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ABSTRACT4

An idealized convective testbed for the LETKF is set up to perform storm-scale Data Assim-5

ilation of simulated Doppler radar observations. Convective systems with lifetimes exceeding6

six hours are triggered in a doubly periodic domain. Perfect model experiments are used to7

investigate the limited predictability in precipitation forecasts by comparing analysis schemes8

on different length scales. Starting from a high resolution reference scheme with 8 km covari-9

ance localization and observations with 2 km resolution on a 5 minute cycle, an experimental10

hierarchy is set up with a larger covariance localization radius of 32 km, observations that11

are horizontally coarse-grained by a factor of 4, a coarser resolution of the analysis weights,12

and a cycling interval of 20 minutes.13

After 3 hours of assimilation, the high resolution analysis scheme is clearly superior to14

the configurations with coarser scales in terms of RMS error and field-oriented measures.15

The difference is associated with the observation resolution and a larger localization radius16

required for filter convergence with coarse observations. The high resolution analysis leads to17

better forecasts for the first hour, but after three hours, the forecast quality of the schemes is18

indistinguishable. The more rapid error growth in forecasts from the high resolution analysis19

appears to be associated with gravity wave noise and spurious convective cells, suggesting20

that the field is in some sense less balanced, or less consistent with the model dynamics,21

than in the coarser resolution analysis.22
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1. Introduction23

Over the last decade, Data Assimilation (DA) with an Ensemble Kalman Filter (EnKF)24

(Evensen 1994; Houtekamer and Mitchell 1998) for Doppler radar observations has been25

demonstrated to be a feasible method to obtain suitable initial states of convective storms26

for very short-range ensemble forecasts in studies with both simulated (Snyder and Zhang27

2003; Tong and Xue 2005) and real observations (Dowell et al. 2004; Dowell and Wicker28

2009; Aksoy et al. 2009, 2010). As Stensrud et al. (2009) note, a goal of convective DA is29

to be competitive to nowcast-warning systems that have generally been superior to model30

forecasts without data assimilation for at least the first three hours of leadtime (Kober et al.31

2012).32

Previous studies that used radar data in an EnKF have focused on storm-scale analyses33

that apply relatively small covariance localization lengths in the range of ∼ 10 km (Sobash34

and Stensrud 2013) and converge the analysis ensemble closely towards the observations,35

pursuing the goal of obtaining initial states with small errors as the basis of their ensemble36

forecasts.37

This study tries to assess the benefits of such close convergence, because even a very38

precise analysis with small errors may be of limited value when used as an initial state for39

a forecast. The reason for this is the short predictability of convection in the chaotic atmo-40

spheric system where small scale errors grow rapidly (Lorenz 1969) because the small-scale41

error spectrum saturates faster than the larger-scale error spectrum. By adding random42

perturbations to convection in twin-experiments, Zhang et al. (2003, 2007) observed a sat-43

uration of small scale error growth within a few hours – a limitation that directly affects44

approaches of highly-resolved ensemble data assimilation on the convective scale.45

Taking the limited predictability of convection into account, the benefits of a high-46

resolution approach in convective EnKF system may not justify the cost: an analysis en-47

semble not constrained to accurately reproduce the smallest scales in the observations might48

provide comparably good Quantitative Precipitation Forecasts (QPFs) for leadtimes where49
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the small scale error growth has had enough time to saturate.50

a. Limited predictability in convective scale data assimilation51

Lilly (1990) and Skamarock (2004) estimated the predictability of mesoscale convective52

systems to be in the range of tens of minutes to 1 hour before the upscale error growth53

taints the forecast completely. Zhang et al. (2003), Hohenegger and Schär (2007) and Done54

et al. (2012) compared randomly perturbed forecasts of organized convection to unperturbed55

reference runs. They found small-scale perturbations to grow very quickly and nonlinearly,56

saturating within 3-6 hours. The specific predictability limit in these studies depended on57

the presence of a large scale forcing that determined the type of convection and the spatial58

position of the cells. Craig et al. (2012) used perturbations from a Latent Heat Nudging59

assimilation scheme for convective storm forecasts and concluded a lower predictability for60

convection in regimes with weak synoptic forcing in which the storm properties are not61

strongly constrained by the large scale forcing.62

To assess the error growth processes in the framework of data assimilation (Kuhl et al.63

2007), this study performs experiments with the Local Ensemble Transform Kalman Filter64

(LETKF) (Hunt et al. 2007) coupled to an idealized setup of the nonhydrostatic COSMO65

model (Consortium for Small-scale Modelling) (Baldauf et al. 2011) containing severe and66

long lived convection. Observation System Simulation Experiments (OSSEs) of cycled DA67

are performed where synthetic observations radar observations are drawn from a nature run.68

A perfect model approach and a horizontally homogeneous environment without large-scale69

forcing are applied to focus on the intrinsic predictability of convective storms. The authors70

are aware that model error is usually the largest contributor to forecast errors of convection.71

This study uses a perfect model to be able to focus on the properties and results of the72

data assimilation cycling wherein it is favorable for the interpretation to know the true73

atmospheric state (viz. the nature run).74
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b. Assimilation experiments with different length scales75

First, a reference experiment is devised in order to reproduce the results of the previous76

studies on convective EnKF DA. For this, fine-scale observations of radar data are drawn77

from the nature run at the full model resolution and be assimilated with a suitably small78

covariance localization length in order to converge the analysis ensemble closely towards the79

nature run.80

Analysis schemes with different spatial and temporal resolution of the observations in81

combination with different covariance localization radii are then constructed to provide82

EnKF-generated perturbations with errors at different scales. Successively, (i) the hori-83

zontal localization radius of the covariances is increased (Sobash and Stensrud 2013), (ii)84

the scale of the observations are coarsened by averaging them into superobservations (Alpert85

and Kumar 2007), (iii) the computation of the LETKF analysis is done on a reduced hori-86

zontal grid (Yang et al. 2009), (iv) the temporal assimilation interval is extended to provide87

the analysis with observations less frequently.88

The cycled assimilation covers a time-span of three hours, followed by three hours of89

ensemble forecast. Different combinations of the experiments given by (i)-(iv) are evaluated90

using the Root Mean Square Error (RMSE) of the states together with object- and field-91

based forecast skill scores to see how quickly the advantage of a fine analysis state is lost in92

the QPF due to changes in the precision and scale of the analysis errors. It is also discussed93

how a close convergence might cause problems for the dynamics of the forecast model.94

The LETKF-experiments of this study try to focus on basic properties of such an as-95

similation system and do not make use of some recent innovations that can help to improve96

EnKF analyses, such as adaptive covariance inflation (Anderson 2008), additive inflation97

(Dowell and Wicker 2009), “Running-In-Place” (Kalnay and Yang 2010; Wang et al. 2012)98

or Gaussian anamorphosis of precipitation observations (Lien et al. 2013).99

For all experiments, the EnKF will be initiated with a convective ensemble that is spun up100

from random initial white noise and therefore lacks any prior knowledge about the position101
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of the observed storms in the nature run. This “bad background” leads to a longer period102

for the initial convergence of the ensemble, but avoids the possibly beneficial influence e.g.103

of arbitrary convective triggers that are “manually” introduced at predetermined locations104

