desired mean cloud half lil¢ gnd the ensemble member and the truth run, ane 0.05 is
an average density of clouds per grid pojt (n this initial & memory timescale for the weights. The weights are then
Study we assume that the gnd points are arranged ona dmmallzed so that the sum over all ensemble members is
dimensional line, but since cloud positions are uncoreelatdual to one. . .
we could equally have arranged the grid points in a two- 1he new analysis ensemble is then formed by
dimensional array. resampling. New ensemble members are chosen by

One realization of this model is integrated as a trufgndomly drawing from the old ensemble, with each
simulation, and an ensemble bfsimulations is used for Mémber given a probability according to its weight. If one
data assimilation. The initial distribution of the truthcethe Member has a sufficiently high weight, it is possible that all
ensemble members is given by drawing at every grid pogﬁner members will be replaced by its copies. To maintain
from a Poisson distribution with the average cloud densfi/ersity in the ensemble all members are then perturbed
p. This is a perfect model scenario in the statistical sen¥ih an additive noise of the form - ¢ - e,..,s(k), wherea
that all ensemble members are governed by the same rie¥! amplitude factor set to 0:1 for the global particlefilte
as the truth run, but since the random numbers are differ8ffl 0-25 for the local version,is a random number drawn
in each member, model unpredictability plays a key role. Jpm a uniform distribution between -0.5 and 0.5. The local

each time step, the stochastic birth-death process isegidafersion of the filter is obtained by dividing the domain
and observations are taken. into equally sized subregions, and performing the analysis

For the experiments in this paper, the number apd resampling steps described above on each subregion

grid points is fixed at: — 100, and the birth and deathNdividually.
probabilities are chosen to give a mean cloud density 0
p = 0.1 clouds per grid point, thus providing a realistié"

degree of intermittency. The birth-death parametersama+he second data assimilation method is an Ensemble

g?eossenotroir?“;%r?\g %\;er:ﬁrigrlﬁgq Ig%%rgetmfg Stoe t';;neaSTrans,1°orm Kalman Filter (ETKF), as an example of
disguésed below P B PS: 8Sethods that depend on linear and Gaussian assumptions.
Each ti ' ¢ fth del ds t The ETKF and its local version (LETKF) are implemented
ach tme step of the model corrésponds to described byluntet al. (2007, but with one additional
observation time. An observation is the complete state Q b required by the stochastic dynamics. The LETKF

the truth run at that instant, i.e. the number of clouds & ead:ecomposes the initial ensemble into a mean and deviations.

grid point, with no added error. This is motivated by thfo construct a new analysis ensemble, an updated ensemble

characteristics of network radar observations that pevi ean is produced, and the updated ensemble members are

a Spf”‘“a”y cc_>mp|ete view of precipitation, but reIat'vel}fonstructed by adding linear combinations of the deviation
little information about the dynamical variables ass@matr,4 c1oud number acquired in this way will contain non-

with its evolution. Indeed, for the stochastic dynamicsdus teger values which must be converted to integers to

here, the observations contain no information about whi duce a valid model state. This is done by treating the
clouds will die out in future or where new clouds will IateE n-integer part of the cloud number as a probability for
be initiated. If radar observations were available everyagdoud being present, and randomly choosing to assign a
minutes, the mean cloud "fe“T“e M - 3(.) steps Wf)u'.d cloud or not according to this probability. No covariance
correspond to 2.5 hours, making it possible, in prinCiplgation factor is used, except for the simulations with
for the data assimilation to lock on to an observed clo% servation averaging, where it was found useful to use

before it randomly(_jisappears. For Cor_npa_lrison, experimeNtyefiation of 0.7 to avoid an excess of spread due to the
were also done with a mean cloud lifetime laf = 3000 - ohapilistic conversion to integer cloud numbers.

