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ABSTRACT5

The Deutscher Wetterdienst (DWD) is developing an implementation of the Local Ensemble6

Transform Kalman Filter (LETKF) for the cloud resolving COSMO model. This study7

shows in an idealized convective testbed that the LETKF is able to perform storm-scale8

Data Assimilation of simulated Doppler radar observations.9

Perfect model experiments are used to investigate how the limited predictability of con-10

vective storms affects precipitation forecasts by comparing a fine scheme with low analysis11

error to a coarse scheme that allows variance regarding position, shape and occurence of12

storms in the ensemble. To get there, the coarse scheme uses averaged superobservations13

and a coarser evaluation of the analysis weights, a larger localization radius and a weaker14

Gaussian constraint on the analysis solution. Performing 3-hour forecasts of convective sys-15

tems with typical lifetimes exceeding 6 hours, forecasts from the detailed analyses of the16

fine scheme are found to be advantageous to those of the coarse scheme during the first 1-217

hours, regarding the predicted storm positions. After 3 hours in the convective regime used18

here, the forecast quality of the different schemes appears indiscernible, judging by RMSE19

and verification methods for rain-fields and objects.20

It is concluded that, for operational assimilation systems, the analysis might not neces-21

sarily need to be detailed on the grid scale of the model. Depending on the forecast lead22

time, and on the presence of orographic or synoptic forcings that enhance the predictability23

of storm occurences, analyses from a coarser scheme might suffice. As a positive side-effect,24

the computational cost of the Kalman Filter solution can be reduced strongly.25
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1. Introduction26

In the last decade, Data Assimilation (DA) of Doppler radar observations using an En-27

semble Kalman Filter (EnKF) (Evensen 1994; Houtekamer and Mitchell 1998) has been28

explored to be a feasible method to obtain suitable initial states of convective storms for29

very short-range ensemble forecasts. As Stensrud et al. (2009) note, a goal of convective DA30

is to be competitive to nowcast-warning systems that have generally been superior to model31

forecasts without data assimilation for at least the first three hours of leadtime (Kober et al.32

2012).33

Previous studies that used radar data in an EnKF focused on storm-analyses that apply34

relatively small scales of ∼ 10 km for the covariance localization and converge the analysis35

ensemble closely towards the observations, pursuing the goal of obtaining initial states with36

low errors as the basis of their ensemble forecasts. This study tries to asses the performance37

of that converging approach, as it is costly and and may be of limited value due to the38

short predictability of convection in the chaotic atmospheric system where small errors grow39

rapidly (Lorenz 1969; Lilly 1990). The framework of the Local Ensemble Transform Kalman40

Filter (LETKF) (Hunt et al. 2007) is used here in an idealized setup of the nonhydrostatic41

COSMO model (Baldauf et al. 2011) with severe and long lived convection.42

In contrast to the converging approach, the alternative of a coarse assimilation scheme43

is proposed which is cheaper to compute and focuses less on the small-scale convergence of44

the analysis ensemble; variance and errors of the analysis should be allowed that are larger45

in scale and amplitude. For lead times of a few hours, after the strongly nonlinear growth of46

small errors has saturated (Zhang et al. 2003), this coarse scheme may not be subject to much47

penalty in forecast accuracy in comparison to a fine and converged scheme. Secondly, the48

coarse scheme with its larger variance may avoid dynamical imbalances caused by analysis49

increments than can arise when the member states of the localized analyses are rigorously50

converged (Greybush et al. 2011).51

The sections of the introduction below are devoted to the problems of converging analyses52
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and limited predictability and how they could be adressed using assimilation schemes of53

different precision. Finally, the setup for the numerical experiments is laid out.54

a. Converged storm analyses in previous studies55

The main observation types in convective EnKF are reflectivity and radial Doppler56

wind. All studies on this topic mentioned here used the EnSRF-algorithm (Houtekamer57

and Mitchell 2001) or a similar algorithm that localizes the background error covariance58

matrix Pb, provided by a background ensemble of 50-100 members, to increase the effec-59

tive sample size. In their first OSSE study on convective EnKF, Snyder and Zhang (2003)60

identified spurious storms in the members to be detrimental to the analysis solution. Tong61

and Xue (2005) were able to suppress spurious storms by assimilating observations of no-62

reflectivity outside the observed storms; their positive results were confirmed in the real data63

cases of Aksoy et al. (2009, 2010). As the ensemble mean is the solution that minimizes the64

cost function of the Kalman Filter, most studies focused on the improvement of this mean65

solution. The non-Gaussian and multimodal distribution of the observed dynamical systems66

(Dance 2004) forces the probability distribution of the resulting analyses, constrained to be67

Gaussian by the filter, to have a deficient amount of variance. A common solution for this68

is the inflation of the background error covariance, preferably adaptive to the respective69

situation (Anderson 2008). For real observations, Dowell and Wicker (2009) and Dawson70

et al. (2012) added noise during the assimilation inside the observed storms and Aksoy et al.71

(2009) perturbed the vertical wind profile. Both methods resulted in better analyses with72

a more consistent variance. Wang et al. (2012) applied the “Running in Place”-method of73

Kalnay and Yang (2010) on convective EnKF experiments, resulting in a better spin-up of74

the storms and a generally lower error level.75

Using a Gaussian-like correlation function for the localization (Gaspari and Cohn 1999),76

all studies agreed on the usage of a small localization cutoff radius between 4 and 12 km,77

depending on the spatial stage of the storm development (Sobash and Stensrud 2013) and78
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assumed an observation error of approximately 5 dBZ for (no-)reflectivity and 1 m s−1 for79

wind observations in the observation error covariance matrix R. The resulting precise storm-80

analyses without spurious convection are hereby referred to as “converged” or “fine” analysis81

ensembles because all members essentially agree on position and shape of the observed82

storms.83

b. Limited predictability of convective storms84

Lilly (1990) and Skamarock (2004) estimated the predictability of mesoscale convective85

systems to be in the range of tens of minutes to 1 hour before the upscale error growth (Lorenz86