(Tong and Xue 2005; Aksoy et al. 2009, 2010) to help the background ensemble resemble the105

observations even in the first assimilation step.106

2. Model configuration and experimental design107

This section first describes the data assimilation setup, consisting of nature run, synthetic108

observations, convective ensemble and LETKF-algorithm, followed by the implementation of109

the scale-varying experiments. The Kilometer-scale ENsemble Data Assimilation (KENDA)110

system (Reich et al. 2011) is being developed at the Deutscher Wetterdienst (DWD). It111

couples an LETKF-implementation with an ensemble of the Consortium for Small-scale112

Modeling (COSMO) model simulations in the domain over Germany (COSMO-DE) (Baldauf113

et al. 2011).114

COSMO solves the full non-hydrostatic and compressible Navier-Stokes equations using115

a time-splitting Runge Kutta approach for fast and slow tendencies in the prognostic wind116

variables U , V and W and the deviations of temperature T and pressure PP from a sta-117

tionary hydrostatic base state. The moist physics uses a single-moment bulk microphysics118

scheme with six state variables: water vapor QV , cloud water QC, cloud ice QI, rain QR,119

snow QS and graupel QG. A radiation scheme for long- and shortwave radiation is applied.120

Surface fluxes of latent and sensible heat are parametrized and constrained by a constant121

surface temperature and a constant surface specific humidity throughout the simulation.122

a. Nature run123

This study uses the testbed setup of COSMO with idealized initial state, periodic bound-124

ary conditions and a homogeneous flat landscape as the lower boundary. A convection-125
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permitting horizontal resolution of 2 km and 50 vertical levels is set up in a domain of126

396×396×22 km extent. The vertical resolution ranges from 800 m at the model top to 100127

m at the surface. The initial profile of all model runs is horizontally homogeneous and based128

on the sounding of Payerne (CH, Radiosonde 06610) at 12 UTC on July 30th 2007, a day129

with strong convective storms and mesoscale convective systems, favored by a high CAPE130

value of 2200 J kg−1 together with a vertical wind shear that allows organized convection131

with heavy precipitation and propagating gust fronts (Bischof 2011).132

Instead of initializing convection with predefined warm bubbles (Aksoy et al. 2009) or133

targeted noise (Dowell et al. 2004; Tong and Xue 2005) with amplitudes that directly trigger134

thermals, uncorrelated grid point noise is added at the inital time t0 to the temperature135

field T and the vertical wind speed W in the boundary layer with amplitudes of 0.02 K and136

0.02 m s−1, respectively. The model runs start at 06 UTC and quickly develop a convective137

boundary layer. Instability increases prior to the outbreak of convection due to radiative138

cooling of the upper troposphere while the surface temperature is held constant.139

Small showers initialize at random locations at 08 UTC, grow until 10 UTC and mostly140

die off by 12 UTC (Fig. 1). The surviving systems grow into intense storms and mesoscale141

convective systems by 14 UTC and propagate with the mean wind in a north-eastern direction142

through the domain with lifetimes ≥ 6 h (Fig. 2). The horizontally contiguous rain areas143

extend over distances from 30 to 150 km with reflectivity larger than 30 dBZ. Surface fluxes144

of sensible and latent heat lead to gradual decay of the cold pools in the wake of the storms.145

The periodic boundary conditions allow the storms to spin up in a way that is “natural”146

for the model physics in the given sounding despite the modest domain size. The time-147

window between 14 and 20 UTC is chosen for the experiments because the storm properties148

such as size and organization change little during this period (Fig. 1). For 3 hours, cycled149

assimilation is performed every 5 (or 20) minutes from 14 until 17 UTC, followed by ensemble150

forecasts with 3 hours leadtime from 17 until 20 UTC.151

All experiments in this study are repeated five times. Each repetion uses a different seed152
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for the random noise field to initialize its nature run (not shown). These five repetitions153

represent a variety of different storm positions and shapes which are possible given the initial154

sounding. When generating the nature runs, one random case was excluded in which the155

preliminary showers (Fig. 1 at 12 UTC) died out and no larger storm grew. An examination156

of the full set of ensemble members, which were also randomly initialized, showed that this157

was a rare event, occurring for ≈ 1
50

of the members, and therefore no such case was included158

in the five nature runs.159

b. Synthetic observations160

Synthetic radar observations of reflectivity (Z) and the component of horizontal wind161

in the x-direction (U) are generated from the nature runs. In order to mimic a region of162

good radar coverage, the observations are taken at every model gridpoint in the horizontal163

direction with the grid spacing of ∆xmodel = ∆xobs = 2 km. In the vertical, every third grid164

point between 500 m and 13 km above the model surface is observed.165

Reflectivity Z is computed from mixing ratios of graupel (QG), rain (QR) and snow (QS)166

using the simple formula of Done et al. (2004): Zfac,Q = AQ(ρQ)1.75 where AQR = 3.63 · 109
167

for Q = QR, AQS = 2.19 ·109 and AQG = 1.03 ·109 for with the air density ρ. The reflectivity168

is given by Z = 10 log10(Zfac,QR + Zfac,QS + Zfac,QG) in dBZ. These values were designed169

for the WRF model but also give reasonable values of dBZ with COSMO, mimicking the170

behaviour of real logarithmic reflectivity observations.171

As in other OSSE studies (Tong and Xue 2005), Gaussian noise with a standard deviation172

of σrefl = 5 dBZ is added to simulate measurement errors. The reflectivity observations Z173

are masked to regions where Z > 5 dBZ. Below this threshold, they are assimilated as174

observations of no-reflectivity (Tong and Xue 2005; Aksoy et al. 2009; Weygandt et al. 2008;175

Benjamin et al. 2012).176

In reality, most elevation angles of a radar volume scan are shallow, so the radial wind177

mainly contains information about the horizontal wind. Observations of the horizontal wind178
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component U , masked to Z > 5 dBZ and with an added error of σU = 1 m s−1, are therefore179

used as a proxy for radial wind observations. As the storms move in a north-eastern direction,180

U contains information of both storm propagation and horizontal divergence patterns. The181

regular observation geometry and the usage of U ensures that the observed information182

coverage is uniform and all storms are equally well observed.183

c. Initial ensemble184

The synthetic radar observations are assimilated using an ensemble of k = 50 members185

which differ from the nature run and among themselves only in the random seed for the initial186

noise. The spin-up time between 06 and 14 UTC enables the members to contain storms187

with similar characteristics but completely uncorrelated horizontal positions. Snapshots of188

the reflectivity field at different times throughout one of the nature runs are shown in Fig. 2.189

Other runs appear similar, but with random displacement and shape variations of the intense190

storm systems. This initialization method was chosen to deprive the ensemble of any prior191

knowledge about the state of the nature run when the assimilation starts, as would have192

been provided by a “manual” positioning of warm bubbles in the members or a confinement193

of the initial noise to regions of observed reflectivity (Tong and Xue 2005; Dowell and Wicker194

2009).195

d. Implementation of the LETKF196

To produce an analysis ensemble, the LETKF-algorithm (described fully by Hunt et al.197

