
Winterschool

 

on Data Assimilation, DWD, 15.2.2012

Part I: Introduction to satellite observations for 
NWP

Christina Köpken-Watts, Robin Faulwetter

Data assimilation FE12/Satellite data

Part II: 
Processing and assimilation 

of satellite radiances (at DWD)

Special : Satellite Data 

Robin Faulwetter, Christina Köpken-Watts
 Data assimilation FE12/Satellite data



Robin Faulwetter  – Winter school 15.02.2012

The
 

path
 

of a satellite
 

measurement
 

through
 

a NWP model

I.
 

Measurement
 

and transmission
 

to NWP centers
a)

 

Satellite

 

orbits
b)

 

Meteorological

 

instruments, measurement

 

principles
c)

 

Measurement

 

geometry
d)

 

Transmission of data

 

to earth
e)

 

Level-0 preprocessing
f)

 

Transmission to NWP center

II.

 

Pre-processing
 

in DWD
a)

 

Retrieve

 

data

 

from

 

bank, conversion
b)

 

Quality

 

control
c)

 

Mapping
d)

 

Further

 

stuff

III.

 

Assimilation
a)

 

Radiative

 

transfer
b)

 

Bias correction
c)

 

Cloud detection
d)

 

Thinning/quality

 

control
e)

 

Assimilation

IV.
 

Monitoring

Outline



Robin Faulwetter  – Winter school 15.02.2012

The
 

path
 

of a satellite
 

measurement
 

through
 

a NWP model
I.

 

Measurement
 

and transmission
 

to NWP center
a)

 

Satellite

 

orbits
b)

 

Meteorological

 

instruments, measurement

 

principles
c)

 

Measurement

 

geometry
d)

 

Transmission of data

 

to earth
e)

 

Level-0 preprocessing
f)

 

Transmission to NWP center

II.

 

Pre-processing
 

in DWD
a)

 

Retrieve

 

data

 

from

 

bank, conversion
b)

 

Quality

 

control
c)

 

Mapping
d)

 

Further

 

stuff

III.

 

Assimilation
a)

 

Radiative

 

transfer
b)

 

Bias correction
c)

 

Cloud detection
d)

 

Thinning/quality

 

control
e)

 

Assimilation

IV.
 

Monitoring



Robin Faulwetter  – Winter school 15.02.2012

Satellite
 

orbits: classification

GEO (Geo-stationary

 

orbit)
•

 

Height

 

~ 36000km
•

 

Period: 1 day

MEO (Medium Earth Orbit)
•

 

Height: 1200 –

 

36000 km
•

 

Period: ~ several

 

hours

LEO (Low Earth Orbit)
•

 

Height: 200 –

 

1200 km
•

 

Period: ~ 100 min

HEO

 

(Highly

 

Elliptical

 

Orbit)

http://anityonugroho.blogspot.com/2011/04/satellite-communication-part-1.htm
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Satellite
 

orbits: LEO

In the
 

absence
 

of external
 

forces
 

satellite
 

orbits
 

are
 confined

 
to fixed

 
planes in an inertial

 
system.

For LEO satellites
 

the
 

„orbital plane“
 

is
 

usually
 

inclined
 with

 
respect

 
to the

 
equator.

i : inclination
i  near

 
to 90°

 
→ “polar orbiter“

http://www.asc-csa.gc.ca/eng/educators/resources/orbital/tracks_ground.asp

Satellite
 

track
 

for
 

a 
non-rotating

 
Earth

As the
 

Earth rotates, the
 

satellite
 

tracks
 

move
 

westwards. 
Therefore, the

 
satellite

 
tracks

 
cover

 
a large fraction

 
of the

 
Earth.

Satellite
 

tracks
 

for
 

the
 rotating

 
Earth
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Satellite
 

orbits: Sun Synchronous
 

Orbit 
(SSO)

Due
 

to the
 

asymmetric
 

mass
•

 

Due to the Earths extra mass

 

near

 

the

 

equator, orbits

 

with

 inclinations

 

> 0°

 

are

 

not

 

fixed

 

in the

 

inertial

 

system. 
•

 

They

 

precess

 

with

 

a period

 

that

 

is

 

determined

 

by

 

the

 

height

 and inclination.
•

 

If

 

the

 

precession

 

period

 

is

 

one

 

year, the

 

orbit

 

is

 

sun-

 synchronous, i.e. the

 

angle θ

 

is

 

fixed.
The

 

satellite

 

crosses

 

the

 

equator

 

at a fixed

 

local

 

time →

 equator

 

crossing

 

time
-

 