1969) taints the forecast completely. Zhang et al. (2003), Hohenegger and Schär (2007)87

and Done et al. (2012) compared randomly perturbed forecasts of organized convection to88

unperturbed reference runs. They found small-scale perturbations to grow very quickly89

and nonlinearly, reaching a growth-saturation at 3-6 hours. The specific predictability limit90

in these studies depended on the presence of a large scale forcing that predetermined the91

occurence of convection spatially and modally. Craig et al. (2012) used perturbations from92

a Latent Heat Nudging assimilation scheme for convective storm forecasts and concluded93

a lower predictability for convection in regimes without synoptic forcing where the storms94

positions are mostly random.95

c. Fine and coarse assimilation schemes96

Taking the limited predictability of convection into account, and the fact that forecast97

products of local models are usually disseminated with lead times > 3 h, the benefits of the98

fine and converging approach of the previous studies on convective EnKF may not justify99

the cost: A coarse and less converged analysis ensemble could provide equally good forecasts100

because small perturbations grow quicker than large-scale disturbances (Lorenz 1969). As101

in Kuhl et al. (2007), the deviations of the analysis members from the reference run are102
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regarded here as the perturbations which grow during the forecast.103

In this paper, a fine and a coarse assimilation scheme are described. The aim of the fine104

scheme is to reproduce the converging ensemble behavior of the previous studies mentioned105

in Section 1a. The fine analysis localizes the covariances on a scale of a few kilometers and106

uses high resolution observations. It will therefore contain observed details on the smallest107

resolved scales of the model grid – which is smaller than the “effective resolution” of the108

model (Skamarock 2004) where the numerical solution of the equations can be considered109

accurate. The LETKF-algorithm used here localizes in the observation space, so it will be of110

interest if the results are comparable to those studies that localize the background covariance111

in model space. In constrast, the coarse scheme is configured to have perturbations that are112

larger with respect to scale, amplitude and horizontal positions of the updraft cores and are113

thus subject to a slower error growth (Lorenz 1969). It is based on the fine scheme and uses a114

scaling factor of 4 for most of the assimilation parameters: (i) a larger horizontal localization115

radius is applied, (ii) coarsened superobservations are used that provide information only116

on this larger scale and (iii) the local analysis weights of the LETKF are computed on117

a coarse grid and then spatially interpolated. The latter method deprives the analysis of118

some precision but allows the linear combination of the analysis members to vary more119

smoothly (Yang et al. 2009). The experiments in both the fine and the coarse scheme will120

show that it is also necessary to (iv) adjust R by inflating it in order to attenuate the121

rigorous convergence towards the observations, as the application of an untreated R results122

in noisy and imbalanced analysis member states that exhibit poor physical resemblance to123

the reference run.124

Applying (i)-(iv) should allow states in the coarse analysis that are more consistent125

with the model physics because larger horizontal portions of background member storms126

are contained in the analysis member storms. As a technical benefit, the lower number of127

observations and the lower analysis resolution result in a significant computational accelera-128

tion of the analysis. Attributing the superobservations with less weight in the analysis using129
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method (iv) will push the members less rigorously towards the observations by analysis in-130

crements (cf. Fig 1). This aims for a multimodal posterior distribution containing variance131

not only storm-internally but also with respect to the occurence of storms themselves, with132

the eventuality of spurious convection. These properties define the “non-converged”, coarse133

assimilation scheme.134

In addition to the convergence properties of the two experiments, other issues that are135

caused by the localized analysis of non-observed variables, such as a cold bias of the tem-136

perature variable, are explored.137

d. Numerical experiments138

The experiments are performed in a perfect model environment to focus solely on the139

predictability of the dynamics, excluding effects of model error. Simulated radar observations140

are drawn from a nature run that contains organized convective systems with lifetimes over141

six hours. A cycled assimilation covers a time-span of three hours, followed by three hours of142

ensemble forecast. For all experiments, the EnKF will be challenged by a convective ensemble143

that is spun up from random initial noise and therefore lacks any prior knowledge about144

the position of the observed storms in the nature run. This “bad background” makes the145

convergence of the ensemble challenging for the filter, but it is free from possibly beneficial146

influence e.g. of convective triggers that are introduced outside the EnKF algorithm at147

predetermined locations (Aksoy et al. 2009, 2010).148

The 3-hour forecasts from both schemes are evaluated using the RMSE of the states149

together with object- and field-based forecast skill scores to evaluate how quickly the advan-150

tage of a fine analysis state is lost in the forecast with respect to the coarse analysis, due to151

the limited predictability.152
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2. Fine and coarse assimilation scheme153

This section first describes the data assimilation setup, consisting of nature run, synthetic154

observations, convective ensemble and LETKF-algorithm, followed by the implementation of155

the fine and the coarse scheme. The Kilometer-scale ENsemble Data Assimilation (KENDA)156

system (Reich et al. 2011) is being developed at the Deutscher Wetterdienst (DWD). It157

couples an LETKF-implementation with an ensemble of the COSMO-DE model. The latter158

is used for operational forecasting over Germany (Baldauf et al. 2011).159

COSMO solves the full non-hydrostatic and compressible Navier-Stokes equations using160

a time-splitting Runge Kutta approach for fast and slow tendencies in the prognostic wind161

variables U , V and W and the deviations of temperature T ′ and pressure p′ from a stationary162

hydrostatic base state. The moist physics use six state variables of water vapor, cloud water,163

cloud ice, rain, snow and graupel with a first order bulk microphysics scheme. A radiation164

scheme for long- and shortwave radiation is applied. Surface fluxes of latent and sensible165

heat are parametrized and constrained by constant surface temperature and surface specific166

humidity throughout the simulation.167

a. Nature run168

This study uses the testbed setup of COSMO with idealized initial state, periodic bound-169

ary conditions (BCs) and a homogeneous flat landscape as the lower boundary. A convection-170

permitting horizontal resolution of 2 km and 50 vertical levels are used in a domain of171

396 × 396 × 20 km extent. The initial profile of all model runs is horizontally homogeneous172

and based on the sounding of Payerne (CH, Radiosonde 06610) at 12 UTC on Juli 30th 2007,173

a day with strong convective storms and mesoscale convective systems (MCS), favored by a174

high CAPE value of 2200 J kg−1 together with a vertical wind shear that allows organized175

convection with heavy precipitation and propagating gust fronts (Bischof 2011).176

Instead of initializing convection with predefined warm bubbles (Aksoy et al. 2009) or177
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targeted noise (Dowell et al. 2004; Tong and Xue 2005) with amplitudes that directly trigger178

thermals, uncorrelated grid point noise is added at the inital time t0 to the temperature field179

T and the vertical wind speed W in the boundary layer (BL) with amplitudes of 0.02 K and180

