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Motivation 

 Introduce a minimal model 

• Key features: spatial intermittency, stochastic evolution 

 

 Examine the performance of ETKF and particle filter 

 

 Look at two different strategies to improve methods 

• Localization and observation averaging 



Problems of radar data assimilation  

 Lack of spatial correlations prevents reduction in degrees of 
freedom 

• Curse of dimensionality (Bellman 1957, 1961) 

 Lack of temporal correlation between observation times 

• Stochastic evolution of the model field 

 No balance constraints 

• No geostrophic or comparable balance constraints applicable 

 



Data Assimilation Methods 

 Ensemble Transform Kalman Filter (ETKF) 

• ETKF (Bishop et al. 2001; Hunt et al. 2007) 

 Sequential Importance Resampling (SIR) 

• SIR (Gordon et al. 1993, Van Leeuwen 2009) 



Possible Solutions 

 Localization 

• Analysis at a grid point is only influenced by observations close-by 

• LETKF of Hunt et al. (2007) 

• Local SIR filter (LSIR) 

 Observation Averaging 

• Averaged observations over a region to reduce intermittency 

• Sometimes called „super-obbing“ 

• AETKF and ASIR 



Toy Model 
• One spatial and one temporal dimension 

• Cloud distribution determined by birth/death probabilities 

        Leads to a mean cloud half life and an average density of clouds 

• Model & observations are perfect 

 
Example run: 
• 100 gridpoints 
• half life 30 time steps 
• average density of 0.1 clouds 
 
• black squares ■ mark the 
number and position of clouds 
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Model setting 

Basic settings: 

• 100 grid points 

• Half-life (hl) is 30 (varying problem) or 3000 (stationary problem) time steps 

• Average cloud density is 0.1 per grid point 

• hl30 corresponds to 2.5 hours 

 

Special settings: 

• Averaging is applied for regions of 10 grid points 

• Localization is applied to every grid point with a localization radius of 0 



Example Runs 

• Ensemble size: 50 

• Half life: 3000 

• Method: ETKF 

 

• Red line: ensemble mean 

• Green line: ensemble spread 
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• Clouds are assimilated fast 

• Noise stays long 

• Some „wrong“ clouds 



Example Runs 

• Ensemble size: 50 

• Half life: 3000 

• Method: SIR 

 

• Red line: ensemble mean 

• Green line: ensemble spread 

 



Example Runs 

• Ensemble size: 50 

• Half life: 3000 

• Method: SIR 

 

• Red line: ensemble mean 

• Green line: ensemble spread 

 

• Clouds are assimilated slowly 

• Noise is gone very fast 

• Many „wrong“ clouds 



Results – Example Runs 

______    Continuous line:   RMSE 
_  _  _  _   Dashed line:          Ensemble spread 

 SIR: 

• Hl3000: Almost perfect after 
100 time steps 

• Hl30:  After 40 time steps 
more or less constant error 

 ETKF: 

• Hl3000: slowly converges to a 
small error 

• Hl30: Does not get better 
than 0.8 

• Spread and error are similar 



Changing Ensemble size 

______    Continuous line: RMSE 
_  _  _  _   Dashed line:        Ensemble spread 

 SIR: 

• Hl3000: SIR is almost perfect 

• Hl30: Decreases slowly with 
increasing ensemble size. Still 
at 0.4 with 200 members 

 ETKF: 

• Hl3000: Error only decreases 
significantly up to 40 
members 

• Hl30: Almost no 
improvement 

• For larger ensembles error 
and spread are almost 
constant 



Localization 

 SIR: 

• Hl3000: Already perfect with 
3 ensemble members 

• Hl30: Big upgrade compared 
to standard version 

 

 ETKF: 

• Hl3000+Hl30:  Almost no 
difference to standard 
version 



Averaging 

 SIR: 

• Hl3000:  No improvement 

• Hl30: Not better than 
localization 

 

 ETKF: 

• Hl3000: Reduction in 
ensemble size to get error 
around 0.2 



Conclusions 

• Introduced a stochastic model that captures the key features of convective-scale 
data assimilation 

• SIR can give good results, but ensemble size is related to the dimensionality of 
the problem (can be very large) 

• Both standard methods fail when posed with the dynamical situation 

• Localization works very well for the SIR and has a smaller effect for the ETKF 

• Averaging seems more useful for the ETKF, especially for small ensembles 

Outlook 

• Use a more complex model (shallow-water) to test interaction with gravity waves  

• Do idealised problems with the systems of COSMO/KENDA (Km-Scale Ensemble-
Based Data Assimilation) 



 



Extra slide - Tuning 

• What happens when tuning SIR: 
• One can change how large the random perturbation is. If I make it larger, 

there is more noise and more correct clouds and RMS stays almost the 
same. The question is what one wants. Few correct clouds and little spread, 
or the opposite. 
 

• What happens when tuning ETKF: 
• Same as for SIR. More spread also increases the error. At least for bigger 

ensemble sizes, where ensemble and spread are already quite similar. It 
does not have to be absolutely identical. But with inflation, clouds are faster 
at the correct position. 

• Deflation makes the error go down faster initially (less spread), but final 
error is the same again. 
 

• Averaging ETKF: 
• Because the RMS punishes errors of 2 or 3 clouds too much, the spread is 

too large and covariance deflation is needed. Up to 0.7.  
• It would vary too fast if not. 



ETKF hl30, 50 ensembles 



SIR hl30, 50 members 

 



Comparison after 4 steps 



Comparison after 10 steps 

SIR ETKF 



W-Matrix Hinton Diagrams 



Example 1 SIR, 
hl 3000,k 50 
Step 84-85 



Example 1 SIR, 
hl 3000,k 50 
Step 85-86 



Example 1 SIR, hl 
3000,k 50 

Step 99 to 100 



Example 1 ETKF, 
hl 3000,k 50 
Step 13 to 14 
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