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Goals

« Create a model hierarchy where the models are computationally cheap but represent some

of the key features of convective-scale phenomena.

 ldentify and assess promising data assimilation algorithms intended for this scale

« Use the results of toy model experiments to predict the behavior in full models

Models and experiments developed
for testing the suitability:

Data assimilation algorithms tested:

» Ensemble Transform Kalman Filter (ETKF)

» Particle Filter (Sequential Importance Resampling)
» Efficient particle filter (with nudging)

All methods with localization and observation averaging

» Stochastic cloud model

» Modified shallow water equations
(presented here)

> ldealized NWP system experiments

Stochastic cloud model

Non-Gaussianity

» Discrete number of clouds in each box

» Low density of clouds (e.g. 0.1)

» No spatial correlation between grid points

Condensation level H
(positive buoyancy)

cloud

Background noise

Nonlinearity

» Clouds appear and disappear randomly

» Poisson birth-death process with instantaneous
birth/death

» Probability of death gives average lifetime Momentum equation:

Modified shallow water model

Rain level H iy —

1D Shallow water model plus an additional equation for rain.
Velocity equation is modified to initiate formation of clouds.

ldealized NWP System Experiments

COSMO

Non-hydrostatic, convection-permitting, NWP model

Domain: 396 x 396 x 20 km, cyclic boundary conditions

Resolution: 2 km horizontal, 50 vertical levels, 12 s time step

Initial sounding: 2200 J/kg CAPE, unidirectional shear

KENDA

50 members LETKEF, initialized with random T and w perturbations. Assimilation
every 5 min using Doppler winds, averaged to 4 (or 8) km.

Gaspari-Cohn localization radius of 16 (or 32) km.
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Assimilation with ETKF and ensemble size 50.
Red vertical lines are position of clouds.

» All clouds are assimilated correctly.

» Lots of spurious clouds in the ensemble mean.

Model settings:

0,

\

otherwise,

Gravity wave speed = 30m/s, H;=90m
dx=500m, dt=5s, domain=500km, H_.=90.04,H,=90.4

Analysis after 1 hour of assimilation

» Short-lived clouds are not captured well.

» More spurious clouds in R32 experiment.

» After 3 hours of free forecast R8 and R32 give similar results.

1. Life cycle of a convective cloud
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Updraft (left) and downdraft (right) phase of a cloud. Different colors correspond to different times

IN minutes.

» When the water level reaches the cloud threshold, the updraft starts.
» At the water level of 90.4 rain starts to be produced.
» When rain reaches the maximum, the cloud is forced downward again.

2. Statistics of convection
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| » Typical evolution of the cloud
field in the whole model domain.

Water level at 30 minutes intervals:
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Distribution of the distance between different a height above 90.04.
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aximum at 5.5 Km, minimum arou ' > Mean number of clouds in domain is 14.9.
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3. Orographically triggered convection
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Hovmoller diagrams for a mean wind of 30 m/s (left) and 40 m/s (right)

» Comparable to simulations of flow over a ridge (Chu and Lin, 2000)
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A mountain with half-width 10 km and a height of 0.2 m is located at distance 0 km.

» In case of a weak mean wind, the clouds are not able to move past the orography
» In case of a stronger mean wind, a sequence of clouds is built and propagates downstream.
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» Farther away, the distribution is random. > Therefore 5% of the grid points are cloudy.
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4. Data assimilation

0.4¢

» Radar observations and radial wind as
synthetic observations.

= More thorough analysis of different
observation configurations ongoing.
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Preliminary Results:

= Agood fraction of clouds is assimilated
when observing all grid points and using hm %Mmyg N'
quite a small observation error. A i W

» Fastest evolving clouds not captured.

* Ensemble is underdispersive.
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Height analysis after 10 LETKF cycles with
observations every 5 minutes and 20 ensembles.
All fields are observed at every grid point.
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