0.02 m s−1. The model runs start at 06 UTC and rapidly develops a convective boundary181

layer. Triggering instabilities are generated through the effect of the radiation scheme on182

the tropospheric temperature.183

First preliminary showers evolve in random locations at 08 UTC which grow until 10184

UTC and mostly die off by 12 UTC (Fig. 2). The surviving systems grow into intense185

storms and MCS by 14 UTC and propagate with the mean wind in a 45◦-direction through186

the domain with lifetimes ≥ 6 h (Fig. 3). The horizontally contiguous rain areas extend187

between 30 and 200 km with a reflectivity larger than 30 dBZ. Surface fluxes of sensible and188

latent heat allow the cold pools to relax in the wake of the storms. The periodic BC allow189

the storms to grow in a way that is “natural” for the model physics in the given sounding.190

The time-window between 14 and 20 UTC is chosen for 3 hours of cycled assimilation until191

17 UTC, followed by ensemble forecasts with 3 hours leadtime until 20 UTC.192

Five random realizations of the initial noise in the BL are used as nature runs to cover193

the possible storm characteristics and positions.194

b. Synthetic observations195

Synthetic radar observations of reflectivity and radial windspeed are generated for each196

realization. The observations are computed on a regular grid with a horizontal spacing197

of 2 km and a vertical spacing of 1 km, covering the heights between 500 m and 12500198

m, in order to mimic a region of good radar coverage. Reflectivity Z is computed from199

mixing ratios of graupel (QG), rain (QR) and snow (QS) using the simple implementation200

of Done et al. (2004). As in other OSSE studies (Tong and Xue 2005), Gaussian noise201

with a standard deviation of σrefl = 5 dBZ is added to simulate errors of measurement and202

representativity. The reflectivity observations Z are masked to regions where Z > 5 dBZ.203
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Below this threshold, they are regarded as observations of no-reflectivity (Tong and Xue204

2005; Aksoy et al. 2009) with a nominal value of 0 dBZ and σno−refl = 2.5 dBZ, assuming205

a good post-processing that can identify rain-free areas. The horizontal wind component U ,206

with an added error of σU = 1 m s−1, is used as an analogue for radial wind observations.207

This would be an accurate approximation if the storms are far away from the radar site. The208

regular observation geometry and the usage of U ensures that the data coverage is uniform209

and all storms are equally well observed.210

c. Initial ensemble211

The synthetic radar observations are assimilated using an ensemble of k = 50 members212

which differ from the nature run and among themselves only in the random distribution of213

the initial noise. The spin-up time between 06 and 14 UTC enables the members to contain214

storms with similar characteristics but completely uncorrelated horizontal positions. This215

approach was chosen to deprive the ensemble of any prior knowledge about the reference216

when the assimilation starts, as it could have been provided by a “manual” positioning of217

warm bubbles in the members or a confinement of the initial noise to regions of observed218

reflectivity (Tong and Xue 2005; Dowell and Wicker 2009).219

d. Implementation of the LETKF220

To produce an analysis ensemble, the LETKF-algorithm (for a full description see the221

original paper) determines the w = w̄a that minimizes the cost function222

J∗(w) = (k − 1)wTw + [yo − ȳb − Ybw]TR−1[yo − ȳb − Ybw] (1)

where the k-dimensional vector w defines the optimal linear combination of ensemble223

member states that minimizes J∗. yo contains the observations and R is the observation224

error covariance matrix. ȳb and Ybw are given by approximating the observation operator225

H to be linear about the m-dimensional background ensemble mean state x̄b
226
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H(x̄b + Xbw) ≈ ȳb + Ybw (2)

where Xb is a m × k matrix whose columns are given by the deviations of the single227

forecast members from their mean xb(i) − x̄b and228

Yb = H(xb(i)) − k−1
k∑

i=1

H(xb(i)) (3)

The analysis of (1) are computed locally for every analysis grid point. However, they do229

not necessarily need to be taken out on the full model resolution: the spatial field of the local230

wa(i) is usually quite smooth, so a coarser “analysis grid” can be chosen horizontally and231

vertically on which the local analysis weights wa(i) are first determined and then interpolated232

onto the model grid (Yang et al. 2009).233

For the local analysis, only nearby observations are taken into account by localizing the234

observation error covariance matrix R with a Gaussian-like correlation function (Gaspari235

and Cohn 1999) that is zero where the distance r of the single observations is larger than236

the “cutoff-length” rLoc of the localization radius. The dimension of the local R corresponds237

then to the number of local observations.238

Since periodic boundary conditions have not been implemented in the LETKF, observa-239

tions closer to the border of the domain than rLoc are discarded. The untreated R contains240

the σ2-variances mentioned in Section 2b and is diagonal in the present case because the241

added errors are uncorrelated.242

R here is the only manipulable factor in (1) that determines how closely the analysis243

members are drawn towards the observations by the filter. As the localized assimilation of244

observations produced by nonlinear operators can lead to imbalances (Greybush et al. 2011),245

it appears sensible to inflate R to lessen the impact of the observations in (1), as will be246

shown later.247
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e. Fine scheme R4248

The fine analysis scheme R4 (Table 1) is based on previous convective-scale data assimi-249

lation studies (Section 1a). It is devised as a control run to reproduce previous results and250

to serve as a benchmark for the performance of the coarse experiment later.251

A horizontal localization length scale lLoc,h = 4 km is chosen that corresponds to a Gaus-252

sian correlation function with G(4 km) = exp(−1/2) ≈ 0.61. A Gaussian-like correlation253

function C is used that goes to zero within the finite distance of the localization radius254

rLoc,h = 2lLoc,h
√

10/3 ≈ 14.6 km (Gaspari and Cohn 1999; Hamill et al. 2001). This lLoc,h is255

chosen for all observation types, as previous studies found it to be an effective compromise256

(Sobash and Stensrud 2013). The resolution of the synthetic observations is ∆xobs = 2 km,257

same as the model resolution. The vertical localization length scale, lLoc,v, ranges from 3258

km near the surface to 5 km at the model top. An assimilation interval ∆tass of 5 minutes259

represents the typical availability of volume observations from a scanning Doppler radar (Lu260

and Xu 2009). The analysis grid here has the full horizontal resolution of ∆xana = 2 km.261