(2007)) determines the vector w = w̄a that minimizes the cost function198

J∗(w) = (k − 1)wTw + [yo − ȳb −Ybw]TR−1[yo − ȳb −Ybw], (1)

where the k-dimensional vector w defines the optimal linear combination of ensemble member199

states that minimizes J∗. yo is the vector of observations and R is the observation error200

covariance matrix which is treated as diagonal here. ȳb and Ybw are given by approximating201
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the observation operator H to be linear about the m-dimensional background ensemble mean202

state x̄b, viz.203

H(x̄b + Xbw) ≈ ȳb + Ybw, (2)

where Xb is a m× k matrix whose columns are given by the deviations of the single forecast204

members from their mean xb(i) − x̄b and205

Yb = H(xb(i))− k−1

k∑
i=1

H(xb(i)). (3)

The minimum of the cost function (1) is computed locally for every analysis grid point206

to determine the best local linear combination of forecast members in the weighting vector207

wa(i). However, these single analyses do not necessarily need to be computed at the full208

model resolution: the spatial field of the local wa(i) is usually quite smooth in case of R-209

localization (Janjić et al. 2011), so a coarser analysis grid can be chosen horizontally and210

vertically on which the local analysis weights wa(i) are computed before being interpolated211

onto the model grid (Yang et al. 2009).212

For the local analysis, only nearby observations are taken into account by localizing the213

observation error covariance matrix R with a Gaussian-like correlation function (Gaspari214

and Cohn 1999) that is zero where the distance r of the single observations is larger than215

the “cutoff-length” rLoc of the localization radius. Consistent with the doubly periodic216

lateral boundary conditions of the model used in this study, the synthetic observations are217

periodically replicated around the original domain and the filter algorithm of KENDA is218

configured to take also observations into account that are nominally outside of the domain219

while still within the horizontal localization radius of the outermost grid points. This leads220

to a fully periodic LETKF analysis.221

For all experiments, the analysis weights wa(i) are multiplied by a constant covariance222

inflation factor of ρ = 1.05 (Aksoy et al. 2009) in order to enhance the span of the analysis223

state space. All prognostic variables of the model are updated in the analysis computations224

(zonal wind U , meridional wind V , vertical wind W , temperature T , pressure perturbation225
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PP , water vapor mixing ratio QV , cloud water mixing ratio QC, cloud ice mixing ratio QI,226

rain water mixing ratio QR, snow mixing ratio QS, graupel mixing ratio QG).227

e. Reference configuration228

To reproduce the typical behaviour of an EnKF DA system with the assimilation of229

simulated radar observations, a reference setup with the name L8 was used and is described230

here. In L8, an assimilation interval of ∆tass = 5 minutes represents the typical availability231

of volume observations from a scanning Doppler radar network (Lu and Xu 2009).232

L8 uses a horizontal localization cutoff length of rLoc,h = 8 km, so the ensemble covari-233

ances contain storm-internal structures, while the overall structure of the observed storms234

has to be recovered by assembling the overlapping local analyses from neighboring analysis235

grid points. In L8, the horizontal resolution of this analysis grid coincides with the full model236

grid (∆xana = ∆xmodel = 2 km). The analysis grid has 20 vertical levels with a spacing that237

varies with the logarithm of the reference pressure. This is similar to the vertical grid struc-238

ture of the model, but with a vertical spacing varying from 1600 m at the model top to 250239

m at the surface.240

The vertical localization radius rLoc,v varies with height, so that observations close to241

the surface have a vertical influence of ∼ 1 km, while observations taken a height of 12242

km have a vertical influence of ∼ 6 km. The combination of the vertical analysis grid243

structure, the vertical localization radius and the resolution of the synthetic observations at244

every third grid point vertically should provide a sufficient overlap for vertically consistent245

analysis computations. The authors recognize that the vertical covariance structures in246

deep convection can extend up to lengths of 10 km when sampled by an EnKF background247

ensemble (Tong and Xue 2005) – the shallower vertical localization was chosen here also as248

a compromise for computational efficiency.249

In the L8 configuration, the positions of the storms in the analysis should closely co-250

incide with those of the observed storms. Within the storm-cores, the analysis states are251
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expected to be detailed with a low error and small variance, while spurious convection is252

suppressed outside of them by assimilating volume-observations of no-reflectivity. These are253

the requirements for a “converged” analysis ensemble as defined in the introduction.254

f. Configurations with different length scales255

All experiments are performed with the full model resolution of ∆xmodel = 2 km for both256

nature run and ensemble members. To produce analyses with varying scales, rLoc,h, ∆xobs,257

∆xana and ∆tass are varied to create the experimental hierarchy shown in Table 1258

(i) Horizontal localization (L8, L32): the horizontal localization is increased from of259

rLoc,h = 8 km to 32 km. The vertical localization is not varied.260

(ii) Superobservations (SO): The observation interval ∆xobs is increased from 2 km to261

8 km in experiments L8SO and L32SO, by horizontally averaging the values and positions262

of 4 × 4 blocks of the original observations into one central SO. This is preferable to data-263

thinning and reduces the information to the desired coarse scale (Alpert and Kumar 2007;264

Salonen et al. 2009; Seko et al. 2004). The entries of the observation error covariance matrix265

R are kept the same for one SO as for one original observation. The vertical resolution of266

the observations is not varied.267

(iii) Coarse Analysis Grid (CG): The analysis grid spacing ∆xana is increased from 2 km268

to 8 km in experiments L8SOCG and L32SOCG by computing the local analysis weights269

wa(i) at every fourth model grid point (∆xmodel = 2) km and then linearly interpolating onto270

the full model grid (Yang et al. 2009). After interpolation, the transformation from ensemble271

space into model space is performed in the LETKF as a linear combination of background272

members. The vertical resolution of the analysis grid is not varied.273

(iv) Assimilation interval (20): The cycling interval ∆tass is increased from 5 min to 20274

min in experiments L8SOCG20 and L32SOCG20 to test the effect of less frequent introduc-275

tion of observation information.276

The factor 4 difference in all parameters between (i) and (iv) implies that all experiments277
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with “L32SO” have the same number of observations per local analysis as the reference278

experiment L8, while the pure L32 has to fit the analysis ensemble to more local observations.279

The parameter combinations listed in Table 1 were selected first (i) to use observation280

and background information about larger-scale correlations for the analysis, (ii) to reduce281

the horizontal resolution of the observation information, (iii) to let the filter compute only282

directly on this coarsened scale before the full scales are updated, and (iv) to further tem-283

porally reduce the amount of information provided to the analysis.284

The analysis field of local linear ensemble member combinations wa(i) in (i) is therefore285

computed with a larger horizontal overlap (rLoc = 32 km), so the “assembly” of members286

in L32 is performed less locally than with the small localization of rLoc = 8 km in L8. It287

might be dynamically favorable to have less variation in the linear combination of ensemble288

members especially in regions with large horizontal gradients such as up- or downdraft cores289

because a linear combination of nonlinear dynamics such as convection is not necessarily a290

dynamically consistent state for every member.291

g. RMSE, spread and consistency ratio292

The accuracy of analysis and forecast states x is measured by the Root Mean Square293

Error (RMSE) of the ensemble mean x̄ = k−1
k∑

i=1

xi, computed in model space for the different294

model variables:295

RMSE(x) =

√√√√m−1

m∑
l=1

(xnaturel − x̄l)2, (4)

where m is the number of grid points. The corresponding variance is the spread spr of the296

ensemble xi around its mean x̄, given by297

spr = m−1

m∑
l=1

√√√√(k − 1)−1

k∑
i=1

(xil − x̄l)2. (5)
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To fulfill the Gaussian assumption of the filter, the ensemble spread should represent the298

actual error of the analysis, so the consistency ratio CR299

CR =
spr

RMSE
(6)

should be close to CR = 1. In addition to (4), the mean RMSE of the single members with300

respect to the nature run is computed for some comparisons:301

RMSEmem(x) = k−1

k∑
i=1

√√√√m−1

m∑
l=1

(xnaturel − xil)2

 . (7)

