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outline

COSMO consortium

HErZ

LAM’s at DWD

current DA system: nudging, observation network

KENDA project: LETKF

LETKF: first results

LETKF: next steps

outlook, open questions
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COSMO consortium

COSMO countries: D, CH, I, RO, RU, GRE, PL

Fig.1: COSMO countries (green), super computers
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Research environment: HErZ

HErZ: Hans-Ertel Zentrum
Data assimilation: LMU Munich, DLR

projects:
I Observation impact studies
I use of satellite data
I uncertainties in EPS
I DA algorithms for the convective scale

Hendrik Reich () DWD Systems II: COSMO 13-17. February 2012 4 / 47



DWD systems: model hierarchy

COSMO-DE
COSMO-EU

GME/(ICON)

Fig.2: DWD models: GME, COSMO-EU and COSMO-DE
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DWD systems: local models

COSMO-EU
I region: Europe
I 7km horizontal resolution, 40 vertical levels
I 665*657*40 grid points; forecast range up to 78h
I time step 66 sec.

COSMO-DE
I region: Germany and parts of neighbouring countries
I 2.8 km horizontal resolution, 50 vertical levels
I 421*461*50 grid points
I forecast range 21h, forecast every 3h (00,03, ... UTC)
I time step 25 sec.
I nonhydrostatic model
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COSMO-DE EPS

developed at FE15, preoperational

Fig.3: COSMO-DE EPS setup
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operational schedule

Fig.4: “Modell-Uhr”, model-clock
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experimental system: NUMEX

Fig.5: programs/models in NUMEX, now with LETKF!
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COSMO DA: observation network

Fig.6: radiosondes, wind profiler, aircraft reports; SYNOP stations not shown here
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radar network

Fig.7: radar network; area covered by radars (left), snapshot (right)
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nudging
Method: dynamic relaxation against observations

∂

∂t
Ψ(x , t) = F (Ψ, x , t) + GΨ ·

∑
k(obs)

Wk · [Ψk − Ψ(xk , t)]

GΨ determines the characteristic
time scale for relaxation

The weight Wk for the model
grid point (x , t) depends on:

I time difference to observation
(wt)

I spatial distance to observation
(wxy , wz)

I observation and model errors
(qk)
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nudging ctd.

analysed variables: horizontal wind (u, v), temperature (T ), relative humidity (rh),

’near-surface’ pressure (pp)
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LETKF/KENDA

LETKF: Local Ensemble Transform Kalman Filter
I GME (ICON): very basic setup available
I hybrid version with 3dVar planned (following Buehner et al.)

KENDA: Kilometerscale Ensemble Data Assimilation
I priority project within COSMO consortium
I LETKF for the nonhydrostatic COSMO-DE model of DWD

COSMO-DE domain

(≈ 1200 km x 1200 km)
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LETKF basics

Implementation following Hunt et al., 2007

basic idea: do analysis in the space of the ensemble perturbations
I computational efficient, but also restricts corrections to subspace

spanned by the ensemble
I explicit localization (doing separate analysis at every grid point, select

only certain obs)
I analysis ensemble members are locally linear combination of first guess

ensemble members
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LETKF setup (COSMO)

LETKF
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COSMO

technical setup of COSMO-LETKF:

obs-fg (netcdf) and grib files written during integration by COSMO, LETKF reads these

files, computes analysis, start COSMO again...
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LETKF experiments

technical implementation of experiments (up to now):
I stand-alone LETKF script environment to run COSMO-DE LETKF +

diagnostics / plotting
I toy model (Lorenz-96,40 grid points) to test LETKF components

experiments with successive LETKF assimilation cycles (32 ensemble
members, drawn from 3dVar B-Matrix)

I 3-hourly cycles, up to 2 days (7-8 Aug. 2009: quiet + convective day)
I lateral boundary conditions (LBC) from COSMO-SREPS (3 * 4

members)
I old experiments: use obs from GME NetCDF feedback files (sparse

density)
I new experiments: use obs from NetCDF files written by

COSMO-model during integration (same obs set as nudging)
I option for deterministic analysis has been implemented
I Now in NUMEX!
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LETKF experiments

experimental settings:
I 3h update (later ≈ 15 min)
I observations used: TEMP, AIREP, PILOT, SYNOP
I 2 day period

