Special : Satellite Data

Part I: Introduction to satellite observations for NWP

Christina Köpken-Watts, Robin Faulwetter

Data assimilation FE12/Satellite data

Part II: Processing and assimilation of satellite radiances (at DWD)

Robin Faulwetter, Christina Köpken-Watts Data assimilation FE12/Satellite data

Winterschool on Data Assimilation, DWD, 15.2.2012

Outline

The path of a satellite measurement through a NWP model

I. Measurement and transmission to NWP centers

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

I. Measurement and transmission to NWP center

a) Satellite orbits

- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation
- IV. Monitoring

GEO (Geo-stationary orbit)

- Height ~ 36000km
- Period: 1 day

MEO (Medium Earth Orbit)

- Height: 1200 36000 km
- Period: ~ several hours

LEO (Low Earth Orbit)

- Height: 200 1200 km
- Period: ~ 100 min

HEO (Highly Elliptical Orbit)

Robin Faulwetter – Winter school 15.02.2012

Satellite orbits: LEO

In the absence of external forces satellite orbits are confined to fixed planes in an inertial system. For LEO satellites the "orbital plane" is usually inclined with respect to the equator.

i : inclination

i near to $90^{\circ} \rightarrow$ "polar orbiter"

Satellite track for a non-rotating Earth

Satellite tracks for the rotating Earth

As the Earth rotates, the satellite tracks move westwards. Therefore, the satellite tracks cover a large fraction of the Earth.

http://www.asc-csa.gc.ca/eng/educators/resources/orbital/tracks_ground.asp

Satellite orbits: Sun Synchronous Orbit (SSO)

- Due to the Earths **extra mass near the equator**, orbits with inclinations > 0° are not fixed in the inertial system.
- They **precess** with a period that is determined by the height and inclination.
- If the precession period is one year, the orbit is sunsynchronous, i.e. the angle θ is fixed.

The satellite crosses the equator at a fixed local time \rightarrow equator crossing time

- Advantage: solar effects are constant
- **Disadvantage**: the diurnal cycle is not resolved.

Sun Synchrounous Orbit animation

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

Active:

- Radar
- Lidar
- Radiooccultations

AMVs (derived from radiance measurements)

What is measured?

How is measured?

http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/html/c1/sec1-1.htm

Nadir http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/images/fj3-5.gif

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles

c) Measurement geometry

- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/html/c1/sec1-1.htm

Measurement geometry

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Across-track scan (AMSU, IASI, ATMS, CrIS ...)

Conical scan

(SSMI/S)

http://www.star.nesdis.noaa.gov/smcd/spb/LANDEM/website/instr_AIRS.php

http://www.star.nesdis.noaa.gov/smcd/spb/LANDEM/website/instr_SSMI.php

Measurement geometry

AMSU Scanning Geometry and Resolution

http://amsu.ssec.wisc.edu/explanation/amsua_scan_res.jpg

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry

d) Transmission of data to earth

- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Complete global datasets

Local datasets RARS – Regional Advanced Retransmission Service

http://www.eumetsat.int/groups/ops/documents/image/img_ada_data_dump.org

http://www.eumetsat.int/groups/public/documents/image/img_ears_atovs_news.jpg

Transmission of data to Earth

Complete global dataset

Local datasets (RARS)

120

122

12.20

12.23 12.3 12.73 13

11.5 11.28 12

1.50

11.28

1.20 1.5

1230 123 1230 13

1220 123

Robin Faulwetter – Winter school 15.02.2012

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

- **Calibration**: compute calibration coefficients
- Navigation: compute position of satellite on its orbit, compute geolocation of measurements (latitude, longitude, scan angle, satellite/sun zenith/azimuth angles, …
- **Conversion**: convert radiances to brightness temperatures
- **Flagging**: flag data for which the computation of calibration coefficients or geolocation failed or is suspicious, ...