observation times, which will be referred to as a stationary |, the |ocal version of the filter, the size of the local
cloud field since the mean lifetime is much longer than trpggion used is one grid point, as Huntet al. (2007,
duration of the experiments. For the runs with observatig) only one observation is used for each region. This is
averaging, the observations are computed as the tQ@hrary to the recommendation fintet al. (2009, who
number of clouds in non-overlapping subregions of size {f}yqest using observations from a region centred on the grid
grid points. Synthetic observations are computed from thgjnt heing updated in order to ensure that the increments at

f
3. Ensemble Transform Kalman Filter

ensemble members in the same way. neighbouring grid points vary smoothly. However, concerns
about smoothness do not arise for the stochastic birth-
2.2. Sequential Importance Resampling Filter death process used here, since it produces fields that are

uncorrelated between grid points.
The first data assimilation method to be used is a Since we seek to investigate generic behaviours of
Sequential Importance Resampling (SIR) particle filter, #®e two data assimilation methods, rather than make
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Figure 1. Root mean squared error (solid lines) and ensemble spre

(dashed lines) as function of time, for an ensemble size off@0(a)

SIR and (b) ETKF with half-lives of 3000 (thick) and 30 (thiie steps. Figure 2. Ensemble mean cloud number (black line) and spread (grey

Vertical lines indicate regime boundaries (see text)_ Qr@s in (b) show Iine) for a sample run of the SIR filter with stationary cloueldi and 50

RMS error of the ensemble mean. ensemble members at time step (a) 3, (b) 7, and (c) 45. Thiicaklines
indicate locations of clouds in the observations.

judgements that one is better than the other, no attempt has

been made to tune parameters or otherwise optimize the fig§cendents of only a few members of the initial ensemble.
schemes. An example realisation at the end of the first phase is shown

in Fig. 2a, where a set of 3 clouds (two correct) is seen
to be present in about 60% of the members, showing their
common parentage. The average error and spread decrease
3.1. Convergence for stationary and time-varying cloudrapidly during this phase as the members with no correct
fields cloud are eliminated.
The second stage in Fidla is characterised by a

We first consider the ability of the two assimilatiorslower rate of decrease in error, but a continuing rapid
schemes, in their basic forms, to converge to the obserdegrease in spread. Since the correct clouds are part
state. A representative ensemble size of 50 member®fighe subset common to most members, differences in
used. The RMS error of the individual ensemble membeagor between the members are determined by the number
is computed at every timestep. To reduce the noise levebinincorrect clouds. Resampling removes the members
the figures, the errors are averaged over 100 repetitionsvith the largest error, which are those with the largest
the experiment with different realisations of the stocitasnumber of clouds. The number of gridpoints without a
process (400 repetitions in the case of the SIR hi8fud in any member increases, corresponding to a rapid
experiment). The average error is then scaled so that a valtep in spread. By the end of this phase, the filter has
of one corresponds to the RMS average difference betwessentially collapsed, with spread only being maintained b
two randomly chosen realisations of the model state.  the stochastic perturbations introduced at each resagplin

The thick solid line in Figla shows the evolution of stage. The example state shown in Rig shows that nearly
the mean error of the SIR filter for the stationary clouall members have a common subset of eight clouds (three
field. The SIR filter converges, although rather slowly, ardl correct locations), and at many locations there are no
the decrease in error continues beyond 100 time unitiuds in any ensemble member. The mean error decreases
eventually saturating at a value close to zero. The ensendisvly during this phase, since occasionally a perturlpatio
spread (thick dashed line) shows an initial rapid decremseltiring the resampling will change the subset of clouds
a fixed fraction of the error, which is maintained through thommon to all members, producing a member that has
rest of the experiment. an additional correct cloud, or one that does not have an

One can identify three phases in this process, separdtewrrect cloud that all other members have. Descendents
by the vertical lines in Figla. In the first stage, resamplingpf this better member take over the ensemble within a few
removes members with no correct clouds, replacing theesampling steps, but since such events are rare, the averag
with perturbed copies of members with a correct clowror decreases slowly.
(with the parameters used here it is rare to obtain a member In the third phase, the mean error and spread both
with more than one correct cloud in the initial ensemblejecrease slowly (Figla). The rate of creation of new
By the end of the first phase, the ensemble consistscéduds by resampling perturbations approximately balance