→ characteristics:
I highly inhomogenous observation density
I observation density ≈ 10 times larger as in old setup

experience (GME): LETKF works best (in terms of rms/spread ratio)
with low number of observations

keep localization scales unchanged to test adaptive methods within a
setup where problems can be expected
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LETKF experiments

analysed variables are u, v ,w ,T , pp, qv , qcl , qci

analysed means that linear combination is applied to these variables
(other variables taken from first guess ensemble / ensemble mean)

localization done with Caspari-Cohn function: similar to Gaussian, but
identical to zero at finite distances

localization weights are computed on coarse grid, then interploated to
model grid

verify LETKF det run (mean) against
I nudging analysis (u, v ,w ,T , pp)
I observations (u, v ,T , rh)

verification tool (deterministic/ensemble scores) is currently under
development
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spread (ens BC)

Fig.8: spread (wind component u in m/s) of first guess on 7 Aug. 2009 at 03 UTC (after 1

LETKF analysis with 3DVAR-B) (left) and at 12 UTC (after 4 analysis cycles) (right)

The large scale spread decreases and “new” spread comes in from the west due to the

lateral boundary fields.
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spread (det BC)

Fig.9: same as Fig.1 but with deterministic boundary conditions

The large scale spread decreases faster as no “new” spread comes in from the lateral

boundary fields.
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comparison with free fc, old and new setup

free fc rmse

first guess rmse,

old setup

free fc rmse

first guess rmse,

new setup

Fig.10: upper row: u (m/s) at 500 hPa; lower row: t (K) at 500 hPa.

more obs do not lead to better results...
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adaptive methods

lack of spread is (partly) due to model error which is not accounted
for so far

one (simple) method to increase spread is multiplicative covariance
inflation:

I Xens → ρXens with ρ > 1

adaptive method to estimate ρ preferable
I (Desroziers et al.): describes methods to estimate (co)variance of

background or analysis → estmation of ρ
I (Li et al.) used two of these methods for online estimation of ρ within

a toy model
I (Bonavita et al.): ρ is computed at every gridpoint, tested in CNMCA

LETKF
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adaptive methods ctd.
two different ideas to estimate ρ have to be distinguished:

idea (1): compare “observed” quantities with “expected” ones:〈
(y − H(xb))(y − H(xb))T

〉
= R + ρHPbH

T〈
(H(xa)− H(xb))(y − H(xb))T

〉
= ρHPbH

T

idea (2): “relaxation” methods:
I e.g. relaxation to prior spread (RTPS)

I ρ =
√
ασb−σa

σa
+ 1, α < 1

(1) works in observation space; tries to increase/decrease spread to
fulfill statistical relations

(2) works in model space; “corrects” reduction of spread due to
assimilation of observations

it would be preferable to compute ρ in ensemble space because this is
where the LETKF works (but up to now not successful...)
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adaptive methods ctd.

obs errors / R-matrix probably assumed incorrectly, correction
desirable

I compare observed obs (co)variance with assumed one and correct R
automatically if necessary

I this is done in ensemble space

both methods (est. of inflation factor / R matrix) have been tested
with reasonable numerical cost and success within the toy model, and
have been implemented in the LETKF (COSMO and GME)

old setup: slightly postitive impact of inflation factor ρ, impact of
estimation of R neutral

new setup: much more observations, but worse results; can adaptive
methods help?
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comparison of adaptive ρ inflation methods

Fig.11: both plots: 2009080812 UTC, 500 hPa; ρ in obs space (left); ρ in ens space (RTPS)

(right)

different spatial structures with obs-space/RTPS method!
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adaptive R correction

Fig.12: square root of adaptive R-correction factor; 2009080812 UTC, 500 hPa

large values in some areas → retuning of obs error necessary?
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Fig.13: impact of all methods on fg rms / spread results for u (left), t (right), AIREPS

adaptive methods, changing vertical localization length scale, retuning specified

observation errors; positive impact on all levels
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Localization

horizontal/vertical localization required

vertical localization already changed (slightly positive impact)

first test: reduce horizontal localization length scale from 100 → 50
km

adaptive method preferable: primitive adaptive horizontal localization
implemented

results follow ...
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Localization, weight grid and noise