Software package: **AAPP** (**A**TOVS and **A**VHRR **P**re-processing **P**ackage) OPS-LRS, ATOVPP, ATOVIN are parts of AAPP Provided by **NWPSAF**

Level 0	Raw data	Reconstructed, unprocessed instrument and payload data at full resolution, with any and all communications artifacts (e. g., synchronization frames, communications headers, duplicate data) removed.				
Level 1a	Raw data + calibration info	Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and georeferencing parameters (e. g., platform ephemeris) computed and appended but not applied to the Level 0 data (or if applied, in a manner that level 0 is fully recoverable from level 1a data).				
Level 1b	Calibrated data	Level 1a data that have been processed to sensor units (e.g., radar backscatter cross section, brightness temperature, etc.); not all instruments have Level 1b data; level 0 data is not recoverable from level 1b data.				
Level 1c/1d	Quality control	Level 1b data that have been quality controlled. If required, data from other instruments can be "mapped" onto the data. Input to NWP models.				
Level 2	Derived variables	Derived geophysical variables (e.g., ocean wave height, soil moisture, ice concentration) at the same resolution and location as Level 1 source data.				
Level 3	Gridded data	Variables mapped onto uniform spacetime grid scales, usually with some completeness and consistency (e. g., missing points interpolated, complete regions mosaicked together from multiple orbits, etc).				
Level 4	Model data	Model output or results from analyses of lower level data (i. e., variables that were not measured by the instruments but instead are derived from these measurements).				

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing

f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

Transmission to NWP center

C	ata format	s:			_				
	Excerpt from BUFR table D:								
•	340001 (IASI Level	1c dat	ta)		sen	tatior	n of meteorological data. Table		
	001007 Satellite identifier					5			
	001031 Ident	i fi ca	tion of origina	ting/generating centre					
	002019 Satel	litei	instruments	5 5 5					
	002020 Sate	Гуса	annt fram		10.			1	
•	004001 Year	EXC	erpt from	BUFR Lable 0020	19:				
	004002 Montl								
	004003 Day	•							
	004004 Hour	•							
	004005 Mi nu	·						Ł	
	004006 Secor	220	ESA/EUMETSAT	Spectrometer		GOME-2	Global ozone monitoring experiment-2	ŀ	
	005001 Lati	221	CNES/EUMETSAT	Atmospheric temperatur	е	IASI	Infrared atmospheric sounding interferometer		
	006001 Longi			and humidity sounder					
	007024 Sate	240	CAST	Communications		DCP	Data-collection platform transponder		
•	005021 Beari	•							
	007025 Sol ai	•							
	005022 Sol ai		NOAA	De di amatan					
	005043 Field	570	NUAA				Advanced microwave sounding unit-A		
	005040 Orbi	5/4	NUAA	Radiometer		AMOU-B	Advanced microwave sounding unit-B		
	005041 Scan	580	NUAA	Radiometer		ATUVS	Auvanceu TERUS operational vertical sounder		
•	025070 Maj o	•							
	007001 Heigi	•							
	033060 GQI S	620	ΝΟΛΛ	Atmospharic tomporatur	o and	Cris	Cross track infrared sounder/NDOESS		
	033061 QGI S	020	NOAA	Atmospheric temperatur	e anu	0113	CLOSS LLACK THIT ALEU SOUNDELTNFOLSS		
	033062 UGI S	621	ΝΟΔΔ	Atmospheric temperatur	a and	ΔΤΜς	Advanced technology microwaye sounder		
•		021	NOAA	humi di ty sounde	r	ATWS	Advanced teennor ogy in er owave sounder	e	
				num ur ty sounde	· 1			Γ	
	101010 Bono	•							
	240002 1451								
	101087 Papa	t nov	t 1 descriptor	87 11 1005	r			l	
•	340003 1451		1c 100 channel	sequence					
	002019 Satel	litei	instruments	Sequence					
	025051 AVHRR channel combination								
	340004 LASL Level 1c AVHRR single scene sequence								
	0100011/101	20001	.e minit singi		1				

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

Robin Faulwetter – Winter school 15.02.2012

Part IV

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

a) Retrieve data from bank, conversion

- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation
- IV. Monitoring

- Retrieve data from bank:
 - In experiments make sure that the datasets are equal to those, that were used in the routine forecasts.
 - For additional datasets make sure, that the routine cutoff times are applied.