3. Results
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the tendency to reduce the number of clouds by selectivi  (a ‘ _ETKF k50
removing the members with the most clouds, and furth 1.of ‘
changes in error and spread are associated only w g 0.8}
occasional changes to the common subset of clouds. E 2|
time a new correct cloud is produced by the resamplii 5 |
perturbations it rapidly spreads to the rest of the ensemt §°'4
but since the number of possible locations is large, ma = %2
timesteps are required until all the correct cloud locatio 0.9
are found. In the example in Figc, most members have the  ®
correct solution at most locations, with one incorrect dlot 0
and occasional additional clouds at random locations.  Sos}
The rapid collapse of the SIR filter to include ¢<osl
common subset of clouds in all members is as expected g ,|
small ensemble sizes. Subsequently, the filter behaves i §
Markov Chain Monte Carlo simulation, randomly explorini
the state space, but retaining correct information fro
previous timesteps. The effectivelness of this behavic _.
depends crucially on the strategy for perturbing duplicate
members introduced during resampling. In this simple

model, the resampling perturbations have been chosen
consistently with the stochastic model dynamics, and tBg,qs from more and more members. This process is

filter continues to converge, albeit slowly. much slower than the introduction of clouds at the correct
_Figure 1a shows that the time to converge for gcations. The ETKF analysis step takes each ensemble
stationary cloud field is long compared to the physicalliemper and adds positive and negative perturbations from
motivated mean cloud lifetime of up to 30 time steps. Thiiner members. Since clouds occupy a small fraction
suggests that, for this ensemble size, the SIR filter will ngt gridpoints in each member, there is more chance of
be able to track changes in a time-varying cloud field. Astroducing a new incorrect cloud than to remove an existing
seen in the thin line in Figla, the error initially decays gne. The slow convergence is thus a direct result of the non-

at a rate similar to that for stationary clouds, but reachggyssianity of the errors once the locations of the observed

field. The initial behaviour of the filter is similar, with the  Eor time-varying cloud fields (thin line in Figlb), a

initial random noise disappearing within a few time Ste%ﬁnificantdiversity is retained in the ensemble, but therer

and a common subset of clouds appearing in the majority@fyrates at a high level since the filter is not able to remove
ensemble members. However, the evolution of the comm@g noise within the half-life of the clouds.

subset s too slow to track changes in the evolving observed ajthough both the SIR filter and ETKF have large

state and the error remains large. errors with a time-varying cloud field, the nature of the
Fig. 1b shows the corresponding results for the ETKEyrors is quite different. The error in the SIR filter comes
For the Stationary cloud fleld, the mean error eventuaﬁwmar"yfrom Wrong|y positioned cloudsthat are prese‘nti
approaches a small value (well beyond the 100 timestefost all ensemble members, while the error in the ETKF
shown in the figure), with spread very similar to thg associated with a high level of background noise. This
error. Also shown is the error in the ensemble meaguggests that the optimal method for producing probaisilist

which should represent the "best estimate” of the obseryg@dictions from the two ensembles will be different.
state. Two stages are visible in the figure, distinguished

mainly by the behaviour of the ensemble spread. While th&  Ensemble size
error decreases continuously, the spread remains roughly
constant for approximately 15 timesteps, then decreaggith an ensemble size of 50, neither data assimilation
together with the error. method is able to converge to the time-varying cloud field
As shown for an example realisation in F&lp, by the with any degree of accuracy. To illustrate how the results
end of the first phase clouds appear at the correct locatiehange with ensemble sizefinal error was computed for
in the majority of the ensemble members. However, teach experiment. This was estimated as the error after 500
variability at other locations, associated with incorregime steps for experiments with a stationary cloud field and
clouds in random members, remains largely unchangedo time steps for the 30 time step lifetime cases, since
Since the incorrect clouds are at different locations in tieBanges after this time were found to be negligible.
different ensemble members (in contrast to the common |n Fig. 4a it can be seen that any ensemble size greater
subset in the SIR filter), the error of the ensemble megan about 10 is sufficient for the SIR filter to converge for
(also shown in Figlb) is smaller than the mean of thetationary clouds, while for the time-varying cloud fiel@th
errors of the individual ensemble members. This refleggor decreases rapidly with increasing ensemble size up to
the well-known reduction of RMS error for smoother fieldsbout 20 members, after which the decrease in error is slow.
and does not imply that the ensemble mean is a satisfactergept for very small ensemble sizes, the spread is about
estimate of the observed state since the presence of kif the magnitude of the error.
rainrates everywhere in the domain is not consistent with The ETKF collapses (vanishing spread) for small
the dynamics of the physical model. ensembles with a stationary cloud field (Big). The results
The gradual decrease of spread and error in the secangrove significantly with ensemble size, up to about 40
phase is associated with the disappearance of incormeimbers, with final error reaching about 20% of the random