Advantage: solar effects

 

are

 

constant
-

 

Disadvantage: the

 

diurnal

 

cycle

 

is

 

not

 

resolved.

http://www-

 
personal.umich.edu/~mjregan/MCu

 
bed/Images/M-Cubed 
Photos/Extra/O&C/orbit1.PNG

Sun Synchrounous
 

Orbit animation

http://www.esa.int/esaLP/ESAGJ1094UC_LPmetop_0.html
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Meteorological
 

instruments
 Measurement

 
principles

Active:
•

 

Radar
•

 

Lidar
•

 

Radiooccultations

Passive:
•

 

Radiance

 

measurements

Sounders

 

Imagers

 

Visible

 

Microwave

 

radiometers

 

interferometers
Infrared

•

 

AMVs

 

(derived

 

from

 

radiance

 

measurements)

Resolution Wavelength Measurement principle
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What
 

is
 

measured?

Measurement
 

principles

L : radiance

 

in units

 

of  W / (m2

 

cm sr)
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BkT
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Brightness
 

temperature
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Measurement
 

principles

http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/html/c1/sec1-1.htm

How
 

is
 

measured?

http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/images/fj3-5.gif

cone
angle
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Measurement
 

geometry

http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/html/c1/sec1-1.htm

Zenith and scan
 

angle Azimuth
 

angle
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Measurement
 

geometry

http://www.star.nesdis.noaa.gov/smcd/spb/LANDEM/website/instr_SSMI.phphttp://www.star.nesdis.noaa.gov/smcd/spb/LANDEM/website/instr_AIRS.php

Across-track
 

scan
 (AMSU, IASI, ATMS, CrIS

 

…)
Conical

 
scan

 (SSMI/S)
co

ne
an

gl
e

FOV (Field

 

Of View)
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Measurement
 

geometry

http://amsu.ssec.wisc.edu/explanation/amsua_scan_res.jpg
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Transmission of data
 

to Earth

http://www.eumetsat.int/groups/ops/documents/image/img_ada_data_dump.org http://www.eumetsat.int/groups/public/documents/image/img_ears_atovs_news.jpg

Complete
 

global datasets Local
 

datasets
 RARS –

 

Regional Advanced

 

Retransmission

 

Service
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Transmission of data
 

to Earth
Complete

 
global dataset Local

 
datasets

 
(RARS)
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Level-0 preprocessing: Level-0 -> Level-1b

•
 

Decommutation: split
 

data
 

into
 

separate datasets
 

for
 

each
 

instrument

•
 

Calibration: compute
 

calibration
 

coefficients

•
 

Navigation: compute
 

position
 

of satellite
 

on its
 

orbit, compute
 

geolocation
 

of 

measurements
 

(latitude, longitude, scan
 

angle, satellite/sun
 

zenith/azimuth
 angles, …

•
 

Conversion: convert
 

radiances
 

to brightness
 

temperatures

•
 

Flagging: flag
 

data
 

for
 

which
 

the
 

computation
 

of calibration
 

coefficients
 

or
 geolocation

 
failed

 
or

 
is

 
suspicious, …

Software package: AAPP
 

(ATOVS and AVHRR Pre-processing
 

Package)
OPS-LRS, ATOVPP, ATOVIN are

 
parts

 
of AAPP

Provided
 

by
 

NWPSAF
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Level 0 Raw data Reconstructed, unprocessed instrument and payload data at full resolution, with any and all 
communications artifacts (e. g., synchronization frames, communications headers, duplicate 
data) removed. 

Level 1a Raw data 
+ 

calibration 
info

Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated 
with ancillary information, including radiometric and geometric calibration coefficients and 
georeferencing parameters (e. g., platform ephemeris) computed and appended but not applied 
to the Level 0 data (or if applied, in a manner that level 0 is fully recoverable from level 1a data). 

Level 1b Calibrated 
data

Level 1a data that have been processed to sensor units (e. g., radar backscatter cross section, 
brightness temperature, etc.); not all instruments have Level 1b

 

data; level 0 data is not 
recoverable from level 1b data. 

Level 
1c/1d

Quality 
control

Level 1b data that have been quality controlled. If required, data from other instruments can be 
„mapped“

 

onto the data. Input to NWP models.

Level 2 Derived 
variables

Derived geophysical variables (e. g., ocean wave height, soil moisture, ice concentration) at the 
same resolution and location as Level 1 source data.

