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1) Limited Predictability
due to nonlinear error growth in time t:

Question:

Is an ensemble forecast (a) from a fine analysis
more precise than (b) from a coarse analysis?

2) Analysis Precision

Nature Run:
convective system consisting of
multiple convective cells

a) Fine Analysis R4:
linear combination of forecast
members whose single convective
cells fit the observations locally
well

b) Coarse Analysis R16:
linear combination of forecast
members whose larger scale con-
vective systems fit the observations
roughly, on a coarser scale

Idealized Convective Setup

Nature Run and Ensemble (COSMO):

• 400 x 400 km, ∆x = 2 km
periodic lateral BC

• Random storm positions,
triggered by noise and radiative forcing

• CAPE = 2200 J/kg
storm lifetimes ∼ 6 hours

Simulated Doppler-Radar Observations:

• U -wind (∼ radial wind)

• Reflectivity, 0-dBZ-Reflectivity

LETKF-Setup

DWD implementation [2] in KENDA
(Kilometer-scale ENsemble Data Assimilation)

• 50 Ensemble Members

• Localization of obs. error cov. matrix R

• Analysis grid on model resolution, option-
ally coarsed analysis grid with interpola-
tion of analysis weights afterwards

• Hydrostatic relaxation of increments

2a) Fine Analysis R4

Filter settings for fine analysis:

1. High-resolution (2 km) radar-observations
2. 4-km R-localization length scale

(cutoff at 14 km), fine analysis grid
3. R-inflation factor 4
4. 5 minute assimilation interval

Fine analysis properties:

• Collapse of ensemble onto observed storms
• No spurious clouds
• Small error and variance

2b) Coarse Analysis R16

Filter settings for coarse analysis:

1. Coarse-grained (8 km) radar-observations
2. 16-km R-localization length scale

(cutoff at 58 km), coarse analysis grid
3. R-inflation factor 16
4. 20 minute assimilation interval

Coarse analysis properties:

• Position of storms roughly correct
• Spurious clouds allowed
• Larger error and variance

3) Results: Nature vs. Analysis and Forecast Ensemble Means

After 3 hours of cycled LETKF-assimilation (14 - 17 UTC):
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Followed by 3 hours of ensemble forecast (17 - 20 UTC):
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4) Analysis and Forecast RMSE
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vertical wind W

Envelopes around RMSE-curves:
σ of 5 random repetitions

R4:  RMSE of Ensemble Mean
R4:  Spread of Ensemble
R16: RMSE of Ensemble Mean
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5) Analysis Distributions

0 8 16 24 32 40 48 56
Reflens (dBZ)

0.00

0.08

0.16

0.24

0.32

0.40

0.48

re
la

ti
v
e
 f

re
q
u
e
n
cy

 (
in

 e
n
se

m
b
le

)

Ensemble distribution where Reflnature = 40±0.5 dBZ

R4

R16

Analysis ensemble values in precipitation cores
of the Nature Run 01 at 17 UTC (cf. Box 3)

6) Conclusions
• Analysis precision advantage of R4 is lost

within 1-3 hours compared to R16
• For convective forecasts beyond 3 hours,
the highest possible analysis precision
might not be necessary or helpful due
to the limited predictability
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