As in previous studies, RMSE and spread are evaluated for rainy model grid points above302

the detection threshold of 5 dBZ where the up- and downdraft dynamics are most active and303

the error reduction most significant. Additionally, the present study evaluates RMSE and304

spread for all grid points of the domain. This results in a generally low error level because305

many small error values of clear air regions contribute to the mean error, but is of interest306

since temperature and wind errors can occur outside of precipitating regions, especially in307

the boundary layer. Analysis and forecast errors are compared to a reference error level308

computed for a free-running ensemble that evolves through the diurnal cycle from 14 to 20309

UTC, but without any assimilation of observations.310

In Section 4, additional feature-based scores are described and applied to analyses and311

forecasts.312

3. Assimilation results313

First the reference experiment L8 is evaluated during the assimilation window 14-17314

UTC in Section 3a, then the assimilation results of the scale-varying experiments L8S0-315

L32SOCG20 (Table 1) are compared to L8 in Section 3b. The free forecast parts of the316

experiments are discussed in Section 4.317

An example of the assimilation results for one realization of the nature run is given in318

Figs. 3, 4 and 5, which compare snapshots of the nature run 03 to the analysis ensemble319
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means at 17 UTC. The composite reflectivity is the vertical maximum the 3D-reflectivity320

field (Fig. 3). T at the height of z = 150 m shows the cold pools (Fig. 4), W at z = 3500 m321

shows regions of up- and downdrafts (Fig. 5). Visually, the L8 analysis closely matches the322

nature run, particularly in reflectivity and vertical velocity.323

a. Performance of the reference scheme L8324

Fig. 6 shows the RMSE of the ensemble mean and the spread of L8 during the assimilation325

window and during the forecast window from 17 to 20 UTC for each of the prognostic model326

variables and the derived Reflectivity (Refl), computed at all model gridpoints. To illustrate327

the relative error reduction, the RMSE and spread of the free-running ensemble (which328

has not undergone any assimilation) are also depicted. An “error-reduction” is therefore a329

reduction of RMSE with respect to the free error level. The two observed variables are U and330

Refl, all other variables are updated only through covariances provided by the background331

ensemble.332

The reduction of RMSE for all model variables shows the effectiveness of the LETKF-333

cycling. The error of the meriodional wind U decreases during the assimilation window. At334

the same time the spread adjusts towards a good consistency ratio by 17 UTC, showing that335

the chosen inflation factor is appropriate. The zonal wind V , although only updated through336

covariances, behaves similarly to U . This is probably due to the strong coupling of U and337

V in the domain sounding with a north-westerly background wind.338

The pressure field PP , the humidity QV and the temperature T (illustrated by cold339

pool structures in Fig. 4) also benefit from the LETKF-cycling updates through ensemble340

covariances. Note that the filter-update of T is slightly detrimental at analysis times before341

16 UTC, showing a “reversed” saw-tooth pattern (visible in a close examination of Fig. 6),342

while the error decreases during the 5 minutes of forecast intervals due to the dynamical343

convergence of the ensemble members towards a physical meaningful state. This indicates344

that the direct ensemble covariances of T with the observed U and Refl are probably not345
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well-sampled by the background ensemble. The deficient T -analysis in the EnKF-assimilation346

of radar data has been noticed in previous studies (Zhang et al. 2004; Dong et al. 2011).347

Information about vertical motion of W (up- and downdrafts in Fig. 5) is provided by348

observations of Refl (cf. Fig. 5 of Tong and Xue (2005)) because the observed reflectivity349

field is confined to vertically active regions and by horizontal convergence patterns of U that350

enclose the up- and downdrafts (cf. Fig. 8 of Snyder and Zhang (2003)).351

The horizontally intermittent Refl field is well-captured by the analysis ensemble (cf.352

Fig. 7), and the RMSEs of the precipitation variables QR, QS and QG are reduced. QR,353

QS and QG are used to compute observations and first guesses of Refl in the observation354

operator and therefore are well-contained in the ensemble covariances. The unobserved cloud355

variables QC and QI also benefit from the LETKF-update. On the other hand, the spread of356

the precipitation variables is strongly reduced and does not recover during the assimilation357

window. This is probably caused by the non-Gaussian climatological distribution of the358

clouds which is converged towards a Gaussian solution of the filter (Dance 2004) which359

then has a smaller spread than the climatology. This is illustrated in Fig. 8 which shows360

histograms of W and Refl of the L8 analysis ensemble, computed from the gridpoint values361

of all analysis members at locations inside the storm in the nature run (i.e. points satisfying362

Wnature = 5± 0.5 m s−1 or Reflnature = 25± 0.5 dBZ in left and right panels, resp.). These363

show an approximately Gaussian distribution around the observed (Refl) or covariance-364

derived (W ) values from the nature run.365

Fig. 9 shows the RMSE and spread of L8 as in Fig. 6, but now computed only at those366

grid points where Refl of the nature run exceeds the observation threshold of 5 dBZ. The367

overall variance of all variables is larger in these convective regions, as is the relative amount368

of error reduction. This is because observations of U and Refl are available for the whole369

subset volume where RMSE and spread are evaluated. The main difference between Fig. 6370

and Fig. 9 appears in U , V , T and QV with a stronger error reduction inside the thresholded371

subset, but also a smaller spread when compared to the evaluation including all gridpoints.372
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As the differences between the two choices of grid point subsets for RMSE-computations373

are small, further discussion of RMSEs in this paper will refer to the full-domain RMSEs of374

Fig. 6. Furthermore, since the RMSE behaviour of many variables are similar to each other,375

only plots of four representative variables will be considered. U will serve as a proxy for376

V , T as proxy for PP and QV , and QR as a proxy for QC, QI, QR, QS, QG and Refl377

(Fig. 10).378

Summarizing the results for the high-resolution assimilation, the L8-scheme appears to379

produce LETKF-analyses that are comparable in quality to the previous convective EnKF380

studies with radar data mentioned earlier. The mean of this strongly converged ensemble is381

representative of the best possible solution, with little variance among the analysis members382

inside the observed storms.383

b. Influence of length scales on assimilation results384

In Section 2f and Table 1, the different length scales employed in the schemes L8SO385

– L32SOCG20 are specified. Here, the assimilation results of the various experiments are386

evaluated in comparison to the reference experiment L8 (Section 3a).387

First, the effect of increasing only the localization radius is considered (step i in the exper-388

imental hierarchy of Section 2f), by comparing L8 to L32, where the horizontal localization389

rLoc,h is changed from 8 km to 32 km. In L32, the storms in the analysis ensemble mean390

do not converge well onto the observations. This is clearly visible in the plots of the last391

analysis ensemble mean in Figs. 3, 4 and 5. The mean reflectivity field is much weaker than392

the nature run, as is the cold pool intensity. These results are typical of the five repetitions393

of the experiment although the fields differ in detail. The RMSE of the L32 ensemble mean394

(Fig. 10) shows very poor performance for U , W and QR. For T , the ensemble mean of395