Level 3 Gridded 
data

Variables mapped onto uniform spacetime grid scales, usually with some completeness and 
consistency (e. g., missing points interpolated, complete regions mosaicked together from 
multiple orbits, etc). 

Level 4 Model 
data

Model output or results from analyses of lower level data (i. e., variables that were not measured 
by the instruments but instead are derived from these measurements). 

Level-0 preprocessing: data levels
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Data formats:
•

 

BUFR: Binary Universal Form for the Representation of meteorological data. Table 
driven format, most frequently used.

•

 

HRIT/LRIT/HRPT/LRPT: High/Low Rate Information/Picture Transmission. Used for 
data from geostationary satellites.

•

 

NetCDF: Network Common Data Format. Very flexible, binary, machine-independent 
data format designed to exchange scientific data.

•

 

HDF: Hierarchical Data Format. Very similar to NetCDF, even more universal.

Data transmission:
•

 

GTS: Global Telecommunication System. Global system for the rapid exchange of 
meteorological observations coordinated by the WMO.

•

 

EUMETCAST: EUMETSAT‘s primary dissemination mechanism for the near real-time 
delivery of satellite data. Uses commercial telecommunication satellites

•

 

FTP: data from non-operational satellites.

Transmission to NWP center

Excerpt from BUFR table D:
340001 (IASI Level 1c data) 

001007 Satellite identifier 
001031 Identification of originating/generating centre 
002019 Satellite instruments
002020 Satellite classification 
004001 Year 
004002 Month 
004003 Day 
004004 Hour 
004005 Minute 
004006 Second 
005001 Latitude (high accuracy) 
006001 Longitude (high accuracy) 
007024 Satellite zenith angle 
005021 Bearing or azimuth 
007025 Solar zenith angle 
005022 Solar azimuth 
005043 Field of view number 
005040 Orbit number 
005041 Scan line number 
025070 Major frame count 
007001 Height of station 
033060 GQisFlagQual 
033061 QGisQualIndex 
033062 QGisQualIndexLoc 
033063 QGisQualIndexRad 
033064 QGisQualIndexSpect 
033065 GQisSysTecSondQual 
101010 Repeat next 1 descriptor 10 times 
340002 IASI Level 1c band description 
101087 Repeat next 1 descriptor 87 times 
340003 IASI Level 1c 100 channel sequence 
002019 Satellite instruments 
025051 AVHRR channel combination 
340004 IASI Level 1c AVHRR single scene sequence 

Excerpt from BUFR table 002019:

.

.

.
220 ESA/EUMETSAT Spectrometer GOME-2 Global ozone monitoring experiment-2
221 CNES/EUMETSAT Atmospheric temperature IASI Infrared atmospheric sounding interferometer

and humidity sounder
240 CAST Communications DCP Data-collection platform transponder
.
.
.
570 NOAA Radiometer AMSU-A Advanced microwave sounding unit-A
574 NOAA Radiometer AMSU-B Advanced microwave sounding unit-B
580 NOAA Radiometer ATOVS  Advanced TIROS operational vertical sounder
.
.
.
620 NOAA Atmospheric temperature and CrIS Cross track infrared sounder/NPOESS

humidity sounder
621 NOAA Atmospheric temperature and ATMS Advanced technology microwave sounder

humidity sounder
.
.
.
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Process
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Retrieve data from bank, conversion

•
 

Retrieve data from bank:

-
 

In experiments make sure that the datasets are equal to those, that were 

used in the routine forecasts. 

-
 

For additional datasets make sure, that the routine cutoff times
 

are 

applied.

•
 

Conversion: BUFR -> NetCDF
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Quality control: motivation
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Quality control

•
 

Missing values:
 

check for missing values in variables, that are required later
•

 
Suspicious values:

 
Unrealistic brightness temperatues, latitudes, longitudes

•
 

Time: suspicious time sequences and times outside of the assimilation 
window

 
are discarded

•
 

Redundancy:
 

check for redundant data
•

 
Data flags:

 
check for data flags, that indicate that a measurement should not 

be used.
•

 
Physical tests:

-
 

from microwave data the surface type
 

can be estimated. If it is not
 consistent with the actual surface type, the measurement can be 

discarded.
-

 
Various scattering indices

 
exist, that indicate whether a measurement 

is disturbed by clouds/rain/aerosols.
-

 
If a 1dvar

 
retrieval of temperature does not converge, the 

measurement is discarded (not
 

operational).
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Mapping

http://oiswww.eumetsat.int/WEBOPS/eps-pg/IASI-L2/images/IASI_AMSU_HIRS_MHS_SCAN_PG.gif