Conversion: BUFR -> NetCDF

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

a) Retrieve data from bank, conversion

b) Quality control

- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation
- IV. Monitoring

Quality control: motivation

- Missing values: check for missing values in variables, that are required later
- Suspicious values: Unrealistic brightness temperatues, latitudes, longitudes
- **Time:** suspicious time sequences and times outside of the assimilation window are discarded
- Redundancy: check for redundant data
- Data flags: check for data flags, that indicate that a measurement should not be used.
- Physical tests:
 - from microwave data the **surface type** can be estimated. If it is not consistent with the actual surface type, the measurement can be discarded.
 - Various **scattering indices** exist, that indicate whether a measurement is disturbed by clouds/rain/aerosols.
 - If a **1dvar** retrieval of temperature does not converge, the measurement is discarded (not operational).

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control

c) Mapping

d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation
- IV. Monitoring

Mapping

- It can be useful, if measurements of another instrument are available at the measurement locations
- Quality control: use results from physical tests (e.g. surface type test)
- Bias correction: see later

http://oiswww.eumetsat.int/WEBOPS/eps-pg/IASI-L2/images/IASI_AMSU_HIRS_MHS_SCAN_PG.gif

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation
- IV. Monitoring

Further stuff

 Topography within FOV (FOV=Field Of View): land fraction, surface type, altitude...

Interferometers (IASI, CrIS):

- Radiances → brightness temperatures
- **Thinning:** for each observation time measurements from multiple equal detectors (IASI:4, CrIS:9) are available. The best one is selected for futher use.

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

a) Radiative transfer

- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

Radiative transfer: introduction

What does the instrument "see"?

How to assimilate such observations?

- $J = \dots + \left\| \mathbf{y} \mathbf{H}(\mathbf{x}) \right\|_{\mathbf{R}^{-1}}^2$
- y: observations x: model state H(x): simulated observations

Radiative transfer equation:

 $\begin{array}{ccc} L: \text{ upwelling radiation} \\ \hline \textbf{MinPhaization atibut} \leftrightarrow & \frac{\partial H}{\partial \mathbf{x}} & \leftrightarrow & \frac{\partial L}{\partial \mathbf{x}} \\ \varepsilon_s: \text{ surface emissivity} & & & \\ \hline \end{array} \begin{array}{c} \tau: \text{ transmittance} \\ k_{\overline{\Delta b}}: \text{ alsocighting functions} \\ T_s: \text{ surface skin temperature} \end{array}$

Radiative transfer

$$L = \tau_{s, top} \varepsilon_s B(T_s) + \int_{s}^{top} \tau_{z, top} B(T) k_{abs} dz + \int_{s}^{top} \tau_{s, top} (1 - \varepsilon_s) \tau_{z, s} B(T) k_{abs} dz$$
$$k_{abs} dz = -dD \qquad \tau = e^{-D}$$
$$L = e^{-D_{s, top}} \varepsilon_s B(T_s) - \int_{s}^{top} e^{-D_{z, top}} B(T) dD_{z, top} - \int_{s}^{top} e^{-D_{s, top}} (1 - \varepsilon_s) e^{-D_{z, s}} B(T) dD_{z, top}$$

- L: upwelling radiation
- B: Planck-function
- ε_s : surface emissivity

- τ : transmittance
- k_{abs} : absorption coefficient
- D: optical depth

D = D(v, chemical composition, p, T)

can be calculated with line-by-line models, but this is computationally extremely expensive.

RTTOV (Radiative Transfer for TOVS, fast radiative transfer model):

Precision: ~1K

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

observations model Vtrue value

Obs. Bias has to be corrected

 $\varepsilon_o = y_o - y_{true}$ not known!

 \rightarrow Consider obs. – fg.

 $\varepsilon_o \approx y_o - y_f$

- Correction of obs. biases heavily suffers from model bias
- This is a desired effect. Due to the overcorrection the model is not pulled away from its climate.