L32 is strongly degraded by every analysis cycle and is even worse than the free error level.396

These deficiencies indicate that the number of 50 ensemble members is too small in L32: for397

every local analysis, 4 times the number of full-scale (∆xobs = 2 km) observations must be398
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fitted by the LETKF, in comparison to L8. As a result, the spread of L32 decreases, leading399

to a very poor consistency ratio for all variables (not shown).400

Second, the change in horizontal observation resolution ∆xobs from 2 to 8 km (step ii:401

superobservations SO) is evaluated by comparing L8SO to L8, and L32SO to L32. In L8SO,402

the analysis field of reflectivity appears more spotty (Fig. 3) than in L8. In single members403

of L8SO in Fig. 11, the inner storm core is somewhat broken up and spurious convective cells404

exist in many locations. The superobservations are obtained by coarse-graining horizontally405

onto 4x4 blocks, so that fine-scale errors are obscured and are not penalized appropriately406

in the analysis. This is evident in the worse RMSE of W and QR of L8SO compared to407

L8 (Fig. 10). For U and T , L8SO does not perform much worse than L8, indicating that408

less horizontal information is needed for a reasonable analysis of the horizontally smoother409

variables U and T . It is perhaps surprising that in L8SO the filter does not diverge although410

there is very little overlap in the solution of adjacent local analyses.411

In L32SO, the same horizontal number of observations per local analysis is available as412

in L8, but with a coarser observation resolution of 8 km. Indeed, the analysis ensemble of413

L32SO is now able to converge towards the superobservations, in contrast to L32 (Fig. 10),414

albeit with less precision in the small scales than L8. This can be seen comparing Fig. 3 and415

Fig. 12, which shows L32SOCG as a proxy for L32SO.416

In the third set of experiments, the LETKF computations are performed on an analysis417

grid with a horizontal resolution decreased from ∆xana = 2 km to 8 km (step iii: coarse418

analysis grid CG). The resulting field of local analysis weights wa(i) is then interpolated onto419

the model grid. Using ∆xobs = 8 km (SO) in combination with ∆xana = 8 km (SOCG),420

the analyses of the SOCG-experiments are computed at the same horizontal scale where421

the observations are available. The full-resolution covariances in model space sampled from422

the background ensemble are still used for the analysis ensemble. Comparing the ensemble423

mean field plots of L8SOCG to L8SO and L32SOCG to L32SO, the change from SO to424

SOCG appears insignificant. The RMSE shown in Fig. 10 shows little influence of the coarse425
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grid method in both L32SO(CG) and L8SO(CG). This indicates that the fields of wa(i)
426

are smooth enough to be accurately represented on the coarse grid (although the setup of427

L8SO and L8SOCG could not be recommended for actual usage due to the lack of horizontal428

overlap between local analysis regions).429

Finally, the interval between the cycling steps is increased from 5 to 20 minutes (step430

iv: 20 minutes). In L8SOCG20, this less frequent introduction of observation information431

leads to strong deterioration in the analysis mean solution of storm positions and cold pools432

(Figs. 3 and 4) and the RMSEs are significantly worse than for L8SOCG (Fig. 10).433

In L32SOCG, the lowest spatial resolution of observations and analysis is reached, and434

L32SOCG20 additionally lowers the temporal resolution. As for the L8SOCG20 experiment435

the precision of the analysis mean is degraded (Fig. 10). In Fig. 12, the analysis members436

of L32SOCG show a much larger spatial variability of the storm field than L8 (Fig. 7). This437

variability is even larger with L32SOCG20 (Fig. 13). Fig. 8 compares the distributions of438

W and Refl of the analysis ensembles of L32SOCG and L32SOCG20 to analysis ensemble439

L8, at subsets of points inside the nature run’s storms. Fig. 8b shows that the analysis440

distribution of L32SOCG is broader than L8 and includes values of zero reflectivity. This441

is even more evident for L32SOCG20 where many non-precipitating points are present, and442

the values of precipitating points are distributed broadly around the observed value. This443

behavior is closely coupled to the non-observed W -updrafts in Fig. 8a where L32SOCG and444

L32SOCG20 show a more climatological distribution than the closely converged L8, where445

climatology is defined here by the frequency distribution of rainy grid points in the nature446

runs (cf. Fig. 2).447

The RMSE of the L32SOCG20 analysis mean of W (Fig. 10) is larger than that of the448

free ensemble and it shows that the ensemble mean of L32SOCG20 has converged towards449

a solution where the mean updrafts cores are displaced with respect to the nature run (cf.450

Figs. 3, 13). This large RMSE of W is therefore associated with a doubly penalty, in contrast451

to the error of the free ensemble, where the randomly-placed convective updrafts contribute452
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no strong features to the ensemble mean. Despite the larger RMSE, the consistency ratio of453

L32SOCG20 and L8 in W at 17 UTC is CG ≈ 0.2 inside the storms (cf. W in Fig. 10), so454

both the finest and the coarsest experiment have converged to a comparable degree on the455

updrafts of the nature run.456

Before the forecast results are presented in the next section, we look briefly in Fig. 14457

at the mean RMSE of the individual ensemble members with respect to the nature run, as458

defined in (7). Although the single members are not themselves the solution of the LETKF459

(which is the ensemble mean and analysis perturbations from the mean), RMSEmem can460

tell us about the deviations of the single members from the truth. It is remarkable that461

RMSEmem for U and T is the lowest in L32SOCG20, and for W and QR it is well within462

the range of other experiments, compared to Fig. 10. For U and T , this property indicates463

that horizontally smooth fields such as U and T are sensitive to the introduction of noise464

by the filter-increments (Greybush et al. 2011; Holland and Wang 2013), especially for T ,465

where the error of the “low-information” experiment L8SOCG20 is also smaller than for466

other experiments.467

This introduction of noise is also evident in the vertical wind field in Fig. 5 in the form of468

spurious gravity waves, where the W -field of L32SOCG20 in locations of updrafts appears469

smoother than in all other experiments, and outside the storms is much less tainted by470

gravity wave noise (compared to the nature run), especially those with ∆tass = 5 min.471

4. Ensemble forecasts from analyses with different length472

scales473

The main goal of this paper is to evaluate the influence of the spacial scale of ensemble474

perturbations on the quality of convective ensemble forecasts, and to assess how the benefits475

of a high-resolution analysis are limited by the predictability of the atmospheric system.476

As described before, after the 3 hours of cycled LETKF-assimilation, ensemble forecasts477
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with a leadtime of 3 hours are run from 17 to 20 UTC for all experiments. This section478

will focus on the forecast results of L8, L32SOCG and L32SOCG20, which exemplify the479

differences between fine and coarse resolution LETKF analyses.480

a. Forecast fields and RMS Error481

For U and T , the RMSE of the forecast ensemble mean (Fig. 10) grows similarly slowly482

for all experiments, aside from the badly converged L32. The RMSE of the forecast ensemble483

mean is generally larger for the L32-experiments than for the L8-experiments, but appears484

to converge towards the end of the forecast window.485

For W and QR, the RMSE of the L8 forecast ensemble mean increases from a low error486

to the free error level within the 3 hours from 17 to 20 UTC (Fig. 10). The RMSEs of487

L32SOCG and L32SOCG20 also converge towards the free error level, but from a larger488

