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Models and Assimilation Systems at DWD

Present :

GME global 30 km 3D-Var–PSAS
COSMO-EU regional 7 km Nudging
COSMO-DE regional 2.8 km Nudging, Latent Heat Nudging

Future :

ICON global, regional refinements Hybrid 3D-Var/EnKF
COSMO-DE regional convective scale LETKF
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Course of this talk

Current operational system (3D-Var)
I Operational setup
I Algorithm (PSAS), inner & outer loop
I Observation operators, tangent linear & adjoint

Experimental LETKF
I Preliminary results

Localisation for remote sensing observations
Plans for the hybrid VarENKF

I Algorithm (additional control variables)
I Advantages

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 3 / 33



Operational global data assimilation

3D−Var
GME 3h

obs obs

obs

GME 7d

GME 3h

obs

3D−Var
GME 3h

3D−Var

2:15h cutofftime −>

Analysis cycle −>

Forecast −>

Cycled 3 hour GME forecast / 3D-Var analysis
Long term (7 day) forecast at 00 and 12 UT

I seperate (Hauptlauf) analysis with 2h15 cutoff
In addition (not shown)

I seperate (Hauptlauf) analysis with 2h15 cutoff
I additional forecasts (6,18 UT) for COSMO EU boundary conditions
I Sea Surface Analysis, Snow analysis
I Soil moisture analysis
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01.06.2010 2Thomas Hanisch, DWD/FE13

Operational timetable
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dataflow
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Operations / Pre-operations / Experiments

On sxw (vector computer) / lxw (Linux Cluster) – (Offenbach) :

Operations

Pre-operational suite (currently GME 20km)

On sxe / lxe – (currently in Ludwigshafen) :

Experiments
I NUMEX (numerical experimentation system)

mimics dependencies in routine setup
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3D-Var – PSAS Algorithm

Minimize cost function:

J =
1

2
(x− xb)TB−1(x− xb) +

1

2
(y −H(xb))TR−1(y −H(xb))

For the linear case (H(x)→ Hx) we can derive the following linear
equation for the analysis xa which minimizes J:

xa − xb = BHT (HBHT + R)−1(y −H(xb))

Size of B, x : nx ≈ 108 (number of model variables)
Size of R, y : ny ≈ 106 (number of observations)

How to solve this equation on the Computer ?

We use an iterative Conjugate Gradient algorithm.

Then we need not represent the matrices B,R,H,HT

We merely need routines that calculate the respective matrix products
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3D-Var PSAS - Observation Operator

xa − xb = BHT (HBHT + R)−1(y −H(xb))

Observation operator H(x)

Calculates the model equivalent to the observations from the model state

H(x) = Hi (Ho(x))
Hi : Interpolation to the location to the observation
Ho : Observation operator (may be complex: RTTOV, occultations)

Realised by respective subroutines
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3D-Var PSAS - Linearised Observation Operator

xa − xb = BHT (HBHT + R)−1(y −H(xb))

H linearised observation operator

defined by the Jakobian of H

H =
d

dx
H(x)

i.e. we have to differentiate H with respect to x

If the have a computer code that calculates H(x) we can obtain a code
that calculates Hx by application of the chain rule (line by line) to that
code (automatic differentiation).

H3(H2(H1(x))) = H3H2H1x

The linearised observation operator Ho for radiance assimilation is
included in the RTTOV package.
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3D-Var PSAS - Adjoint Observation Operator

xa − xb = BHT (HBHT + R)−1(y −H(xb))

For the L2 norm used here the adjoint is given by the the transposed
matrix.

We have:
HT = (H3H2H1)T = HT

1 HT
2 HT

3

Thus we can apply the chain rule in reversed order line by line to the code
that calculates H(x) (automatic differentiation).

The adjoint observation operator HT
o for radiance assimilation is included

in the RTTOV package as well.
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3D-Var PSAS - B-Matrix

xa − xb = BHT (HBHT + R)−1(y −H(xb))

The background error covariance matrix is a large dense matrix in model
space.

As shown in Harald Anlaufs talk we represent it by a sparse approximation
in wavelet transformed space Bw :

B = WBwWT

In fact we use a sparse square root representation: Bw = B
1/2
w B

1/2
w

T

W,WT are realised by the respective wavelet transformation routines.

Bw is not defined on the model grid but on a lat-lon grid.
Thus in HBHT and BHT the operators H,HT include interpolation
operators to the respective grid.
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3D-Var PSAS - R-Matrix

xa − xb = BHT (HBHT + R)−1(y −H(xb))

In general R is diagonal or at least sparse.

Thus R can be represented explicitly.
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3D-Var PSAS Conjugate Gradient Algorithm

xa − xb = BHT (HBHT + R)−1(y −H(xb))

We solve the linear set of equations for z
by a preconditioned CG algorithm in observation space:

(HBHT + R) z = y −H(xb)

That requires of order 15 to 25 iterations.

Finally the postmultiplication step to model space is required:

xa − xb = BHT z
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3D-Var PSAS – Outer Loop

The CG algorithm solves the linear problem:

(HBHT + R) z = y −H(xb)

In order to solve the full nonlinear problem we have to iterate in an outer
loop:

1) Solve the linear system for an estimate zi

2) Re-linearise at the new estimate:

a) recalculate the right hand side
b) linearise H to obtain H
c) replace R by the inverse Hessian of Jo in case of VQC.

3) Proceed with 1).

After ≈ 10 outer loops our convergence criterium is met.
In order to ensure convergence we perform a line serch after each CG step.
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3D-Var PSAS Algorithm – Line Search Monitoring
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Remarks on the Convergence

For conventional data we can find the minimum of the cost function
exactly.