The vertical resolution, provided by the 20 levels nana
lev of the analysis grid, is lower than the262

model resolution of 50 levels but should suffice, given the strong overlap due to the vertical263

lLoc,v. The weights wa(i) are multiplied by a constant covariance inflation factor of ρ = 1.05264

in order to enhance the span of the analysis state space.265

In this R4-setup, the positions of the analysis storms should coincide with the observed266

storms. Within the storm-cores, the analysis states are expected to be detailed with a low267

error and small variance, while spurious convection is suppressed outside of them by assimi-268

lating volume-observations of no-reflectivity. These are the requirements on a converged and269

detailed analysis ensemble formulated in the introduction.270

As it turned out in preliminary experiments, providing the filter with the untreated R271

can result in imbalanced increments. These taint the solution by introducing gravity wave272

noise that arises from dynamically inconsistent model states when the members are drawn273

too closely to the observations. It was therefore chosen to inflate the entries of R from274
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(σU = 1 m/s)2 to (σU = 5 m/s)2, from (σrefl = 5 dBZ)2 to (σrefl = 20 dBZ)2 and from275

(σno−refl = 2.5 dBZ)2 to (σno−refl = 20 dBZ)2 (cf. Table 1). Lessening the influence of the276

observations in (1) by this method resulted in more consistent and stable analyses as with277

the untreated R.278

The deterioriating effect appeared to be most critical with the reflectivity observations279

that are computed by a very nonlinear operator whose increments in model space are280

nonetheless approximated to be linear by (2). To test this hypothesis, R4 forced was devised281

as a sensitivity experiment wherein R contains the reflectivity error values with which the282

synthetic observations were originally perturbed: (σrefl = 5 dBZ)2 and (σno−refl = 2.5 dBZ)2283

(cf. Table 1).284

f. Coarse scheme R16285

In the coarse scheme R16, more horizontal variance should be allowed, so a larger lLoc,h =286

16 km is chosen and the observational resolution ∆xobs is decreased from 2 km to 8 km. At287

the same time, the resolution of the analysis grid ∆xana is decreased from 2 km to 8 km,288

so there are 42 times fewer local analysis vectors wa(i) to be computed by the local cost289

functions (1), reducing the computational effort and smoothing the analysis field further.290

Consequently, for every local analysis the same number of observations is used in R16 as in291

– but now on a coarser scale.292

The observations are coarse-grained by horizontally averaging the values and positions293

of 4 × 4 blocks of the original observations into one central superobservation (SO); this is294

preferable to data-thinning and reduces the information to the desired coarse scale (Alpert295

and Kumar 2007; Salonen et al. 2009; Seko et al. 2004).296

The analysis increments should therefore consist of larger parts of storms that are more297

dynamically consistent internally than in R4, as the analysis weights of the different members298

will vary less between adjacent model grid points and the influence radius of the observations299

is larger. In one single analysis, a whole storm-core with up- and downdraft could be drawn300
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from the background ensemble in R16, whereas in R4 the updraft-region of an analysis storm301

might originate from a different background member than the downdraft region.302

The fact that the coarse and large-scale scheme R16 has the same number of observa-303

tions per local analysis as the fine scheme R4 suggests that the absolute influence of the304

observations on the local solution of (1) should also be the same. As this is regulated by the305

magnitude of the local R−1-entries, R16 uses an inflated R-matrix that contains the error306

same values as in R4 (cf. Table 1), but now for the SOs.307

This reasoning is tested by the sensitivity-experiment R16 forced which uses the error308

values for the SOs which have been effectively lowered by the averanging: The original309

observations of R4 are a normally distributed random variable (cf. Section 2b), so the310

block-averaging in R16 should reduce the error standard deviation of the SO by a factor of311 √
1/42 = 1/4 to multipy R with. If this is done, the observational part of the local cost312

function (1) becomes larger, because the local analysis has the same number of observations313

but now with a larger R−1. This rigorous formulation is tested in R16 forced whose R-314

entries are derived from the control experiment R4. The entries of RR16 forced with SOs are315

(σU,SO = 1.25m/s)2, (σrefl,SO = 5 dBZ)2 and (σnorefl,SO = 5 dBZ)2 (cf. Table 1).316

The the inflated R-matrix of R16 is intended to allow a not-converged ensemble wherein317

even the occurence of an observed storm, given by observations of U and reflectivity, should318

have a variance; also, spurious convection should be permitted by lessening the suppressive319

influence of no-reflectivity observations. These are the requirements on a non-converged and320

coarse analysis ensemble formulated in Section 1.321

The observations in R16 are assimilated using a longer cycling interval ∆tass of 20 minutes322

between subsequent analyses. In sensitivity experiments for R16 with ∆tass = 5 minutes,323

it was found that the inevitable noise of the increments was introduced too frequently and324

deteriorated the analysis. Also, significant large-scale differences in the members storm325

structures could not spin up during ∆tass = 5, rendering the analyses worse than with326

∆tass = 20 min. The resulting noisy structures were similar to the disturbances of R16 forced327
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that are shown later, albeit with lower amplitude.328

Taking advantage of the reduced memory requirements of the coarser horizontal grid,329

nana
lev = 25 had been chosen for R16, giving a modest improvement over nana

lev = 20. The330

slight advantage over R4 with respect to the additional vertical levels is assumed to be offset331

by the larger number of discarded observations in the wider border regions of lLoc,h = 16 km,332

so R16 and R4 should generally be comparable.333

g. RMSE, spread and consistency ratio334

The accuracy of analysis and forecast states x is measured by the Root Mean Square335

Error (RMSE), computed in model space for the different model variables:336

RMSE(x) =

√√√√m−1
m∑
l=1

(xnaturel − xl)2 (4)

where m is the number of grid points. The corresponding variance is the spread spr of the337

ensemble xi around its mean x̄ = k−1
k∑

i=1

xi , given by338

spr = m−1
m∑
l=1

√√√√(k − 1)−1
k∑

i=1

(xil − x̄l)2 (5)

To fulfill the Gaussian assumption of the filter, the ensemble spread should represent the339

actual error of the analysis, so the consistency ratio CR340

CR =
spr

RMSE
(6)

should be CR = 1.341

Unlike studies that only regarded convectively active regions above a certain reflectivity342

threshold, the present study evaluates RMSE and spread for all grid points of the domain.343

This results a) in a generally low error level because many small error values of clear air344

regions contribute to the mean error and b) in analysis errors which should be regarded345

relatively to the free error level of an ensemble running in parallel without assimilation, as346

the overall variance of the convective situation may change during the diurnal cycle.347
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3. Assimilation results at fine and coarse resolution348