Gridpoint

Figure 3. As Fig. 2, but for the ETKF at timestep (a) 15, and (b) 45.
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Figure 4. Final error (solid, as defined in text) and ensemble spregghyre 5. Final error as function of ensemble size for (a) SIR and (b)
(dashed) as function of ensemble size for (a) SIR and (b) EWKiFhalf-  ETKF, with half-life 30 (thin dash-dotted) and localisati¢thin) and half-
lives of 3000 (thick) and 30 (thin) time steps. life 3000 (thick dash-dotted) and localisation (thick)

value and ensemble spread about half the final error. Bo§  averaging
the time-varying cloud field there is almost no improvement

with ensemble size, and even for an ensemble size of 100

the final error is only about 5% better than for an ensem fix contrast to localization, observation averaging should
size of 15. ave the effect of making the distribution of the errors

The behaviour of ensemble spread relative to er@?re Gaussian, potentially leading to better results fer th
shown shown in Fig4 is also found in the subsequen KF. Figure 6 shows the final errors for experiments

experiments, therefore spread will not be plotted on t éth tﬁbs?rvatlonm?ﬂvseragmg or:/er 18 grid point tr%gl]?ns.
remaining figures. or this figure errors have been computed from

averaged observations and model states, and normalized by
the difference between two random states in this measure.
3.3. Localization An error of zero would thus imply that the number of
clouds within each 10 grid point region was correct, but not

Assimilating data in local regions independently cdpecessarily their locations. The errors thus reflect thiyabi
drastically reduce the number of degrees of freedom Ghthe methods to solve the simpler problem of producing

the system, potentially improving the performance of smie correct d(_ensity of convective clouds over subregions,
ensembles. As can be seen in Fig, it has a major effect and are not directly comparable to the errors shown on the

on the performance of the SIR filter, leading to convergergVious figures.
with even smaller ensemble sizes than achieved by the non- With averaged observations the SIR filter converges
local filter for the stationary cloud field. A major reductiogven with small ensemble sizes (Figa). As with
in final error is found for the time-varying cloud field, witHocalization, the problem is decomposed into a set of smalle
errors less than 20% for ensemble sizes larger than 20. Thigblems that are solved independently. Unlike localarati
result is not surprising: on average, the observations h@vgraging changes the statistical character of the smaller
10 clouds scattered over 100 possible locations, for asftaproblems, but the reduction in dimensionality is similar.
100'° possible states. This is vastly larger than the ensemble For a stationary cloud field, the AETKF (Fidgb)
sizes used here. localization decomposes the domain stiows a large reduction in the ensemble size required to
100 subdomains, each with 2 likely states (cloud or nobtain small errors in the region of small ensembles (10-20
cloud), for a total of about00 - 2 possibilities. An ensemblemembers). The increase in error for larger ensemble sizes is
of a few tens of members can sample this space within #eprising, but preliminary experiments (not shown) sisgge
cloud half-life of 30 timesteps. that this could be corrected by increasing the covariance
On the other hand, the effects for the LETKF ardeflation factor with increasing ensemble size to produce
modest, with small improvements in final error, particylarkerrors at least as small as those for smaller ensembles.
for smaller ensemble sizes. The primary source of erfeven for a time-varying cloud field the performance of the
for the ETKF is the continual creation of clouds &ETKEF is significantly improved by averaging, although for
incorrect locations by the assimilation increments, wligchthe relatively small averaging region used here the errors
unaffected by localization. remain large.
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(@) filter since they both drastically reduce the dimensiopalit
Lo ‘ ‘ TV of the space that must be explored by the resampling
sl 11, — asirhizo | | perturbations. In more realistic models, however, these
' : «r+ SIR hI3000 methods might cause problems by violating dynamical
o6l — AsRhi3000] |  balances that couple different spatial regions.

