Variational Data Assimilation

George C. Craig

Ludwig-Maximilians-Universität, München

Outline

Lecture 1

\rightarrow Cost function
\rightarrow Observation operator
\rightarrow Math aside:
\rightarrow Multivariate Gaussian
\rightarrow Multivariate Taylor series
\rightarrow 3DVAR solution!
\rightarrow Observation errors

Lecture 2

\rightarrow Background errors
\rightarrow Time of observations FGAT
\rightarrow 4DVAR cost function
\rightarrow Math aside:
\rightarrow Tangent linear model
\rightarrow Adjoint
\rightarrow 4DVAR solution

The cost function

\rightarrow Given: background forecast w^{b} and observation f
\rightarrow Goal is to find an analysis w^{a}, that best matches both, taking into account their (squared) errors B and R
\rightarrow Least squares estimate - minimize cost function

$$
J(w)=\frac{\left(w^{b}-w\right)^{2}}{B}+\frac{(f-w)^{2}}{R}
$$

The analysis

$\rightarrow J$ has minimum where $\nabla J=0$
\rightarrow So analysis w^{a} is solution of a linear equation:

$$
\frac{d J}{d w}=B^{-1}\left(w^{b}-w\right)+R^{-1}(f-w)=0
$$

\rightarrow Solution is error-weighted average

$$
w^{a}=\frac{B^{-1}}{B^{-1}+R^{-1}} w^{b}+\frac{R^{-1}}{B^{-1}+R^{-1}} f
$$

\rightarrow This is Best Linear Unbiased Estimator (BLUE) if the errors in w^{b} and f are Gaussian distributed, with mean 0 and variance B and R, resp.

Observation operators

\rightarrow Problem: f does not match w
\rightarrow Wrong location (in between grid points)
\rightarrow Wrong quantity (e.g. radiance)
\rightarrow No problem: use forward model to estimate what observations should look, given the model state
$\rightarrow H(w)$ are simulated observations that can be compared with f
\rightarrow Cost function is now:

$$
J(w)=B^{-1}\left(w^{b}-w\right)^{2}+R^{-1}(f-H(w))^{2}
$$

\rightarrow To minimize, $(\nabla J=0)$ need derivatives of H

The (new) analysis

\rightarrow Approximate by Taylor series

$$
H(w)=H\left(w^{b}\right)+H^{\prime}\left(w^{b}\right)\left(w-w^{b}\right)+\ldots
$$

\rightarrow If we keep only the first derivative, $\operatorname{grad}(\mathrm{J})=0$ is again a linear equation for w^{a}

$$
\frac{d J}{d w}=B^{-1}\left(w^{b}-w\right)+R^{-1}\left(f-H\left(w^{b}\right)-H^{\prime}\left(w^{b}\right)\left(w-w^{b}\right)\right)=0
$$

\rightarrow Solution is still a weighted average, but can also be written:

$$
w^{a}=w^{b}+\frac{B}{R} H^{\prime}\left(w^{b}\right)\left(f-H\left(w^{b}\right)-H^{\prime}\left(w^{b}\right)\left(w-w^{b}\right)\right)
$$

\rightarrow Background forecast is adjusted in proportion to the disagreement with observations

Math aside: Gaussian

\rightarrow Assume f drawn from a Gaussian distribution

$$
\begin{aligned}
p(f) & =(2 \pi R)^{-1 / 2} \exp \frac{\left(f-f^{\text {true }}\right)^{2}}{R} \\
& =(2 \pi R)^{-1 / 2} \exp \left[\left(f-f^{\text {true }}\right) R^{-1}\left(f-f^{\text {true }}\right)\right]
\end{aligned}
$$

$\rightarrow B$ is the background error variance

$$
R=\mathrm{E}\left[\left(f-f^{\text {true }}\right)^{2}\right]
$$

$\rightarrow \mathrm{E}[\ldots]$ is expectation, i.e. average over many trials

Math aside: Multivariate Gaussian

\rightarrow For a vector of observations \mathbf{f}

$$
p(\mathbf{f})=(2 \pi \operatorname{det}(\mathbf{R}))^{-1 / 2} \exp \left[\left(\mathbf{f}-\mathbf{f}^{\text {true }}\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{f}-\mathbf{f}^{\text {true }}\right)\right]
$$

