

Variational Data Assimilation

George C. Craig Ludwig-Maximilians-Universität, München

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Outline

Lecture 1

- Cost function
- Observation operator
- ➔ Math aside:
 - Multivariate Gaussian
 - Multivariate Taylor series
- 3DVAR solution!
- Observation errors

Lecture 2

- Background errors
- Time of observations FGAT
- 4DVAR cost function
- Math aside:
 - Tangent linear model
 - Adjoint
- 4DVAR solution

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

The cost function

- \rightarrow Given: background forecast w^b and observation f
- ➔ Goal is to find an analysis w^a, that best matches both, taking into account their (squared) errors B and R
- → Least squares estimate minimize cost function

$$J(w) = \frac{(w^{b} - w)^{2}}{B} + \frac{(f - w)^{2}}{R}$$

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

The analysis

- → *J* has minimum where $\nabla J = 0$
- \rightarrow So analysis w^a is solution of a linear equation:

$$\frac{dJ}{dw} = B^{-1}(w^b - w) + R^{-1}(f - w) = 0$$

➔ Solution is error-weighted average

$$w^{a} = \frac{B^{-1}}{B^{-1} + R^{-1}} w^{b} + \frac{R^{-1}}{B^{-1} + R^{-1}} f$$

This is Best Linear Unbiased Estimator (BLUE) if the errors in w^b and f are Gaussian distributed, with mean 0 and variance B and R, resp.

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Observation operators

- Problem: f does not match w
 - → Wrong location (in between grid points)
 - → Wrong quantity (e.g. radiance)
- No problem: use forward model to estimate what observations should look, given the model state
- \rightarrow H(w) are simulated observations that can be compared with f
- ➔ Cost function is now:

$$J(w) = B^{-1}(w^b - w)^2 + R^{-1}(f - H(w))^2$$

→ To minimize, $(\nabla J = 0)$ need derivatives of *H*

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

The (new) analysis

➔ Approximate by Taylor series

$$H(w) = H(w^{b}) + H'(w^{b})(w - w^{b}) + \dots$$

 \rightarrow If we keep only the first derivative, grad(J) = 0 is again a linear equation for w^a

$$\frac{dJ}{dw} = B^{-1}(w^b - w) + R^{-1}(f - H(w^b) - H'(w^b)(w - w^b)) = 0$$

→ Solution is still a weighted average, but can also be written:

$$w^{a} = w^{b} + \frac{B}{R}H'(w^{b})(f - H(w^{b}) - H'(w^{b})(w - w^{b}))$$

 Background forecast is adjusted in proportion to the disagreement with observations

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Math aside: Gaussian

➔ Assume f drawn from a Gaussian distribution

$$p(f) = (2\pi R)^{-1/2} \exp \frac{\left(f - f^{true}\right)^2}{R}$$
$$= (2\pi R)^{-1/2} \exp \left[\left(f - f^{true}\right) R^{-1} \left(f - f^{true}\right)\right]$$

 \rightarrow *B* is the background error variance

$$R = \mathrm{E}\left[\left(f - f^{true}\right)^2\right]$$

 \rightarrow E[...] is expectation, i.e. average over many trials

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Math aside: Multivariate Gaussian

➔ For a vector of observations f

$$p(\mathbf{f}) = \left(2\pi \det(\mathbf{R})\right)^{-1/2} \exp\left[\left(\mathbf{f} - \mathbf{f}^{true}\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{f} - \mathbf{f}^{true}\right)\right]$$

⇒ R is now a covariance matrix

$$\mathbf{R} = \mathbf{E} \left[\left(\mathbf{f} - \mathbf{f}^{true} \right) \left(\mathbf{f} - \mathbf{f}^{true} \right)^{\mathrm{T}} \right] = \mathbf{E} \left[\mathbf{\epsilon} \mathbf{\epsilon}^{\mathrm{T}} \right] = \mathbf{E} \left[\mathbf{E} \left[\mathbf{\epsilon} \mathbf{\epsilon}^{\mathrm{T}} \right] = \mathbf{E} \left[\mathbf{E} \left[\mathbf{E} \left[\mathbf{E} \right] = \mathbf{$$

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Math aside: A 2D Gaussian function

- 2d Gaussian has errors in e variable
- Here errors in x and y have strong positive correlation

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

The 3DVAR cost function

- ➔ Given: background forecast w^b and observations f
- ➔ Goal is to find an analysis w^a, that best matches both, taking into account their error covariances B and R
- ➔ Least squares estimate minimize cost function

$$J(\mathbf{w}) = (\mathbf{w} - \mathbf{w}^b)^T \mathbf{B}^{-1} (\mathbf{w} - \mathbf{w}^b) + (\mathbf{f} - H(\mathbf{w}))^T \mathbf{R}^{-1} (\mathbf{f} - H(\mathbf{w}))$$