RMS

.................... R The ETKF collapses for small ensemble sizes, but

Ul otherwise captures the correct cloud locations quickly.
However, the ensemble is plagued by large numbers of
incorrect clouds that contaminate the ensemble mean. This

0.4

0.2

; occurs because negative clouds are not possible, so that
0.0 Al st = s 700 the nonlinear dynamics rectify the analysis increments,
(b) producing a non-Gaussian distribution of variability ire th
L0 ‘ ‘ ‘ 0 ensemble. Averaging of observations has the potential to
. . AETKF hi30 correct this problem, since the Poisson distribution will
K ... ETKFhi3000 | | converge to Gaussian as the averaging region becomes
L — AETKF hi3000 ... large enough to contain many clouds. Indeed, significant

improvement with averaging was found, although for the
relatively small averaging region used here, the errors
remain large. localization, on the other hand, seems to have
no benefit for the ETKF in this environment.
While the stochastic test problem proposed here is
‘ ‘ ‘ ‘ highly idealised, the results point to specific problems
20 40 60 80 100 . L .
Ensemble Size that are likely to limit the performance of particular data
assimilation methods for cumulus convection, and provide
Figure 6. As Fig. 5 but with dash-dotted lines indicating experiments witiindications regarding how the methods can be improved.
observation averaging. This could be a starting point for hierarchy of models, where
a stochastic process representing convection is intratluce
into simple dynamical models (e.g. shallow water, or quasi-
geostrophic), and the convection is coupled to the large-

scale dynamics by a simple closure assumption, where the

The aim of this work was to test convective-scale daltg,[e parameter depends on the large-scale fields.
assimilation algorithms using a simple model based on

a stochastic birth-death process. The stochastic dynanfReserences

models the extreme nonlinearity of the convectin ]
atmosphere, where a storm can appear from one observafitgey A, Dowell DC, Snyder C. 2009. A multicase
time to the next. The spatial Poisson distribution in the cOmparative assessment of the ensemble kalman filter
simple model represents the intermittency and lack offor assimilation of radar observations. part I: Storm-gcal
correlation characteristic of remote sensing observation @nalysesMon. Weather Red37. 1805-1824.

such as Radar. Since the model does not include dMgoy A, Dowell DC, Snyder C. 2010. A multicase
dynamical balances that might or might not be presentcomparative assessment of the_ ensemble kalman filter for
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and ETKF fail to produce good results for realistiélpert JC, Kumar VK. 2007. Radial Wind Super-Obs

parameter values of cloud density and lifetime. Thefrom the WSR-88D Radars in the NCEP Operational

performance could undoubtedly be improved somewhat byAssimilation SystemMon. Weather Revl35 1090-

optimising parameters such as the covariance inflatioreor th 1109.

resampling probability in the particle filter, but the reasulBellman R. 1957Dynamic programmingRand Corpora-

would be unlikely to change qualitatively. tion research study, Princeton University Press, ISBN
The SIR filter rapidly collapses to a state in 9780691079516.

which variance is only maintained by the perturbatiofellman R. 1961 Adaptive control processes: a guided

associated with resampling after members are eliminatediour. A Rand Corporation Research Study Series,

Interestingly, the filter can eventually converge to the Princeton University Press.

observed state, since any correct cloud locations fouBengtsson T, Bickel P, Li B. 2008. Curse-of-dimensionality

by the random perturbations are retained in the ensemblegevisited: Collapse of the particle Iter in very large scale

Since the rate of convergence is controlled by thesystemsIMS Collections2: 316-334.

resampling perturbations, rather than the importanB&kel P, Li B, Bengtsson T. 2008. Sharp failure rates for the

weighting, strategies like an improved proposal distittrut ~ bootstrap particle filter in high dimensions. pushing the

(Van Leeuwen 2009may have the greatest potential to limits of contemporary statisticE€ontributions in Honor

improve filter performance. In any case the true statisticalof Jayanta K. GhosB: 318-329.

properties of the collapsed ensemble need to be taken iBishop C, Toth Z. 1999. Adaptive Sampling with the
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