It can be useful, if measurements of another instrument are available at the 
measurement locations

•
 

Quality control: use results from physical tests (e.g. surface type test)
•

 
Bias correction:

 
see later
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Further stuff

•

 

Topography within FOV 
(FOV=Field Of View): land fraction, 
surface type,

 

altitude…

Interferometers (IASI, CrIS):
•

 

Radiances → brightness 
temperatures

•

 

Thinning: for

 

each observation 
time measurements from multiple 
equal detectors (IASI:4, CrIS:9) are 
available. The best one is selected 
for futher use.
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What does the instrument „see“?

Radiative transfer: introduction

p
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Radiative transfer: weighting functions

Profiles Weighting functions
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Minimization of J
 

↔ ↔ ↔ weighting functions
L: upwelling radiation

B: Planck-function

εs

 

: surface emissivity

top

z

s

top

z

s

 
top

s

absszstops

top

s

abstopzsstops dzkTBdzkTBTBL )()1()()( ,,,, 

  2H... 1R
xy J

x
H

Radiative transfer

Earth

Atmosphere

How to assimilate such observations?

y: observations    x: model state    H(x): simulated observations

x
L

Radiative transfer equation:

τ: transmittance

kabs

 

: absorption coefficient

Ts

 

: surface skin temperature
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L: upwelling radiation

B: Planck-function

εs

 

: surface emissivity

Radiative transfer

τ: transmittance

kabs

 

: absorption coefficient

D: optical depth

 
top

s

absszstops

top

s

abstopzsstops dzkTBdzkTBTBL )()1()()( ,,,, 

dDdzkabs  De

  
top

s
topz

D
s

D
top

s
topz

D
ss

D dDTBeedDTBeTBeL sztopstopztops
,, )()1()()( ,,,, 

),,ncompositio chemical,( TpDD 

can be calculated with line-by-line models, but this is computationally 
extremely expensive.
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Radiative transfer: RTTOV

topssztopz DDD ,,, ,,

  
top

s
topz

D
s

D
top

s
topz

D
ss

D dDTBeedDTBeTBeL sztopstopztops
,, )()1()()( ,,,, 

RTTOV (Radiative Transfer for TOVS, fast radiative transfer model):

+ Scattering

FASTEM → εs


k

jk,kj,jj, Pa=D 1

T

z

q

Dj,j-1

 

: optical depths

LBL-model

Pk,j

 

:

 

predictors

Linear regression

Precision: ~0.1K
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Radiative transfer: RTTOV

Clouds, Scattering

D j,j− 1=D j,j− 1
clear +Dj,j− 1

scatt

RTTOV7
Explicit multiple scattering

RTTOV9/10
Scaling approximation

Precision: ~1K
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Radiative transfer: RTTOV

RTTOV (with FASTEM)

•

 

Atmospheric profiles: T, q, [cloud cover, water content, type, height]
•

 

(Near) surface conditions: Tskin

 

, T2m

 

, q2m

 

, u10m

 

, v10m

 

, sfc. type

•

 

Clear and cloudy brightness temperatures and radiances →

 

L →

 

H

•

 

Weighting functions  → →

•

 

Surface emissivity  →
 

εs

•

 

Optical depth   →
 

D

x
H

x
L

In
pu

t
O

ut
pu

t
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What is a bias?

E(y) = 0

E(y) ≠
 

0

Bias correction
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The problem of biases

Assumptions in 3D-Var:

E(εo ) = E(yo

 

– ytrue

 

) = 0  
E(εf

 

) = E(yf

 

– ytrue

 

) =  0     

Ideal

Bias correction

Bias
correction

Obs. Bias has to be corrected

εo

 

= yo

 

– ytrue    not known!

→ Consider obs. –
 

fg.

εo

 

≈
 

yo

 

– yf
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What we do

What we want

•
 

Correction of obs. biases heavily suffers from model bias

•
 

This is a desired effect. Due to the overcorrection the model is
 

not pulled 
away from its climate. 