First the fine experiment R4 is evaluated during the assimilation window 14-17 UTC in349

Section 3a, then the results of R16 are presented for comparison in Section 3b. An example of350

the results for one realization of the nature run is given in Fig. 4, which compares snapshots351

of nature run 01 to the analysis means of R4 and R16 at 17 UTC. The maximum column352

reflectivity is the vertical 2D-projection of the 3D-reflectivity field. T at the height of z = 150353

m shows the cold pools, W at z = 3500 m shows regions of up- and downdrafts. Fig. 5 shows354

the RMSE and spread of the ensemble means during the assimilation window and during the355

forecast window from 17 to 20 UTC for the model variables U , W , T and QR. Analogously,356

Fig. 6 shows the mean RMSE of the single members. The dash-dotted lines in the RMSE-357

Figures provide an error level by showing the error of a free-running ensemble that has not358

undergone any assimilation.359

a. Performance of R4360

The fine scheme R4 is able to converge the ensemble mean onto the observed storms for361

the directly observed precipitation variables contained in the reflectivity observations, so the362

reflectivity field of the R4-mean closely resembles the nature run by 17 UTC (Fig. 4). The363

RMSE of the rain mixing ratio QR is strongly reduced in the analysis mean of R4 (Fig. 5) and364

exhibits a very low spread: the graupel mixing ratio (QG) behaves analogously (not shown).365

This points at a strong convergence of the ensemble members onto the observed clouds.366

Fig. 7 compares the reflectivity of some representative analysis-members of R4 to the nature367

run. All member-storms look similar to the nature run and spurious convection is largely368

suppressed by observations of no-reflectivity. In Fig. 9, the analysis ensemble distributions369

are evaluated at selected points of updrafts where the nature run shows a vertical velocity370

of +10 m s−1 (a) or a reflectivity of 40 dBZ (b) at 17 UTC. These are locations where371

observations are favorably present: the reflectivity is observed directly, the vertical velocity372
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of the analysis is provided through background covariances where reflectivity observations373

and horizontal convergence observations (U) indicate an updraft. The analysis member374

states of R4 have converged closely around these values with a distribution that exhibits a375

Gaussian shape.376

Judging by Figs. 4, 7 and 9, the cycled analyses produce up- and downdrafts – although377

only provided by background error covariances – in the right positions, shapes and amplitudes378

(Fig. 4); the RMSE of W is clearly reduced for the R4-mean relative to the free-running379

ensemble, and a good consistency ratio is reached by maintaining ensemble spread (Fig. 5).380

The RMSE of the horizontally smooth T -field is not reduced as much relative to the free381

error level as for the horizontally intermittent variables W and QR. The analysis increments382

even appear to be largely detrimental in the case of R4 (showing as a reversed sawtooth383

pattern), especially when the single members are considered (Fig. 6). Fig. 4 also shows that384

the shapes and positions of the analysis cold pools are in accordance with the nature run385

but exhibit a cold bias. This bias is assumed to be caused by the covariance localization:386

the mean temperature is not conserved when increments add local linear combinations of387

members, (Janjić et al. 2012, 2013) possibly resulting in convective systems that are generally388

too wet and therefore develop too strong cold pools due to evaporative cooling. The deficient389

T -analysis resulting from EnKF-assimilation of radar data has been noticed in previous390

studies (Zhang et al. 2004; Dong et al. 2011). The previous studies found that temperature391

observations from a dense surface mesonet can reduce the problem of too strong cold pools,392

but this method is not considered here.393

Observations of the horizontally smooth U -field are available where reflectivity is present.394

The filter acts beneficially on U for R4 and reduces the RMSE relative to the free error level395

and also absolutely. As with T , the consistency ratio of U exceeds 1 by 17 UTC, indicating396

that the chosen covariance inflation factor ρ = 1.05 might be too large for these variables.397

The V -field is closely correlated to U by the dynamics of the storms and the 45◦ background398

wind field and behaves analogously to U in terms of errors and spread.399
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Fig. 10 compares R4 to the sensitivity experiment R4 forced which has an uninflated R-400

matrix for (no-)reflectivity observations. For all variables, the errors are larger in R4 forced,401

and the detrimental effect on T shows even more clearly. In (2) it was assumed that a402

deviation from the mean in the observation space is directly proportional to the attributed403

deviation in the model space. The inflated R in R4 allows a greater weight for the background404

ensemble in (1) and thus does not follow the assumption of (2) as rigorously which then acts405

beneficially on the quality of the analysis.406

Summarizing these results, the R4-scheme appears to produce analyses that are com-407

parable to previous convective EnKF studies with radar data. The covariance localization408

in observation space of the LETKF-algorithm appears to work well, compared to the lo-409

calization in model space in the EnSRF-filters of other studies. The storms in the analysis410

ensemble resemble the storms of the nature run closely in terms of position, amplitude and411

dynamics. The mean of the strongly converged ensemble is representative for the best so-412

lution, the single analysis members show a strong agreement with little variance inside the413

observed storms. These were the requirements for a fine and converged scheme formulated414

in the introduction. R4 is regarded to fulfill them.415

b. Performance of R16416

Now the assimilation results of the coarse scheme R16 are evaluated. With the horizon-417

tally smooth variable U , Fig. 5 exhibits a similar error for the R16-mean as for the R4-mean;418

the slight advantage of R4 for U appears even less significant if the mean of the member-419

RMSEs in Fig. 6 is considered where no difference between the two schemes is apparent.420

The analysis quality of T seems to be better for R16 – the analysis increments are always421

beneficial here (Fig. 6). R16 assembles the analysis storms from horizontally larger portions422

of member-storms, apparently reducing the dynamical inconsistencies in smooth variables U423

and T that are introduced by the localization. Nevertheless, also R16 exhibits a cold bias in424

the ensemble mean, especially due to additional cold pools of spurious storms.425
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For the horizontally intermittent rain-variables and thus for the reflectivity, the analysis426

quality of R16 is inferior to R4. In Fig. 4, the counterparts of the observed storms in the427

R16-mean have roughly the right position and shape but are blurred, caused by variability428

of the updraft core positions within the ensemble (Fig. 8). This was expected due to the429

combination of the SOs that provide information only on a coarser scale, a larger lLoc,h and430

coarser analysis grid that facilitate horizontally smoother increments, and the inflated R431

that allows a higher level of variance. The resulting R16-ensemble is not as converged as the432