$\rightarrow \mathrm{R}$ is now a covariance matrix
$\mathbf{R}=\mathrm{E}\left[\left(\mathbf{f}-\mathbf{f}^{\text {true }}\right)\left(\mathbf{f}-\mathbf{f}^{\text {true }}\right)^{\mathrm{T}}\right]=\mathrm{E}\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\mathrm{T}}\right]=\mathrm{E}$

$$
\left(\begin{array}{ccc}
\varepsilon_{1}^{2} & \varepsilon_{1} \varepsilon_{2} & \cdots \\
\varepsilon_{2} \varepsilon_{1} & \varepsilon_{2}^{2} & \\
\vdots & & \ddots
\end{array}\right.
$$

Math aside: A 2D Gaussian function

\rightarrow 2d Gaussian has errors in ϵ variable
\rightarrow Here errors in x and y have strong positive correlation

The 3DVAR cost function

\rightarrow Given: background forecast \mathbf{w}^{b} and observations \mathbf{f}
\rightarrow Goal is to find an analysis $\boldsymbol{w}^{\text {a }}$, that best matches both, taking into account their error covariances \mathbf{B} and \mathbf{R}
\rightarrow Least squares estimate - minimize cost function

$$
J(\mathbf{w})=\left(\mathbf{w}-\mathbf{w}^{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{w}-\mathbf{w}^{b}\right)+(\mathbf{f}-H(\mathbf{w}))^{T} \mathbf{R}^{-1}(\mathbf{f}-H(\mathbf{w}))
$$

\Rightarrow But, to find $\operatorname{grad}(J)=0$, need to take derivatives of $H\left(w^{b}\right)$

Math aside 2: Taylor series and Jacobian matrix

$\rightarrow 1$ dimensional Taylor series:

$$
H(w)=H\left(w^{b}\right)+\left.\frac{d H}{d w}\right|_{w=w^{b}}\left(w-w^{b}\right)+\ldots
$$

$\rightarrow 2$ dimensional version:

$$
\begin{aligned}
& H_{1}(\mathbf{w})=H_{1}\left(\mathbf{w}^{b}\right)+\left.\frac{\partial H_{1}}{\partial w_{1}}\right|_{\mathbf{w}=\mathbf{w}^{b}}\left(w_{1}-w_{1}^{b}\right)+\left.\frac{\partial H_{1}}{\partial w_{2}}\right|_{\mathbf{w}=\mathbf{w}^{b}}\left(w_{2}-w_{2}^{b}\right)+\ldots \\
& H_{2}(\mathbf{w})=H_{2}\left(\mathbf{w}^{b}\right)+\left.\frac{\partial H_{2}}{\partial w_{1}}\right|_{\mathbf{w}=\mathbf{w}^{b}}\left(w_{1}-w_{1}^{b}\right)+\left.\frac{\partial H_{2}}{\partial w_{2}}\right|_{\mathbf{w}=\mathbf{w}^{b}}\left(w_{2}-w_{2}^{b}\right)+\ldots
\end{aligned}
$$

Math aside 2: Taylor series and Jacobian matrix

\rightarrow Multi-dimensional Taylor series:

$$
H(\mathbf{w})=H\left(\mathbf{w}^{b}\right)+\mathbf{H}\left(\mathbf{w}^{b}\right)\left(\mathbf{w}-\mathbf{w}^{b}\right)+\ldots
$$

