Cloudy-affected Infrared Brightness Temperature Assimilation by LETKF

África Periáñez (DWD/UoR)

in collaboration with: Otkin, J. (UW/CIMSS), Schomburg, A.(DWD), Faulwetter, R.(DWD), Reich, H.(DWD), Schraff, C.(DWD), Potthast, R.(DWD/UoR)

7 November, 2014

Outline

Challenge

Monitoring experiments: Cloud-dependent Bias Correction

Assimilation of brightness temperatures in COSMO-DE with LETKF

Next Steps Future

Outline

Challenge

Monitoring experiments: Cloud-dependent Bias Correction

Assimilation of brightness temperatures in COSMO-DE with LETKF

Next Steps Future

Challenge

- Direct assimilation of SEVIRI radiances (instead of retrievals)
- Spinning Enhanced Visible and Infrared Imager (SEVIRI)
- SEVIRI 12-channel instrument in MSG (Meteosat Second Generation).
- Produces images of the Earth every 15 minutes
- High horizontal resolution (3Km for IR channels, and 5Km for Europe)
- Assimilation of all-sky brightness temperatures (water vapor and window channels)
- Model: COSMO-DE both deterministic and EPS: 2.8km
 DA system: LETKF²
- simulated radiances through RTTOV 10

^aHunt et al. 2007

Why is it a Challenge?

- It is necessary:
 - to perform accurate radiative transfer simulations: more complex in cloudy cases
 - develop an adequate bias correction
 - to take into account or remove the effect of clouds
 - specify correctly observation error
 - to define an optimal horizontal and vertical localization length-scale

Why is it a Challenge?

- Only few channels are assimilated in most of the operational regional models:
 - WV and CO2 channels assimilated in the HIRLAM^a (including cloud-affected radiances)
 - WV channels included in the Met Office regional UKV operational model and three IR channels over sea surfaces
 - Météo France regional ALADIN-model has five channels operationally assimilated (WV6.2, WV7.3, IR8.7, IR10.8, and IR12.0) mainly over sea and under clear-sky conditions
 - All these limited area models employ 4-DVar as Data Assimilation method
 - First attempt to assimilate cloudy-affected radiances with an LETKF in a high-resolution model

^aStengel et al. 2010

Outline

Challenge

Monitoring experiments: Cloud-dependent Bias Correction

Assimilation of brightness temperatures in COSMO-DE with LETKF

Next Steps Future

Bias Correction

- WV073 , WV062 and IR 8.7
- Test case from 2011-06-01 00:00 to 2011-06-06 12:00 UTC
- O-B and RMSE statistics at each assimilation update time
- clear sky, low, medium and high clouds
- low (surface to 2 km AGL), middle (2 to 6 km AGL), and upper troposphere (6 to 14 km AGL)
- model cloud top defined as the first model level from the model top with a total cloud mixing ratio greater than 1e⁻⁶kgkg⁻¹
- the observed and simulated cloud top heights we. considered *matched* if their difference was less than 600 m
- CTH from NWC SAF used to classify SEVIRI radiances

Normalised Weighting Function

Cloud type 2011-06-02 00:00

CT_NWC

cloud free land cloud free sea very low clouds low medium high very high high semitransp fractional

Observations WV 2011-06-02 00:00

O Channel 2

Background WV, 4 hour free forecast

B Channel 2

Averaged simulated brightness temperatures

Observation minus Background for matching grid points

O-B RMSE for matching grid points between observed and simulated T_B

Outline

Challenge

Monitoring experiments: Cloud-dependent Bias Correction

Assimilation of brightness temperatures in COSMO-DE with LETKF

Next Steps Future

WV073 Assimilation Experiments

- 12 hours assimilation from 2011-06-04 12:00 UTC to 2011-06-05 00:00 UTC
- bias correction value applied to the simulated observation (rather than to the real observations)

$$d_o = H(x^{(b)}) + y^{(b)}_{bc} - y^o$$

- model-simulated cloud field from a given ensemble member is used to determine the cloud top height
- bias statistics from the 3-day period

	Clear sky	Low-level clouds	Medium-level clouds	High-level clouds
<i>y^{bc}</i>	-2.9	-2.9	-3.1	-4.4