R4-ensemble: its distribution is broader, less Gaussian and even multimodal in locations of433

updrafts and strong reflectivity in the nature run (Fig. 9). Spurious storms exist largely and434

show up in the reflectivity fields of the ensemble members (Fig. 8) and the mean (Fig. 4).435

The RMSE-values of the variables related to vertical motion (W and QR) are larger for R16,436

lying just slightly below the free error level (Fig. 6), but now possess significant spread in437

QR (Fig. 5).438

The introduction of the coarse scheme required a larger variance for the storm positions439

than in the fine scheme, together with larger analysis error and more spread, allowing also440

spurious convection. These requirements are regarded to be fulfilled by the coarse scheme441

R16.442

Fig. 11 compares a typical storm system of one nature run to the corresponding analysis443

means of R16 and the sensitivity experiment R16 forced, the latter with an uninflated R-444

matrix for (no-)reflectivity observations. In contrast to R16, the mean W -field of R16 forced445

reveals single updraft cores with large amplitudes where all members agree on their positions,446

recognizable also in the larger amplitude of the mean reflectivity field: R16 forced corresponds447

to a stringently converged version of R16, but unlike to R4, the converged mean does not448

resemble the physical properties of the nature run. The strong and imbalanced increments of449

R16 forced cause gravity waves that show in the W -field where noise is present in the analysis450

mean. Strong updrafts lie close to downdrafts in an alternating pattern which appears to be451

dynamically inconsistent with the nature run.452
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The effective sample size in the R16-experiments is lower than in the R4-experiments due453

to the larger localization radius (Hunt et al. 2007). Producing a converged ensemble with454

horizontally broad increments as in R16 forced would possibly need a larger ensemble size –455

with the given 50 members, the non-converged ensemble of R16 turned out to work better.456

4. Ensemble forecasts from fine and coarse resolution457

analyses458

From the last analysis ensembles of the experiments at 17 UTC, ensemble forecasts are459

performed until 20 UTC.460

a. RMSE forecast error461

For W and QR, the RMSE in R4 converges to the error level of R16 within 1-2 hours,462

both for the ensemble mean (Fig. 5) and the members (Fig. 6). Within this period, R4463

quickly regains spread for QR, caused by the precipitating cores of the member storms that464

are moving apart from the well-determined position of the converged analysis. At 20 UTC,465

the degree of horizontal blurring in R4 equals that of R16 (Fig. 12).466

For U and T , the RMSE of the forecasts grows more slowly with no significant difference467

between R4 and R16. Qualitative differences of the analysis perturbations in R4 and R16468

with respect to the reference run are thus contained mostly in the horizontally intermittent469

variables such as W and QR.470

b. Field-based evaluation by the DAS-score471

Anticipating that much of the error in the R4 and R16 ensemble mean forecast fields472

(Fig. 12), two spatial verification measures are chosen to compare the forecast fields to the473

nature run. Fields of maximum column reflectivity are chosen for this evaluation because474
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high reflectivity is usually accompanied with strong precipitation and winds – these two are475

the essential threats to be predicted by a convective storm forecast. The observation field476

of the nature run here is thresholded above 10 dBZ to separate the storms and eventually477

overlapping anvils.478

The Displacement and Amplitude Score DAS (Keil and Craig 2009) uses a pyramidal479

matching algorithm to compare two fields by an optical flow technique. A vector field is480

computed that morphs the forecast onto the reference field and vice versa, using a maxi-481

mum search radius of 45 km here. The average magnitude of the displacement vector field,482

normalized by maximum search radius, defines the DIS-component of the DAS-score, and is483

displayed in Fig. 13. During the assimilation window, R4 is clearly superior to R16 due to484

the converged ensemble. This advantage is lost during the forecast window within 1 hour –485

after that, the forecast quality of storm positions is indistinguishable between the fine and486

coarse schemes.487

c. Object-based evaluation by the SAL-score488

The SAL-score (Wernli et al. 2008) compares statistical properties of thresholded rain-489

objects. The structure or S-component indicates if the forecast objects are smoother and490

broader than the observations (S > 0) or spikier (S < 0), with S = 0 indicating the491

correct structure. Only average object properties are compared, without matching, so S is492

independent of location errors and biases. In Fig. 14a, R4 and R16 appear qualitatively493

equal with S ≈ 0 at 17 UTC, meaning that the right type of objects are present in the494

members after the assimilation cycling; the observed convective modes are reproduced, as495

far as the projection of the column is concerned. This property holds during the forecast for496

the members (dashed lines), but for the ensemble mean (solid lines), the blurring of forecast497

features is apparent with an increasing S > 0.498

The amplitude or A-component (Fig. 14b) compares the domain-wide total reflectivity499

between forecast and observation and thus displays the overall bias. During the assimilation500
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window, R4 and R16 behave differently. In the first hour of R4, most spurious storms are501

subsequently suppressed while the inserted storms have not yet fully developed, resulting502

in a negative bias with A < 0, that then overcompensates to a positive bias with A > 0503

by 17 UTC. In R16, the analysis increments always increase the bias by inserting observed504

storm-increments without complete suppression of spurious storms, counteracting the relax-505

ing tendency of the dynamics during the forecast intervals. During the first 90 minutes of506

the forecast window, the A-bias of R16 decreases, while small and incompletely suppressed507

spurious storms in R4 grow quickly and enhance the R4-bias, but eventually converge with508

R16. After 2 hours of forecast, R4 and R16 are indistinguishable.509

The L-component (Fig. 14c) determines the location error by measuring the horizontal510

deviation of the centroid of the forecast reflectivity field from the centroid of the observations.511

The results here are similar to those of the DIS-score: R4 has an advantage over R16 by the512

end of the analysis period, but this is lost within 1-2 hours of forecast time.513

The curves of the location error L are less continuous than the DIS-score and sometimes514

even decrease; this is a consequence of the small sample five random realizations that are515

evaluated here. Comparing the L-error between the experiments and the free error level here516

is more meaningful than the absolute L-values.517

The results of DAS-DIS and the SAL score were verified by evaluating the Brier Score518

(Wilks 2006) of the forecast probabilities of R4 and R16 with respect to convective events519

exceeding a threshold of 10 dBZ (Fig. 15). A similar convergence in skill can be seen, and520

at 20 UTC there is no significant difference of skill between R4 and R16 in the sample of521

the five repetitions of the experiments.522

5. Summary and Discussion523

The aim of this study on convective scale data assimilation was to assess the benefits of524

high-resolution analysis schemes in the provision of initial conditions for 3-hour precipitation525
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forecasts, taking into account the limited predictability of convective systems due to scale-526

dependent error growth.527

Data Assimilation of long-lived and organized convective systems was performed under528

the assumption of a perfect model, using a LETKF in an idealized testbed with simulated529