$\rightarrow \mathbf{H}$ is the matrix of first derivatives (Jacobian)

$$
\mathbf{H}=\left(\begin{array}{cccc}
\frac{\partial H_{1}}{\partial w_{1}} & \frac{\partial H_{1}}{\partial w_{2}} & . . & \frac{\partial H_{1}}{\partial w_{m}} \\
\frac{\partial H_{2}}{\partial w_{1}} & \frac{\partial H_{2}}{\partial w_{2}} & & \\
: & & \ddots & : \\
\frac{\partial H_{m}}{\partial w_{1}} & & . . & \frac{\partial H_{m}}{\partial w_{n}}
\end{array}\right)
$$

Incremental 3DVAR

\rightarrow If background forecast is good, i.e. \mathbf{w}^{a} close to \mathbf{w}^{b}, can approximate H by linear function $H(\mathbf{w})=H\left(\mathbf{w}^{b}\right)+\mathbf{H}\left(\mathbf{w}-\mathbf{w}^{b}\right)$

$$
\begin{aligned}
J(\mathbf{w})= & \left(\mathbf{w}-\mathbf{w}^{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{w}-\mathbf{w}^{b}\right) \\
& +\left(\mathbf{f}-H\left(\mathbf{w}^{b}\right)-\mathbf{H}\left(\mathbf{w}-\mathbf{w}^{b}\right)\right)^{T} \mathbf{R}^{-1}\left(\mathbf{f}-H\left(\mathbf{w}^{b}\right)-\mathbf{H}\left(\mathbf{w}-\mathbf{w}^{b}\right)\right)
\end{aligned}
$$

\rightarrow Rewrite cost function in terms of analysis increments $\delta \mathbf{w}=\mathbf{w}-\mathbf{w}^{b}$ and observation increments (innovations) $\boldsymbol{f}=\mathbf{f}-H\left(\mathbf{w}^{b}\right)$

$$
J(\delta \mathbf{w})=(\delta \mathbf{w})^{T} \mathbf{B}^{-1}(\delta \mathbf{w})+(\delta \mathbf{f}-\mathbf{H} \delta \mathbf{w})^{T} \mathbf{R}^{-1}(\delta \mathbf{f}-\mathbf{H} \delta \mathbf{w})
$$

The 3DVAR analysis

$\rightarrow J$ has minimum where $\nabla J=0$

$$
\nabla J=\mathbf{B}^{-1} \delta \mathbf{w}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H} \delta \mathbf{w}-\mathbf{H}^{T} \mathbf{R}^{-1} \delta \mathbf{f}=0
$$

\rightarrow So analysis \mathbf{w}^{a} is solution of a system of linear equations:

$$
\left(\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right) \delta \mathbf{w}=\mathbf{H}^{T} \mathbf{R}^{-1} \delta \mathbf{f}
$$

\rightarrow DONE!
\rightarrow...but
\rightarrow Dimension of \mathbf{w} is $n \sim 10^{7}$, so \mathbf{B} has of order 10^{14} elements - 100 TB
\rightarrow Call your numerical analyst, HPC vendor, and think hard about simplifying
\rightarrow Iterative methods, Pre-conditioning, Outer loop??

Time of observations

\rightarrow In 3DVAR, all observations are assumed to be at the same time
\rightarrow Actually collected over a short time window, e.g. plus/minus 1 hour

Observation error covariance matrix \mathbf{R}

$\rightarrow 3$ sources of error
\rightarrow Instrument error
\rightarrow Representativity error (e.g. observation is a point value, but model predicts a grid-box average)
\rightarrow Forward model error
\rightarrow Mostly uncorrelated
\rightarrow Where does it come from? - observation expert (works in DA group)

Example of representativity error

\rightarrow Lidar humidity

Outline

Lecture 1

\rightarrow Cost function
\rightarrow Observation operator
\rightarrow Math aside:
\rightarrow Multivariate Gaussian
\rightarrow Multivariate Taylor series
\rightarrow 3DVAR solution!
\rightarrow Observation errors

Lecture 2

\rightarrow Background errors
\rightarrow Time of observations FGAT
\rightarrow 4DVAR cost function
\rightarrow Math aside:
\rightarrow Tangent linear model
\rightarrow Adjoint
\rightarrow 4DVAR solution