(and for L32SOCG20 doubly penalized) inital error at 17 UTC. As large values of W and489

QR are present mainly within convective cell cores, the convergence to the uncorrelated free490

ensemble error level in Fig. 10 indicates that W and QR become smoother in the ensemble491

mean, becoming similar to the very smooth free ensemble mean fields of W and QR due to492

the random position of the free storms. This smoothing can be seen directly in Fig. 15 for493

the mean forecast composite reflectivity, in Fig. 16 for T and in Fig. 17 for W . The forecast494

ensemble mean reflectivity field, in particular, resembles a smoothed probability map of the495

nature run’s storm position. For W and Refl, the analysis ensembles of L8, L32SOCG and496

L32SOCG20 had different initial distributions of values (Fig. 8) inside the nature run’s storm497

locations, with the values for L8 narrowly distributed around the observation. However, after498

3 hours (Fig. 18), the distributions of W and Refl from the three forecast ensembles are499

indistinguishable and similar to the climatology of the simulated convective regime.500

The RMSEmem values of the members in Fig. 14 grow similarly slowly for U and T to501

the RMSE of the ensemble mean for all experiments. However, the RMSEmem of W and502

QR overshoots the free error level for all experiments except L32SOCG20. The free error503
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level here, in contrast to error of the ensemble mean in Fig. 10, is strongly penalized due504

to the random storm positions in the single free members. The overshooting RMSEmem of505

the forecasts of L8 compared to L32SOCG indicates a strong double penalty for the forecast506

updrafts. In Fig. 19, a snapshot of a 1 hour forecast of L8 is displayed. It can be seen that507

spurious convection arises in the L8 forecast members outside of the true storm position of the508

nature run. Within the region of stratiform precipitation, the positions of the active parts of509

the updraft have diverged very strongly. Such spurious development was found in almost all510

experiments (L8SO – L32SOCG, not shown) and has been observed in previous studies (cf.511

Fig 3 of Aksoy et al. (2010)). In L32SOCG20 however, almost no spurious convection is seen512

in the 1 hour forecast outside of the organized convective system (Fig. 20). This indicates513

that the the analysis states of L32SOCG20 are internally consistent although the members514

had not converged closely to the observations, whereas the strongly converged analysis of L8515

is not well handled by the model dynamics and is probably unbalanced in some sense.516

b. Spatial forecast verification methods517

To supplement the visible and the RMSE forecast evaluation of the volume fields, two518

spatial verification measures for QPFs are chosen to compare the forecast rain fields to the519

nature run. The composite reflectivity field is used here because high reflectivity is usually520

accompanied with strong precipitation and winds – the essential threats to be predicted by521

a convective storm forecast. Where needed, the observation field of the nature run is masked522

to values above a threshold of 10 dBZ to separate the storms and overlapping anvils for523

object identification.524

The Displacement and Amplitude Score DAS (Keil and Craig 2009) uses a pyramidal525

matching algorithm to compare two fields by an optical flow technique. A vector field is526

computed that morphs the forecast onto the reference field and vice versa, using a maximum527

search radius of 45 km here. The average magnitude of the displacement vector field, nor-528

malized by maximum search radius, defines the DIS-component of the DAS-score, displayed529
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in Fig. 21.530

The SAL-score (Wernli et al. 2008) compares statistical properties of thresholded rain-531

objects. The structure or S-component indicates whether the forecast objects are smoother532

and broader than the observations (S > 0) or spikier (S < 0), with S = 0 indicating the correct533

structure. Only average object properties are compared rather than matching individual534

objects, so SAL-S is independent of location errors and biases (Fig. 22a). The amplitude or535

SAL-A-component (Fig. 22b) compares the domain-wide total reflectivity (not thresholded)536

between forecast and observation and thus displays the overall bias. The SAL-L-component537

(Fig. 22c) determines the location error by measuring the horizontal deviation of the centroid538

of the forecast reflectivity field from the centroid of the observations. Without matching539

objects, the curves of the location error SAL-L are therefore less continuous than the DIS-540

score. This is a consequence of the small sample of five random cases which is used in this541

study.542

c. Spatial forecast verification results543

The DIS-score in Fig. 21 shows that after the 3 hours of assimilation, the reference ex-544

periment L8 has the lowest position error for the reflectivity field. The L8 experiments with545

superobservations suffer from the low SO-observation resolution and the small overlap, so546

the L8SOx experiments are disregarded here. The L32-experiments however appear com-547

parable. In the first 30 minutes of the ensemble forecast, the DIS displacement error of548

the L8-members grows rapidly and exceeds L32SOCG20, then saturates. The DIS of the549

L32SOCG20-members grows slowly and converges with L8, L32SO and L32SOCG towards550

the end of the forecast window. This finding corroberates the results of the the RMSEmem551

of QR and W in Fig. 14 which showed the influence of spurious storms in the forecast (cf.552

Figs. 19 and 20).553

The rapid displacement error growth of the L8 members is also displayed by the SAL-554

score: In the first 30 minutes of the ensemble forecast, the bias SAL-A of L8 increases,555
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the location error SAL-L of L8 grows strongly, and the structure SAL-S of L8 decreases to556

negative values associated with spikier objects. This means that during this first half hour557

additional small and mislocated convective cells are triggered in L8: additional because the558

bias SAL-A increases, small because SAL-S decreases, and mislocated because they increase559

the location error SAL-L (DIS). In contrast, none of this appears to happen in the experiment560

L32SOCG20 which has the coarsest analysis properties.561

d. “Balance” of initial states562

The development of spurious updraft cores in L8 – L32SOCG suggests that the states563

of the analysis ensemble members are in some way inconsistent with the forecast model564

dynamics. In Fig. 5, it is apparent that all analyses except that of L32SOCG20 have fine-565

scale gravity wave noise present in the W variable that is not found in the nature run. While566

it is not expected that convective forecasts are close to geostrophic balance, the apparent567

excess of free gravity waves suggests the initial states for the ensemble forecasts may suffer568

from a similar “dynamical imbalance”, caused by noisy analysis increments of the LETKF.569

In Fig. 23, the surface pressure tendencies of L8, L32SOCG and L32SOCG20 during the first570

20 minutes after 17 UTC are plotted as an indicator of possible imbalance (Greybush et al.571

2011). The initial pressure tendencies in L8 are substantially larger than for the large-scale572

analyses until timestep 25 (= 5 minutes), which is also the cycling interval of all experiments573

except L8SOCG20 and L32SOCG20.574

5. Summary of results575

The aim of this study on convective scale data assimilation was to assess how errors grow576

in 3-hour ensemble forecasts from analysis ensembles with precision on differing length scales.577

Data assimilation of long-lived and organized convective systems was performed under the578

assumption of a perfect model in order to focus on the intrinsic predictability of the storm579
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systems. An LETKF system with 50 members was used in an idealized OSSE testbed580

with simulated Doppler radar observations of reflectivity and radial wind. The reference581

and ensemble storms were triggered randomly in the convection-permitting COSMO-model582

with ∆xmodel = 2 km, using radiative forcing and initial small-amplitude random noise in a583

horizontally homogeneous environment with periodic boundary conditions. The nature run584

and the ensemble all used the same model with the same horizontal resolution and the same585

initial sounding.586

a. Assimilation schemes with different length scales587

A reference experiment L8 was set up to reproduce the typical behavior of a convective588