Doppler radar observations of reflectivity and radial wind. The storms were triggered ran-530

domly in the convection-permitting COSMO-model using radiative forcing and initial small-531

amplitude random noise in a horizontally homogeneous environment with periodic boundary532

conditions.533

Updraft positions, storm intensities and cold pool structures were determined well by the534

cycled analyses of the high-resolution assimilation scheme R4; this appeared as a succesful535

reproduction of previous studies on this topic. The usability of the LETKF-algorithm,536

which localizes in observation space, for detailed storm-analyses with radar data is therefore537

demonstrated. Reducing the influence of observations on the analysis increments by an538

inflated error covariance matrix R proved useful for obtaining dynamically consistent model539

states.540

The coarse scheme R16 was devised to produce less precise analyses than R4 by increas-541

ing the horizontal localization length scale from 4 to 16 km, by reducing the resolution of542

observations and of the analysis grid from 2 to 8 km and by inflating R further; by these543

means, variance was introduced into the ensemble with respect to the position and occurence544

of updrafts. Spurious convection was permitted in multimodal posterior distributions.545

Both schemes showed a cold bias due to the introduction of localized analysis increments546

that were too wet and caused excessive cooling in low levels.547

The 3-hour period of cycled assimilation of the two schemes was followed by ensemble548

forecasts with a lead time of 3 hours. During the first hour, precipitation forecasts from549

analyses of the fine scheme were clearly advantageous to analyses of the coarse scheme in550

terms of the storm positions and internal structure, measured by RMSE and the object based551

scores DAS and SAL. This advantage of the fine analyses was lost within the first 1-2 hours552
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of forecast by the rapid error growth of the small perturbations.553

a. Conclusions554

These results suggest that, due to the limited predictability, convective forecasts with555

typical leadtimes of 3 hours might not benefit from storm analyses that are detailed on the556

scale of the model grid; a coarser representation of storm positions and occurence as in the557

coarse scheme might be sufficient. The computational acceleration hereby is notable.558

Nonetheless, a fine analysis with low errors is superior for the first hour and could be559

useful for forecasts of phenomena smaller than the storm system such as tornados and gust560

fronts.561

b. Discussion562

Looking back at the methods, the coarse scheme R16 is based on the fine scheme R4563

which reproduced previous results from other studies. The means by which the coarsen-564

ing of the analysis was achieved in R16, namely the larger localization together with a less565

detailed analysis computation and coarsened observations, were only useful in combination566

with an inflated R-matrix to relax the Gaussian constraint of the cost function (shown by567

R16 forced compared to R16). The R-inflation was chosen empirically to let the system568

produce reasonable analyses. More sophisticated methods exist for the estimation of appro-569

priate observation errors for R (Desroziers et al. 2005) which are also implemented in the570

KENDA-system but were not applied here. Evaluating the effects of the coarsening methods571

of R16 separately could give much insight but would be beyond the scope of this paper.572

The cold bias of the analyses hints at the substantial problem that mass and energy is not573

conserved in analyses produced by a localized EnKF (Janjić et al. 2012, 2013). Covariance574

localization in observation space as done here shows no substantial differences to localization575

in model space.576
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The forecast results displayed the limited predictability of the dynamics in large con-577

vective systems. In an operational model, the predictability will be enhanced by effects of578

synoptic and orographic forcing (Hohenegger and Schär 2007) that might overlay the efforts579

of a fine analysis; in that case, the larger analysis errors of a coarse scheme might be even less580

disadavantageous than in the idealized situation presented in this study. Effects of model581

error could further diminish the benefits of the fine scheme, especially if it tries to converge582

the model states into convective modes that are not supported by the model physics and583

the predicted sounding (Stensrud and Gao 2010) – here the gentler approach of the coarse584

scheme could be profitable for dynamic consistence.585

The spatial and temporal quantities of dynamics and predictability that are discussed586

here depend on the model resolution, the model physics and the type of long-lived storm587

that is simulated. A resolution of 2 km is not sufficient to simulate storm-internal variance588

on the scale of single plumes which come addressable with resolutions of 250 m and less589

(Bryan and Morisson 2012). Using such a model that is able to resolve three-dimensional590

turbulence, an even finer assimilation scheme could be applied to further investigate the591

limits of predictability.592

In the case of a different sounding and the resulting different convective modes such593

as mesocyclones, multicell storms and linear squall lines, the predictability limit will be594

influenced by the degree of storm-internal organization (Aksoy et al. 2010). The quantitative595

time limit found in this study can thus not be generalized for all kinds of convection.596

The lagged detection of storm cells by radar observations remains a problem. Further597

studies could investigate if an ensemble that contains spurious storms might be advantageous598

when an assimilation system has to catch storms that develop in locations where clear air599

was observed and assimilated before: it may be harmful to the dynamics to select single600

precipitating forecast members that have to form large increments for the analysis mean601

(Lien et al. 2013).602

Assimilating reflectivity observations is still difficult due to their non-Gaussian distribu-603
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tions, making the suppression of spurious convection insufficient because (a) the background604

distribution of convection is typically intermittent and therefore non-Gaussian and (b) there605

is no “negative rain” to assimilate in unaltered observations (Craig and Würsch 2012). A606

Gaussian transformation of precipitation observations could help here to fulfill the Gaussian607

assumptions of the EnKF (Lien et al. 2013).608
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Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging639

for convective-scale data assimilation in a simple stochastic model. Quarterly Journal of640

the Royal Meteorological Society.641

Dance, S., 2004: Issues in high resolution limited area data assimilation for quantitative642

precipitation forecasting. Physica D, 196, 1–27.643

Dawson, D. T., L. J. Wicker, and E. R. Mansell, 2012: Impact of the Environmental Low-644

Level Wind Profile on Ensemble Forecasts of the 4 May 2007 Greensburg, Kansas, Tornadic645

Storm and Associated Mesocyclones. Monthly Weather Review, 140, 696–716.646

Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, back-647

ground and analysis-error statistics in observation space. Quarterly Journal of the Royal648