 \rightarrow But, to find grad(J) = 0, need to take derivatives of $H(\mathbf{w}^b)$

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Math aside 2: Taylor series and Jacobian matrix

➔ 1 dimensional Taylor series:

$$H(w) = H(w^{b}) + \frac{dH}{dw}\Big|_{w=w^{b}} (w - w^{b}) + \dots$$

➔ 2 dimensional version:

$$\begin{aligned} H_1(\mathbf{w}) &= H_1(\mathbf{w}^b) + \frac{\partial H_1}{\partial w_1} \bigg|_{\mathbf{w} = \mathbf{w}^b} \left(w_1 - w_1^b \right) + \frac{\partial H_1}{\partial w_2} \bigg|_{\mathbf{w} = \mathbf{w}^b} \left(w_2 - w_2^b \right) + \dots \\ H_2(\mathbf{w}) &= H_2(\mathbf{w}^b) + \frac{\partial H_2}{\partial w_1} \bigg|_{\mathbf{w} = \mathbf{w}^b} \left(w_1 - w_1^b \right) + \frac{\partial H_2}{\partial w_2} \bigg|_{\mathbf{w} = \mathbf{w}^b} \left(w_2 - w_2^b \right) + \dots \end{aligned}$$

Math aside 2: Taylor series and Jacobian matrix

➔ Multi-dimensional Taylor series:

$$H(\mathbf{w}) = H(\mathbf{w}^b) + \mathbf{H}(\mathbf{w}^b)(\mathbf{w} - \mathbf{w}^b) + \dots$$

➔ H is the matrix of first derivatives (Jacobian)

$$\mathbf{H} = \begin{pmatrix} \frac{\partial H_1}{\partial w_1} & \frac{\partial H_1}{\partial w_2} & \cdots & \frac{\partial H_1}{\partial w_m} \\ \frac{\partial H_2}{\partial w_1} & \frac{\partial H_2}{\partial w_2} & \cdots & \vdots \\ \frac{\partial H_m}{\partial w_1} & \cdots & \frac{\partial H_m}{\partial w_n} \end{pmatrix}$$

Incremental 3DVAR

→ If background forecast is good, i.e. w^a close to w^b, can approximate H by linear function H(w) = H(w^b) + H(w - w^b)

$$J(\mathbf{w}) = (\mathbf{w} - \mathbf{w}^b)^T \mathbf{B}^{-1} (\mathbf{w} - \mathbf{w}^b) + (\mathbf{f} - H(\mathbf{w}^b) - \mathbf{H}(\mathbf{w} - \mathbf{w}^b))^T \mathbf{R}^{-1} (\mathbf{f} - H(\mathbf{w}^b) - \mathbf{H}(\mathbf{w} - \mathbf{w}^b))$$

→ Rewrite cost function in terms of analysis increments ∂w = w - w^b and observation increments (innovations)∂f = f - H(w^b)

$$J(\delta \mathbf{w}) = (\delta \mathbf{w})^T \mathbf{B}^{-1} (\delta \mathbf{w}) + (\delta \mathbf{f} - \mathbf{H} \delta \mathbf{w})^T \mathbf{R}^{-1} (\delta \mathbf{f} - \mathbf{H} \delta \mathbf{w})$$

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

The 3DVAR analysis

→ *J* has minimum where $\nabla J = 0$

$$\nabla J = \mathbf{B}^{-1} \delta \mathbf{w} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} \delta \mathbf{w} - \mathbf{H}^T \mathbf{R}^{-1} \delta \mathbf{f} = 0$$

 \rightarrow So analysis **w**^{*a*} is solution of a system of linear equations:

$$(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}) \delta \mathbf{w} = \mathbf{H}^T \mathbf{R}^{-1} \delta \mathbf{f}$$

- ➔ DONE!
- → …but
- → Dimension of w is $n \sim 10^7$, so B has of order 10^{14} elements 100 TB
- → Call your numerical analyst, HPC vendor, and think hard about simplifying
- → Iterative methods, Pre-conditioning, Outer loop??

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Time of observations

- → In 3DVAR, all observations are assumed to be at the same time
- → Actually collected over a short time window, e.g. plus/minus 1 hour

Observation error covariance matrix R

- ➔ 3 sources of error
 - Instrument error
 - Representativity error (e.g. observation is a point value, but model predicts a grid-box average)
 - Forward model error
- Mostly uncorrelated
- → Where does it come from? observation expert (works in DA group)

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Example of representativity error

➔ Lidar humidity

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Outline

Lecture 1

- Cost function
- Observation operator
- ➔ Math aside:
 - Multivariate Gaussian
 - Multivariate Taylor series
- 3DVAR solution!
- Observation errors

Lecture 2

- Background errors
- Time of observations FGAT
- 4DVAR cost function
- Math aside:
 - Tangent linear model
 - Adjoint
- 4DVAR solution