EnKF DA system. Assimilation schemes were devised in which the localization radius of589

the observation error covariance matrix R was increased from 8 to 32 km (L8 and L32), the590

observation resolution was coarsened from 2 to 8 km as superobservations (SO), the analysis591

grid resolution of the LETKF was coarsened (CG) from 2 to 8 km, and the assimilation592

interval was increased from 5 to 20 minutes.593

The background and analysis ensembles of each of the experiments succeeded in converg-594

ing towards the observations, with the exception of L32 which suffered from undersampling595

due to the large localization radius in combination with full-resolution observations. The596

analyses of L8 had the lowest RMSE and displacement errors after 3 hours of cycling. The597

introduction of superobservations made the analyses of the L8SO-experiments less precise598

than L8 while enabling the L32SO-experiments to converge properly. Using a coarser anal-599

ysis grid (CG experiments) in the SO-experiments made no significant difference, because600

the analysis computation was merely performed on the same coarse horizontal scale as the601

observations. An increased cycling interval of 20 minutes degraded the precision of the anal-602

yses, but resulted in less spurious gravity wave noise in the members through less frequent603

introduction of analysis increments. It was found that the spatially and temporally coars-604

ened observation information in L32SOCG and L32SOCG20 rendered their filter solutions605
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much less Gaussian than L8. The point-value distributions of these solutions were closer to606

the climatology of the simulated convective regime.607

b. Ensemble forecasts from analyses with different scales608

In the ensemble quantitative precipitation forecasts (QPF), the displacement error of609

the storms was measured by the object-based and field-based scores DAS and SAL. During610

the first hour, forecasts from the reference experiment L8 were clearly superior to those611

of the coarser schemes in terms of storm positions and internal structure. This advantage612

was lost in as little as half an hour of forecast lead time through the rapid error growth613

of small perturbations and the emergence of spurious convective cells. The coarsest scheme614

L32SOCG20 with large perturbations had much slower error growth and fewer spurious cells.615

c. Imbalance and limited predictability616

Inspection of the forecast fields suggested that rapid growth of spurious convective cells617

occurred in LETKF configurations where the analysis showed small-scale gravity wave noise.618

Surface pressure tendencies at the start of the free forecast were therefore evaluated for619

indications of dynamical imbalance introduced by the analysis increments. The smaller620

initial pressure tendencies in the L32SOCG20 experiment in comparison with L8 suggest621

less imbalance, although the analysis errors are larger in the coarse resolution experiment.622

The L32SOCG20 experiment also featured slower initial growth rates of RMSE. This was623

not caused by a need to spin up small scale motions since the analysis ensemble was always624

constructed from the full resolution background ensemble. Rather, the rapid error growth625

in L8 was associated with the appearance of small-scale spurious convective cells which626

may have been triggered by spurious gravity wave noise from the high resolution analysis627

increments as noted previously. As this noise was also present in clear air regions around the628

observed storms, the possiblity of triggering spurious convection by interfering gravity waves629
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(Hohenegger and Schär 2007) cannot be ruled out. The lower noise level of the experiments630

with a 20 minute cycling interval agrees with experiences in operational convective data631

assimilation (Seity et al. 2010). A hypothetical better data assimilation scheme that did not632

introduce spurious imbalance might have slower initial error growth than the L8 results here,633

but it is unlikely that the results would would be better than those of a coarser resolution634

analysis after 1-2 hours since some rapid development of new convective cores is seen in all635

configurations and the perturbations of the L32SOCG20 updraft positions from the analysis636

are already larger than coarse observation scale of 8 km within the first forecast hour.637

6. Discussion and Outlook638

a. On the methods used in this study639

The forecast results displayed the limited predictability of the dynamics in large convec-640

tive systems. In previous twin-experiment studies on error growth (Zhang et al. 2003, 2007;641

Hohenegger and Schär 2007; Done et al. 2012), uncorrelated noise with very small amplitude642

was used, which does not disrupt the model dynamics as the LETKF ensemble perturbations643

do. This study should therefore be seen in the tradition of predictability studies that used644

perturbations created by data assimilation systems (Kuhl et al. 2007; Aksoy et al. 2010;645

Craig et al. 2012).646

One feature of the experiments of this paper is that the linear combinations of ensemble647

members wa(i) are computed by the LETKF on different scales only in the transformed648

ensemble perturbation space, but the final analysis increments are added in the physical649

space and therefore contain also the smallest scales, as they are sampled from the full-650

resolution background ensemble members. An alternative approach would be coarsen not651

only the input-parameters of the LETKF-system are spatially coarsened but also the physical652

solution of the algorithm, in order to update larger physical scales only and leave the fine653

scales untouched. For example, Gao and Xue (2008) computed ensemble covariances from a654
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background ensemble with 4 km horizontal resolution in an Ensemble Square Root Filter to655

update an analysis state of a 1 km resolution model. To mimic this for the present LETKF656

study, one could i) coarse-grain the background ensemble for the LETKF, ii) compute the657

analysis weights on this coarse scale and iii) apply the analysis update in physical space on658

the coarse scales only1. This might also reduce the imbalances that are introduced by the659

filter, and take into account that the effective resolution of numerical models is much lower660

than the grid-spacing implies (Skamarock 2004). A digital filter initalization (DFI) (Lynch661

and Huang 1992) could be helpful to reduce the initial gravity wave noise of the ensemble662

forecasts (Whitaker et al. 2008), although DFI might be problematic for a non-hydrostatic663

model as used here wherein the analysis states contain gravity wave motion explicitly.664

As a general remark, the spatial and temporal predictability depends on the model reso-665

lution, the model physics and the type of long-lived storm that is simulated. A resolution of666

2 km is not sufficient to simulate storm-internal variance on the scale of single plumes. These667

become addressable with horizontal resolutions of 250 m and less (Bryan and Morisson 2012;668

Craig and Dörnbrack 2008). Using such a model that is able to resolve three-dimensional669

turbulence, an even finer assimilation scheme could be applied to further investigate the670

limits of predictability. In addition, using a different environmental sounding could result671

in different convective modes, such as mesocyclones, multicell storms and linear squall lines,672

and the predictability limit will probably be influenced by the degree of storm-internal or-673

ganization (Lilly 1990; Aksoy et al. 2010). The quantitative time limit found in this study674

is specific to the atmospheric model configuration and the data assimilation algorithm used675

here and should not be generalized.676

b. Idealized vs. operational convective data assimilation677

The present study adressed the limitation of intrinsic convective predictability, assuming678

a perfect model. In the current convective DA systems (e.g. KENDA), model error may well679