Meteorological Society, 131, 3385–3396.649

Done, J. M., G. C. Craig, S. Gray, and P. Clark, 2012: Case-to-case variability of predictabil-650

ity of deep convection in a mesoscale model. Quarterly Journal of the Royal Meteorological651

Society, 138, 638–648.652

Done, J. M., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: ex-653

plicit forecastsmof convection using the weather research and forecasting (WRF) model.654

Atmospheric Science Letters, 5, 110–117.655

Dong, J., M. Xue, and K. K. Droegemeier, 2011: The analysis and impact of simulated656

high-resolution surface observations in addition to radar data for convective storms with657

an ensemble Kalman filter. Meteorology and Atmospheric Sciences, 112, 41–61.658

Dowell, D. C. and L. J. Wicker, 2009: Additive Noise for Storm-Scale Ensemble Data As-659

similation. Monthly Weather Review, 132, 1982–2005.660

Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Cook, 2004: Wind and Tem-661

27



perature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman662

Filter Experiments. Monthly Weather Review, 132, 1982–2005.663

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model664

using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research,665

99, 10 143–10 162.666

Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions in two and three667

dimensions. Quarterly Journal of the Royal Meteorological Society, 125, 723–757.668

Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and Ensemble669

Kalman Filter Localization Techniques. Monthly Weather Review, 139, 511–522.670

Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-Dependent Filtering of Back-671

ground Error Covariance Estimates in an Ensemble Kalman Filter. Monthly Weather Re-672

view, 129, 2776–2790.673

Hohenegger, C. and C. Schär, 2007: Predictability and Error Growth Dynamics in Cloud-674

Resolving Models. Journal of the Atmospheric Sciencies, 64, 4467–4478.675

Houtekamer, P. and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter676

technique. Monthly Weather Review, 126, 796–811.677

Houtekamer, P. and H. L. Mitchell, 2001: A Sequential Ensemble Kalman Filter for Atmo-678

spheric Data Assimilation. Monthly Weather Review, 129, 123–137.679

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spa-680

tiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 203, 112–126.681
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List of Tables748

1 Experiments as described in Section 2. R4 f and R16 f are R4 forced and749
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Table 1. Experiments as described in Section 2. R4 f and R16 f are R4 forced and
R16 forced. lLoc,h is the horizontal localization lengthscale, rLoc,h is the cutoff length of
the horizontal covariance localization function, ∆xobs/ana is the horizontal resolution of ob-
servations and of the analysis grid, nana

lev is the number of vertical levels of the analysis grid,
∆tass is time-interval between the two consequent analyses, σU , σrefl and σno−refl are the
standard deviations of the observations (for R16 and R16 f: SOs) that are contained in the
R for the respective experiment. Some R-entries are inflated, see text.

R4 R16 R4 f R16 f

lLoc,h 4 16 4 16 km
rLoc,h 14.6 58 14.6 58 km
∆xobs/ana 2 8 2 8 km
nana
lev 20 25 20 25

∆tass 5 20 5 20 min
σU 5 5 5 1.25 m s−1

σrefl 20 20 5 5 dBZ
σno−refl 20 20 2.5 5 dBZ

33



List of Figures757

1 Relative frequencies of predicted reflectivities for a relatively good background758
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Fig. 1. Relative frequencies of predicted reflectivities for a relatively good background
ensemble (gray) and two analysis-ensembles a) and b) (black), computed by by the LETKF-
algorithm. The observed value is 50 dBZ. In a) a small observation error of σ = 5 dBZ is
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Fig. 2. Time-series of the nature run (averaged over five realizations): Domain-average
of the maximum column reflectivity in dBZ (solid), together with average horizontal (dash-
dotted) and maximum (dashed) size of the rain-objects, thresholded to> 5 dBZ. Assimilation
window is between 14 and 17 UTC (shaded gray), forecast window is between 17 and 20
UTC (shaded pink). Peaks of the object-sizes can be due to merger of anvils of separate
convective systems.
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38



0

50

100

150

200

250

300

350

D
is

ta
n
ce

 (
km

)

Nature Run 01,   17 UTC R4   Analysis EnsMean R16   Analysis EnsMean

5.0

15.0

25.0

35.0

45.0

55.0

R
e
fl
_M

a
x
 (

d
B

Z
)

0

50

100

150

200

250

300

350

D
is

ta
n
ce

 (
km

)

288.0

290.4

292.8

295.2

297.6

T
 (

K
),

 z
 =

 1
5
0
m

 
0 50 100 150 200 250 300 350

Distance (km)

0

50

100

150

200

250

300

350

D
is

ta
n
ce

 (
km

)

0 50 100 150 200 250 300 350

Distance (km)
0 50 100 150 200 250 300 350

Distance (km)

-5.0

-2.4

0.2

2.8

5.4

8.0

10.6

W
 (

m
/s

),
 z

 =
 3

5
0
0
m

Fig. 4. Nature Run and Analysis Means of R4, and R16 (both of repetition R01) at 17
UTC. Top rows: Maximum reflectivity. Middle rows: Temperature T at z = 150 m. Bottom
rows: Vertical velocity W at z = 3500 m.

39



0.0

0.5

1.0

1.5

2.0

2.5

R
M

S
E
/S

p
re

a
d
 [

m
/s

]

U

0.0

0.1

0.2

0.3

0.4

0.5

R
M

S
E
/S

p
re

a
d
 [

m
/s

]

W

14 15 16 17 18 19 20
Hours

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
E
/S

p
re

a
d
 [

K
]

T

14 15 16 17 18 19 20
Hours

0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E
/S

p
re

a
d
 [

10
−

4
kg

/k
g
]

QR

R4:  RMSE of Ensemble Mean
R4:  Spread of Ensemble

R16: RMSE of Ensemble Mean
R16: Spread of Ensemble

RMSE of Free-Ensemble Mean
Spread of Free-Ensemble
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Fig. 7. Maximum reflectivity (REFL MAX ) of nature run and analysis ensemble members
1,13,25,37,50 of R4 (Realization R01) at the last assimilation time 17:00.
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Fig. 8. Like Fig. 7, for R16.
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Fig. 10. Like Fig. 5, but comparing R4 (black) to R4 forced (gray) for the primary variables
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Fig. 11. Like Fig. 4, but comparing the analysis means of R16 and R16 forced to the nature
run at 16 UTC during the assimilation (Realization 03).
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Fig. 12. Like Fig. 4, but forecast ensemble means (Realization 01) at 20 UTC.
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