Bias correction

Deutscher Wetterdienst

Types of biases:

- Constant offset
- Situation dependent bias
- Scanline bias

Sources of biases:

- Instrument problems
- Forward model problems
 - $(\rightarrow air-mass bias)$
- Model bias

Remark:

These error sources are also taken into for the "observation error" covariance matrix:

$$J = [\mathbf{Y} - \mathbf{H}(\mathbf{X})]^{\mathrm{T}} \mathbf{R}^{-1} [\mathbf{Y} - \mathbf{H}(\mathbf{X})] + \dots$$
$$\mathbf{R} = \mathbf{O} + \mathbf{F}$$

http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/atovs/amsua/

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

0.50 E

0.40

20

$$T_B \approx \varepsilon_{sfc} T_{skin}$$

Cloud detection: AMSU-A

Over sea:

surface.

determine ice fraction

$$T_B \approx \varepsilon_{sfc} T_{skin} \longrightarrow \varepsilon_{obs} = f_{ice} \varepsilon_{ice} + (1 - f_{ice}) \varepsilon_{water}$$

AMSU-A has so-called "window-channels", i.e. the

- Over ice and land: • determine surface type by comparison of ε_{abs} 's with emissivity model.
- Check for rain/clouds:
 - Over sea: estimate LWP (Liquid Water Path):

 $LWP > 0.3 \text{mm} \rightarrow \text{rain}$

 $LWP > 0.1 \text{mm} \rightarrow \text{clouds}$

Over snowfree land:

$$T_B^{(1)} - T_B^{(15)} > 3\mathrm{K} \rightarrow \mathrm{rain}$$

No check over snow

30

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Emissivity of different surface types

AMSU-3

50

dry land

dry snow

water refrozen snow

60

2nd year seaice wet land

multi-year seaice

40

TATT

Courtesy Detlef Pingel

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation
- IV. Monitoring

Thinning/quality control

Available observations

Assimilated observations

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

Assimilation

Radiances are non-linearly related to model parameters

- OI method (linear analysis scheme):
 - Radiances have to be converted into T(p), q(p): External retrieval scheme.
 - Error characteristics of retrievals are complicated
- Variational methods (e.g. 3DVar):
 - Can take non-linear relationships into account
 - Use radiances/brightness temperatures -> errors are easier to quantify

I. Measurement and transmission to NWP center

- a) Satellite orbits
- b) Meteorological instruments, measurement principles
- c) Measurement geometry
- d) Transmission of data to earth
- e) Level-0 preprocessing
- f) Transmission to NWP center

II. Pre-processing in DWD

- a) Retrieve data from bank, conversion
- b) Quality control
- c) Mapping
- d) Further stuff

III. Assimilation

- a) Radiative transfer
- b) Bias correction
- c) Cloud detection
- d) Thinning/quality control
- e) Assimilation

Monitoring

Monitoring

Statistics for Radiances from NOAA-15 / AMSU-A - 8

Mean First Guess Departure (OBS-FG), bias corr. (used)

EXP = rou

Time period: 20111201 00UTC - 20111213 21UTC, Hour = all

max = 0.03mean = -0.01

- Sun-synchronous orbits
- Satellite tracks
- Measurement geometry
- BUFR
- RTTOV
- Bias correction
- Cloud detection

Questions?

Backup slides

Robin Faulwetter – Winter school 15.02.2012

How to remove obs. biases?

- $y_o \rightarrow y_o + b$ $b = c + \sum_i \beta_i P_i$
- \rightarrow Minimization problem: $\left\langle \left(y_o + b y_f\right)^2 \right\rangle = \min$
- \rightarrow solved by linear regression $\rightarrow c$, β_i

Strategies to update coefficients:

- Manually, "static", operational
- Automatic, "online", experimental
- Within 3D-Var minimization, "variational", in progress

 P_i : state dependent predictors

Cloud detection: IR

Satellite orbits: classification

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Geo **S**ynchronous **O**rbit (GSO) Geo-stationary orbit

- Height: 35786km
- Period: 23h56m04s

• Meteorological satellites: Meteosat, GOES, ...

Medium Earth Orbit (MEO)

- Height: 1200 35786 km
- Period: ~ several hours
- Navigation satellites: GPS, Galileo, GLONASS, ...

Low Earth Orbit (LEO) Sun Synchronous Orbit (SSO)

- Height: 200 1200 km
- Period: ~ 100 min
- Meteorological satellites: NOAA, METOP (EPS, JPSS),

Highly Elliptical Orbit (HEO)

- Height: variable
- Future meteorological satellites

http://oiswww.eumetsat.org/WEBOPS/eps-pg/IASI-L1/images/IASI_AMSU_HIRS_MHS_SCAN_PG.gif

Thinning/quality control

Available observations

Assimilated observations