XXXXXXXXXXXXXX + + + + + ++ + ++ +

X X +model grid points weight grid points observations

Fig. 14: localization function, observations, model and weight gridpoints

length scale of localization function > distance between weight grid
points

“smooth” localization function to reduce effect of changes in
observation sets

but in any case localization induces noise!
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hydrostatic balancing

diagonal elements of weight matrix are larger than off diagonal
elements

→ analysis ensemble k gets largest contribution from first guess
ensemble member k plus (smaller) corrections from members i 6= k

thus, the difference between analysis and first guess ensemble
member k (the analysis increment) is small compared to the full fields

apply hydrostatic balancing to this increment; this leaves the full
fields nonhydrostatic as it should be in a nonhydrostatic model
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weight matrices
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Fig.15: weight matrices (the matrix the first guess ensemble is multiplied with), for a case with

“normal” number of observations (left) and with many observations (or small obs. errors; right).

off diagonal elements even for large number of obs ≤ 0.5 and diagonal elements > 0.5
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noise
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Fig. 16: noise (as measured by dps/dt) for old obs setup (left), new obs setup (right)

old setup: hydrostatic balancing reduces noise significantly; new setup:
also with hydrostatic balancing applied high noise level; use of adaptive R
correction reduces noise
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noise: area plots

Fig.17: area plots of dPs/dt, 1st. time step; analysis with det. BC first guess, integration with ens BC; ens. BC first guess and

ens BC integration; ens. BC first guess and ens BC integration, but hydrostatic balancing applied.

hydrostatic balancing reduces noise in the interior, no effect at the boundaries
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experiments: horizontal localization
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exp1022: horizontal localization length scale 100 km, exp1023: horizontal
localization length scale 50 km
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experiments: horizontal localization

exp1022: horizontal localization length scale 100 km, exp1023: horizontal
localization length scale 50 km
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experiments: horizontal localization

exp1022: horizontal localization length scale 100 km, exp1023: horizontal
localization length scale 50 km
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adaptive horizontal localization

localization length scales depend on weather situation, observation
density ...

simple adaptive method: keep number of effective observations fixed,
vary localization radius

effective observations: sum of observation weights

up to now only implemented in horizontal direction

one has to define minimum / maximum radius, number of effective
observations

ideal number of effective observations depends on ensemble size!

again we have some tuning parameters ...
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experiments: adaptive horizontal localization
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exp1030: adaptive horizontal localization not used, exp1031: adaptive
horizontal localization used
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experiments: adaptive horizontal localization

exp1030: adaptive horizontal localization not used, exp1031: adaptive
horizontal localization used
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experiments: adaptive horizontal localization

exp1030: adaptive horizontal localization not used, exp1031: adaptive
horizontal localization used
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experiments: vertical localization

up to now: vertical localization length scale same at all levels
better: increase length scale with height to account for decreasing obs
density
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exp1030: vertical localization length scale constant, exp1033: vertical
localization length scale variies
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experiments: vertical localization

exp1030: vertical localization length scale constant, exp1033: vertical
localization length scale variies
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next steps

next steps:

status: all methods together reduce rmse, but still work to do on
adaptive methods / observation errors

increase update frequency, use NUMEX (now ready for LETKF)

tuning of parameters , e.g. localization length scales
I localization: extend adaptive method to vertical localization

compare det/mean run

runs with BC from global LETKF

Outlook:

model error (model perturbations): 2 projects within COSMO to
account for model error; (stochastic) physics perturbations

additional observations: radar data (radial winds, reflectivity), GPS, ...
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LETKF Theory

let w denote gaussian vector in k-dimensional ensemble space with
mean 0 and covariance I/(k − 1)

let Xb denote the (background) ensemble perturbations

then x = x̄b + Xbw is the corresponding model state with mean x̄b

and covariance Pb = (k − 1)−1Xb(Xb)T

let Yb denote the ensemble perturbations in observation space and R
the observation error covariance matrix
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LETKF Theory

do analysis in the k-dimensional ensemble space

w̄a = P̃a(Yb)TR−1(y − ȳb)

P̃a = [(k − 1)I + (Yb)TR−1Yb]−1

in model space we have

x̄a = x̄b + Xbw̄a

Pa = XbP̃a(Xb)T

Now the analysis ensemble perturbations - with Pa given above - are
obtained via

Xa = XbWa,

where Wa = [(k − 1)P̃a]1/2
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LETKF Theory

it’s possible to obtain a deterministic run via

xdeta = xdetb + K
[
y − H(xdetb )

]
with the Kalman gain K:

K = Xb

[
(k − 1)I + YT

b R
−1Yb

]−1
YT

b R
−1

the deterministic analysis is obtained on the same grid as the
ensemble is running on; the analysis increments can be interpolated
to a higher resolution
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