Exercise 3: Variational methods

Consider the model for the wind on three height levels:

$$
\begin{align*}
u_{i}^{t}\left(t_{k+1}\right) & =u_{i}^{t}\left(t_{k}\right)+\alpha u_{i}^{t^{2}}\left(t_{k}\right), \quad i=1,2,3, \quad \alpha=0.2 \tag{1}\\
\mathbf{u}^{t}\left(t_{0}\right) & =\left(\begin{array}{c}
-3 \\
2 \\
4
\end{array}\right) \tag{2}
\end{align*}
$$

1. True solution. Calculate the 'true solution' for $\mathbf{u}^{t}\left(t_{1}\right)$.

Proof. Substituting into (1) the value at t_{0} we get the value at t_{1} as $\mathbf{u}^{t}\left(t_{1}\right)=\left(\begin{array}{c}-1.2 \\ 2.8 \\ 7.2\end{array}\right)$.
2. Tangent linear model. Write the tangent linear model for this example.

Proof. Model operator $\mathcal{M}_{k-1, k}$ takes the vector $\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]^{T}$ into the vector given by $\left(\begin{array}{l}u_{1}+\alpha u_{1}^{2} \\ u_{2}+\alpha u_{2}^{2} \\ u_{3}+\alpha u_{3}^{2}\end{array}\right)$. Linearization of this model gives us a matrix:

$$
\mathbf{M}_{k-1, k}=\left(\begin{array}{ccc}
1+2 \alpha u_{1}\left(t_{k-1}\right) & 0 & 0 \tag{3}\\
0 & 1+2 \alpha u_{2}\left(t_{k-1}\right) & 0 \\
0 & 0 & 1+2 \alpha u_{3}\left(t_{k-1}\right)
\end{array}\right) .
$$

Tangent linear model takes us from time 0 to time k using $\mathbf{M}_{k-1, k} \mathbf{M}_{k-2, k-1} \ldots \mathbf{M}_{0,1}$.
3. Single direct observation Assume we have the observation $u_{2}^{o}\left(t_{1}\right)=2.8$ with observation error covariance $\sigma_{o}^{2}=1$ and a background (first guess) $\mathbf{u}^{b}\left(t_{0}\right)=(-3,0,3)^{T}$ with background error covariance $\mathrm{B}=\sigma_{b}^{2} \mathrm{I}, \sigma_{b}=2$. Compute the 3DVAR analysis, i.e.:
(a) Determine \mathbf{H}.
(b) Compute the analysis field \mathbf{u}^{a}.
(c) Compute the root mean square error of the analysis against the true solution

$$
\sqrt{\left(\mathbf{u}^{a}-\mathbf{u}^{t}\left(t_{0}\right)\right)^{T}\left(\mathbf{u}^{a}-\mathbf{u}^{t}\left(t_{0}\right)\right)} .
$$

Proof. Since we have only one observation of the second component of the vector, observation operator is $\mathbf{H}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$. In order to compute the analysis with 3DVar we would minimize the cost function

$$
\begin{equation*}
J(\mathbf{u})=\frac{1}{4}\left[\left(u_{1}+3\right)^{2}+u_{2}^{2}+\left(u_{3}-3\right)^{2}\right]+\left(2.8-u_{2}\right)^{2} . \tag{4}
\end{equation*}
$$

The resulting analysis is $\mathbf{u}^{a}\left(t_{1}\right)=\left(\begin{array}{c}-3 \\ 2.24 \\ 3\end{array}\right)$. RMS error is 1.0284.
4. Indirect observation. Repeat above assuming the observation $\mathbf{u}_{1.5}^{o}\left(t_{1}\right)=0.8$ was made halfway between grid points 1 and 2 .

Proof. For this example $\mathbf{H}=\left[\begin{array}{lll}1 / 2 & 1 / 2 & 0\end{array}\right]$, and the cost function changes to

$$
\begin{equation*}
J(\mathbf{u})=\frac{1}{4}\left[\left(u_{1}+3\right)^{2}+u_{2}^{2}+\left(u_{3}-3\right)^{2}\right]+\left(0.8-0.5 u_{1}-0.5 u_{2}\right)^{2} . \tag{5}
\end{equation*}
$$

The resulting analysis is $\mathbf{u}^{a}\left(t_{1}\right)=\left(\begin{array}{c}-1.4667 \\ 1.5333 \\ 3\end{array}\right)$. RMS error is 1.8892.
5. Sherman-Morrison-Woodbary formula gives an expression for the inverse of the matrix $\mathbf{A}+$ $\mathbf{U} \mathbf{V}^{T}$, where \mathbf{A} is $n \times n$ matrix and \mathbf{U}, \mathbf{V} are $n \times k$:

$$
\begin{equation*}
\left(\mathbf{A}+\mathbf{U} \mathbf{V}^{T}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{I}+\mathbf{V}^{T} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V}^{T} \mathbf{A}^{-1} \tag{6}
\end{equation*}
$$

Using this formula show that

$$
\begin{equation*}
\left(\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1}=\mathbf{B}-\mathbf{B H}^{T}\left(\mathbf{R}+\mathbf{H B H}^{T}\right)^{-1} \mathbf{H B} \tag{7}
\end{equation*}
$$

Proof. Let $\mathbf{A}=\mathbf{B}^{-1}$ and $\mathbf{U}=\mathbf{V}=\mathbf{H}^{T} \mathbf{R}^{-1 / 2}$ using SMW formula we get

$$
\begin{equation*}
\left(\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1}=\mathbf{B}-\mathbf{B H}^{T} \mathbf{R}^{-1 / 2}\left(\mathbf{I}+\mathbf{R}^{-1 / 2} \mathbf{H B} \mathbf{H}^{T} \mathbf{R}^{-1 / 2}\right)^{-1} \mathbf{R}^{-1 / 2} \mathbf{H B} . \tag{8}
\end{equation*}
$$

and needed result.