For more complex operators minimisation does fail earlier if H is not
sufficiently accurate.

For practical porposes minimisation is stopped then the accuracy of the
solution is small compared to the specified background and observational
errors.
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Global LETKF for GME - Formulation

LETKF following Hunt & al

Apply the square root formulation of EnKF at every model gridpoint

Use Observations in the vicinity of the gridpoint, with R−1 scaled in
dependence on the distance using the Gaspari & Cohn function.

Use this localisation in the vertical and horizontal.
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Global LETKF for GME - Setup

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 7d

GME 7d

GME 7d

GME 7d

obsobs obs

LETKF LETKF

Forecast −>

Analysis cycle −>

time −>
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GME LETKF experiments

Setup:
I GME (ni=64), 6 hourly cycle, 32 ensemble members, 15 day period.

Parameters changed:
I Model error

F additive model error (random noise generated by 3D-Var-B)
F multiplicative inflation

I Observations
F conventional data only
F conventional data + AMSU-A
F artifitial data (nature run + gaussian noise on observations)

I Localisation length scale
F 200, 300, 500 km

Results:
I Additive model error with 300 km localisation length scale works best.
I Strong positive impact of AMSU-A in SH
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Global LETKF Experiments:
32 members, ni=64, 10 days of 6 h cycling

Spatial distribution of spread and rmse
Dependence on data density

Meridional distribution of rmse (o) and spread (o).
500 hPa first guess temperature.

Without (left) and with (right) assimilation of AMSU-A.
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Global LETKF: Temporal evolution of spread and rmse
.

850 hPa zonal wind (u)
Temporal evolution of first guess ensemble spread (+) and rmse (o)
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Status: Global LETKF

rmse/spread correlation as a function of height (SH, TR, NH)
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Global LETKF: Forecast uncertainty
.

RMSE of deterministic forecast
RMSE of ensemble mean

Ensemble spread

for 12, 24, 48, 72, 120, 168h forecasts of surface pressure (hPa).
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Model error: Backscatter algorithm

As an alternative for the 3D-Var-B additive model error formulation the
backscatter algorithm was explored by Jason Ambadan (cf. Poster)
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Localisation for remote sensing observations
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Localisation on B

The ensebmble covariance matrix is rank deficient.
Compare: number of degrees of freedom vs. ensemble size.

Small entries of the empirical correlation matrix S are uncertain:
σ2

ij ≡ E
{

(Sij − Bij)
2
}

= 1
N−1

[
BiiBjj + (Bij)

2
]

Remedy: force small matrix elements to zero,
i.e. Multiply ensemble covariance matrix B element by element
(Schur product ◦) with a localisation matrix C.
Choice of C:

I C positive definite (so that C ◦ B is a valid covariance matrix).
I Cii = 1, Cij = 0 for large distances.

These requirements are fullfilled for the pieacewise rational functions
proposed by Gaspary + Cohn.
Choices for implementation:

I Explicit Schur product:
too expensive

I Variational formulation:
(uses operator implementation of C1/2 · x)
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Localisation in observation space
In situ observations:

I The Kalman gain equations use matrices BHT and HBHT .
I H(C ◦ B)HT is equivalent to C ◦ (HBHT );

(C ◦ B)HT is equivalent to C ◦ (BHT ).
I Fast (parallel) implementations exist.

(size of observation space << model space).

Remote sensing observations:
Localisation on B is different from localisation in observational space.
Implementation:

I assign a nominal position to the remote sensing observation.
(in order to specify Cij)

Choices:
I Apply: C ◦ (HBHT ).
I Apply: C ◦ (R−1) (Hunt et al.)

Drawback
I H(C ◦ B)HT is not equivalent to C ◦ (HBHT ).
I C ◦ (HBHT ) is sub-optimal.
I same applies to Hunt et al. algorithm
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Localisation on R (Hunt et al.)

LETKF algorithm proposed by Hunt et al.
I Perform local analyses at each model gridpoint
I Use observations only within a prescribed localisation distance
I Weight of observations continuously approaches zero at bounds of

localisation volume.
(i.e. weight R−1)

Advantage
I fast
I no constraints on weight function

(varying localisation length scale)

Disadvantage
I inconsistent and suboptimal approach for remote sensing data
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Plan for a Variational EnKF
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Plan for a Variational EnKF

Integrate the EnKF and the 3D-Var in a hybrid system

Use the information from a lower dimensional EnKF for the update of
the higher dimensional deterministic forecast.

Method: use an operator implementation of the square root of the
localisation matrix.
Corresponds to the additional control variable approach (Mark
Buehner)
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Variational EnKF for GME/ICON

GME ens

GME ens

GME ens

GME ens

GME ens

GME ens

GME ens

GME ens

GME det

obs

GME det
3D−Var

EnKF

time → ← analysis cycle interval→
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VarEnKF: Formulation

3D-Var update:

xa − xb = BHT (HBHT + R)−1(y −H(xb))

Replace B by an operator implementation of the localized ensemble
B-matrix:
B→ C ◦ (WWT )

We need an operator implementation of the square root of the localisation
matrix C:
C = LLT

Then (cf talk by Tijana):
C ◦WWT = (WL)(WL)T

We can even replace the original B by a weighted sum:
B→ αB3DVar + βC ◦ (WWT )
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VarEnKF: Advantages

Advantages
I Smooth transition between 3D-Var and EnKF
I Deterministic analysis using Ensemble B (and 3D-Var B)
I Variational Quality Control applicable
I Varational bias correction applicable
I Consistent handling of remote sensing observations

(localisation on B)
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