Bias correction
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Bias correction

Types of biases:
•

 

Constant offset
•

 

Situation dependent bias
•

 

Scanline bias

Sources of biases:
•

 

Instrument problems
•

 

Forward model problems
(→ air-mass bias)

•

 

Model bias

Remark:
These error sources are also taken into for the 
“observation error“

 

covariance matrix:

http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/atovs/amsua/

      ...HH 1T   XYRXYJ

FOR 
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Microphysical properties of individual clouds are not well known,
Multiple scattering code not very precise

Cloud detection: motivation

Radiative transfer calculations are not good enough

Discard cloudy scenes
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AMSU-A has so-called „window-channels“, i.e. the 
weighting functions have their maxima at the Earth‘s 
surface.

•

 

Over sea:
determine ice fraction

•

 

Over ice and land:
determine surface type by comparison of εobs

 

‘s with 
emissivity model.

•

 

Check for rain/clouds:
-

 

Over sea: estimate LWP (Liquid Water Path):

-

 

Over snowfree land:

-

 

No check over snow

Cloud detection: AMSU-A

rainmm3.0 LWP
cloudsmm1.0 LWP

skinsfcB TT 

rainK3)15()1(  BB TT
Sea, Ice, cloud, rain

  watericeiceiceobs εf+εf=ε 1T B≈ εsfc T skin

Emissivity of different surface types
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Cloud detection: IASI  (McNally-Watts)

Courtesy Detlef Pingel
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Thinning/quality control

Available observations Assimilated observations
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The path of a satellite measurement through a NWP model
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Assimilation

Radiances
 

are
 

non-linearly
 

related
 

to model
 

parameters
•

 
OI method

 
(linear analysis

 
scheme): 

-
 

Radiances
 

have
 

to be
 

converted
 

into
 

T(p), q(p): External
 

retrieval
 

scheme.
 -

 
Error characteristics

 
of retrievals

 
are

 
complicated

•
 

Variational
 

methods
 

(e.g. 3DVar):
 -

 
Can

 
take

 
non-linear relationships

 
into

 
account

 -
 

Use
 

radiances/brightness
 

temperatures
 

-> errors
 

are
 

easier
 

to quantify

Model
background/FG

Xb

Observed
radiances

Y

Calculate:  
Yb = H (Xb

 

)
 H = interpolation

 

to OBS 
& radiative

 

transfer

 

model

Compare
Y - Yb

 

= 
OBS -

 

model

Compute
 new

 

X

Bias correction

 

of OBS

Iterate

 

to find model

 

state

 

X
that minimizes cost functionCourtesy Christina Köpken-Watts
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Monitoring

Bias corrected observations minus first guess
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Monitoring
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Summary

Questions?

• Sun-synchronous orbits

• Satellite tracks

• Measurement geometry

• BUFR

• RTTOV

• Bias correction

• Cloud detection
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Backup slides
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What is measured?

Meaurement principles
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Strategies to update coefficients:

•
 

Manually, “static“, operational

•
 

Automatic, “online“, experimental

•
 

Within 3D-Var minimization, “variational“, in progress

How to remove obs. biases?
yo → yo

 

+ b b = c + ∑i βi

 

Pi c, βi

 

: coefficients

Pi : state dependent 
predictors→ Minimization problem:  

→ solved by linear regression → c, βi

  min2  fo yby

Bias correction
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Cloud detection: AMSU-B



Robin Faulwetter  – Winter school 15.02.2012

Cloud detection: IR
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Satellite orbits: classification

Geo Synchronous Orbit (GSO)
Geo-stationary orbit
•

 

Height: 35786km
•

 

Period: 23h56m04s
•

 

Meteorological satellites: 
Meteosat, GOES, …

Medium Earth Orbit (MEO)
•

 

Height: 1200 –

 

35786 km
•

 

Period: ~ several hours
•

 

Navigation satellites: GPS, 
Galileo, GLONASS, …

Low Earth Orbit (LEO)
Sun Synchronous Orbit (SSO)
•

 

Height: 200 –

 

1200 km
•

 

Period: ~ 100 min
•

 

Meteorological satellites: 
NOAA, METOP (EPS, JPSS), 
…

Highly Elliptical Orbit (HEO)
•

 

Height: variable
•

 

Future meteorological 
satellites

http://anityonugroho.blogspot.com/2011/04/satellite-communication-part-1.htm
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Measurement geometry

http://oiswww.eumetsat.org/WEBOPS/eps-pg/IASI-L1/images/IASI_AMSU_HIRS_MHS_SCAN_PG.gif 
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Radiative transfer: weighting functions

Profiles Weighting functions



Robin Faulwetter  – Winter school 15.02.2012

Thinning/quality
 

control

Available
 

observations Assimilated
 

observations
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