 Table : Bias correction values in Kelvin [K], for assimilated WV 7.3 SEVIRI radiances in COSMO

 Optimal settings: Observation error 3.5 K, horizontal and vertical localization radii 35 km and 0.7 log pressure units

BIAS for matching grid points WV 7.3 T_B assimilated

RMSE for matching grid points WV 7.3 T_B assimilated

RMSE

BIAS for all grid points WV 7.3 T_B assimilated

- Statistics based on CTH retrievals from NWC SAF to classify observations
- No attempt made to determine if the COSMO model has a similar cloud in the same location

RMSE for all grid points WV 7.3 T_B assimilated

Bias clear sky - control and assimilation

Bias low level clouds - control and assimilation

Bias medium level clouds - control and assimilation

0-B

Bias high level clouds - control and assimilation

Bias all sky - control and assimilation

RMSE clear sky - control and assimilation

RMSE low level clouds - control and assmilation

RMSE medium level clouds - control and assimilation

RMSE high level clouds - control and assmilation

RMSE all sky - control and assimilation

Vertical Profiles - RH

Vertical Profiles - T

Vertical Profiles - Wind

Outline

Challenge

Monitoring experiments: Cloud-dependent Bias Correction

Assimilation of brightness temperatures in COSMO-DE with LETKF

Next Steps

- Assimilation of WV067 and IR8.7 Brightness Temperatures
- Develop a time-dependent bias correction values for each cloud type (i.e. use of predictors)

$$d = H(x^b) + \sum_{i=1}^N \beta_i p_i(x_b)$$

with p_i one of the N predictors and β the bias parameters

- Vertical localization sensitivity studies
- Remove impact of high semi-transparent clouds

Outline

Challenge

Monitoring experiments: Cloud-dependent Bias Correction

Assimilation of brightness temperatures in COSMO-DE with LETKF

Next Steps Future

Collaboration with RIKEN/MRI: Assimilation of AHI radiances

- Models:
 - JMA NHM-LETKF ^aMSM
 - SCALE-LES
- Assimilation of cloud-affected water vapor brightness temperatures:
 - Study the impact of real satellite observations at convection-resolving scales
 - high-resolution model with high-resolution observations
 - improve forecasts of high impact weather events

^aKunii 2013

Assimilation of AHI radiances

- Advanced Himawari Imager on-board Himawari-8 Operational 2015
- Provides 2.5-minute-interval images of Japan and 2Km-resolution images in infrared bands
- Improvement of current satellite products AMV, CSR, CGI and SST
- New products development Instability indices: severe events forecast 38 of 39

• Thanks for everything!! And see you in Kobe!

Channels

TABLE 1. Spectral channel characteristics of SEVIRI providing central, minimum, and maximum wavelength of the channels and whether the channel is an absorption or a window channel. A concise summary of the use of the spectral channels is given in the section titled "SEVERI spectral channels."

Channel no.			racteristi ral band		Main gaseous absorber or window
		$\lambda_{_{cen}}$	$\lambda_{_{min}}$	$\lambda_{_{max}}$	
1	VIS0.6	0.635	0.56	0.71	Window
2	VIS0.8	0.81	0.74	0.88	Window
3	NIR1.6	1.64	1.50	1.78	Window
4	IR3.9	3.90	3.48	4.36	Window
5	WV6.2	6.25	5.35	7.15	Water vapor
6	WV7.3	7.35	6.85	7.85	Water vapor
7	IR8.7	8.70	8.30	9.10	Window
8	IR9.7	9.66	9.38	9.94	Ozone
9	IR10.8	10.80	9.80	11.80	Window
10	IR I 2.0	12.00	11.00	13.00	Window
н	IR I 3.4	13.40	12.40	14.40	Carbon dioxide
12	HRV	Broadban	d (about (0.4 – 1.1)	Window/water vapor

LETKF basics

- Implementation following Hunt et al., 2007 from maryland group
- basic idea: do analysis in the space of the ensemble perturbations
- computational efficient, but also restricts corrections to subspace spanned by the ensemble
- explicit localization (doing separate analysis at every grid point, select only certain obs)
- analysis ensemble members are locally linear combination of first guess ensemble members