1This idea was discussed in personal communication with Chris Snyder.
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be the largest factor limiting the practical predictability in convective QPF. In real world680

experiments, it may also happen that the radar DA tries to converge the analysis members681

towards convective modes that are not supported by the model physics and the predicted682

sounding (Stensrud and Gao 2010; Aksoy et al. 2010). On the other hand, in an operational683

model the predictability of convective system may be enhanced by effects of synoptic and684

orographic forcing (Hohenegger and Schär 2007; Craig et al. 2012).685

c. Outlook686

The results of this study showed that the impact of high resolution information in687

convective-scale data assimilation is limited by the intrinsic predictability of the flow to688

a time interval of a few hours at most, and probably also by the balance and noise prop-689

erties of the initial states generated by the LETKF. These could potentially be mitigated690

through a priori constraints (Janjić et al. 2013) or post-processing like DFI. The observa-691

tion error covariance matrix (Desroziers et al. 2005) is also likely to affect convergence and692

balance properties of the solution – choosing a larger observation error than actually added693

to the synthetic observations may result in less convergence but also in more compatible694

model states, as preliminary experiments (not shown) indicated. Another related issue is695

the initial ensemble generation for the filter. The random storms used here lead to large696

analysis increments in the first couple of cycles, which is likely to have detrimental effects697

on the dynamics (Lien et al. 2013; Kalnay and Yang 2010). Methods that accelerate the698

convergence of the filter, such as Running-In-Place, could also lead to more consistent states699

by the end of analysis period. However, it is not clear how successful these methods would700

be for convective-scale data assimilation, where the notions of “balanced” or “consistent”701

states cannot yet be precisely defined or measured.702

A final issue is the difficultly of assimilating observations of precipitation due to their703

non-Gaussian climatological distribution, making the suppression of spurious convection in-704

sufficient because (a) the background distribution of convection is typically intermittent and705
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therefore non-Gaussian and (b) there is no “negative rain” to assimilate in unaltered obser-706

vations (Craig and Würsch 2012). A Gaussian anamorphosis of precipitation observations707

could help here to fulfill the Gaussian assumptions of the EnKF (Simon and Bertino 2009;708

Bocquet et al. 2010; Lien et al. 2013), also on the convective scales.709
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List of Tables872

1 Length scales used in the assimilation experiments, as described in Section 2.873

rLoc,h is the cutoff length of the horizontal covariance localization function,874

∆xobs is the horizontal resolution of observations, ∆xana is the horizontal875

resolution of the analysis grid, ∆tass is the assimilation interval between two876

subsequent analyses. 38877
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Table 1. Length scales used in the assimilation experiments, as described in Section 2.
rLoc,h is the cutoff length of the horizontal covariance localization function, ∆xobs is the
horizontal resolution of observations, ∆xana is the horizontal resolution of the analysis grid,
∆tass is the assimilation interval between two subsequent analyses.

rLoc,h ∆xobs ∆xana ∆tass
(km) (km) (km) (min)

L8 8 2 2 5
L8SO 8 8 2 5
L8SOCG 8 8 8 5
L8SOCG20 8 8 8 20

L32 32 2 2 5
L32SO 32 8 2 5
L32SOCG 32 8 8 5
L32SOCG20 32 8 8 20
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Fig. 1. Time-series for the Nature Run (averaged over five realizations): Domain-average of
the composite reflectivity in dBZ (solid), together with average horizontal (dash-dotted) and
maximum (dashed) size of the rain-objects, thresholded to > 10 dBZ. Assimilation window
is between 14 and 17 UTC (shaded dark gray), forecast window is between 17 and 20 UTC
(shaded light grey). Variation of the object-sizes can be due to merger of anvils of separate
convective systems.
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Fig. 2. Snapshots of composite reflectivity from Nature Run 03.
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Fig. 3. Composite Reflectivity of Nature Run 03 (cf. Fig. 2 at 17 UTC) and of the
corresponding Analysis Ensemble Means of the different scale-experiments at the last
analysis time 17 UTC.
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Fig. 4. As Fig. 3, but showing the temperature T at z = 150 m.
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Fig. 5. As Fig. 3, but showing the vertical velocity W at z = 3500 m.
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Fig. 6. RMSE and spread of the ensemble mean of L8 through the assimilation (14-17
UTC) and forecast (17-20 UTC) phases of the experiment, with gray shading indicating the
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without any assimilation. All gridpoints are evaluated. The error values are averaged over
five repetitions of the experiment.
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Fig. 7. Composite reflectivity of Nature Run 03 (cutout of the domain in Fig. 2) and
Analysis Ensemble Members 1,13,25,37,50 of L8 at the last assimilation time 17 UTC
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49



14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

m
/s

U

14 15 16 17 18 19 20
0

1

2

3

4

5

6

m
/s

V

14 15 16 17 18 19 20
0.0

0.5

1.0

1.5

2.0

2.5

m
/s

W

14 15 16 17 18 19 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

K

T

14 15 16 17 18 19 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
a

PP

14 15 16 17 18 19 20
0

5

10

15

20

25

30

d
B

Z

Refl

14 15 16 17 18 19 20
0

2

4

6

8

10

12

14

16

10
−

4
kg

/k
g

QV

14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

10
−

5
kg

/k
g

QC

14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

10
−

5
kg

/k
g

QR

14 15 16 17 18 19 20
Hours

0

2

4

6

8

10

12

10
−

5
kg

/k
g

QI

14 15 16 17 18 19 20
Hours

0

5

10

15

20

25

30

10
−

5
kg

/k
g

QS

14 15 16 17 18 19 20
Hours

0

2

4

6

8

10

12

14

16

18

10
−

4
kg

/k
g

QG

RMSE of L8 Ensemble Mean (Nature > 5 dBZ)
Spread of L8 Ensemble Mean (Nature > 5 dBZ)

RMSE of Free Ensemble Mean (Nature > 5 dBZ)
RMSE of Free Ensemble Mean (Nature > 5 dBZ)

Fig. 9. As Fig. 6, but only the subset of gridpoints is evaluated where the volume reflectivity
of the Nature Run exceededs the observation threshold of 5 dBZ.
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Fig. 10. As Fig. 6, but now showing RMSE of the ensemble means for all experiments
(spread not shown). All gridpoints are evaluated. The error values are averaged over five
repetitions of the experiments.
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Fig. 11. As Fig. 7, but for L8SO.
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Fig. 12. As Fig. 7, but for L32SOCG.
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Fig. 13. As Fig. 7, but for L32SOCG20.
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Fig. 14. As Fig. 10, but showing the mean RMSE of the individual ensemble members of
all experiments (see equation (7)).
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Fig. 15. As Fig. 3, but showing Composite Reflectivity of Nature Run 03 (cf. Fig. 2 at 20
UTC), and the Forecast Ensemble Means of the different scale-experiments at 20 UTC,
after 3 hours of ensemble forecast.
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Fig. 16. As Fig. 15, but showing the temperature T at z = 150 m.
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Fig. 17. As Fig. 15, but showing the vertical velocity W at z = 3500 m.
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Fig. 18. As Fig. 8, but for the forecast ensemble-members at 20 UTC after 3 hours of
ensemble forecast (cf. Figs. 15 and 17)
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Fig. 19. Composite reflectivity of Nature Run 03 (cutout of the domain) and Forecast
Ensemble Members 1,13,25,37,50 of L8 at 18 after 1 hour of forecast.
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Fig. 20. As Fig. 19, but for L32SOCG20.
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Fig. 21. DIS-component of the DAS-score applied to the Composite Reflectivity field thresh-
olded by 10 dBZ. Displayed is the mean DIS-score of the ensemble members of all exper-
iments, with the Nature Run as reference. The score is averaged over the five random
repetitions of all experiments. (A value of DIS = 0 is a perfect match.)
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Fig. 22. SAL score components S, A and L for all experiments, with the Nature Run as
reference (see text). The scored field is the Composite Reflectivity, the scores are averaged
over the five random repetitions of all experiments.
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Fig. 23. Surface pressure tendencies dps/dt (domainwide maximum) of the first member
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