Introduction and Setup Derivation of the Kalman Filter via 3dVar A Bayesian Approach to Kalman Filtering Regularization Theory

Winterschool on Data Assimilation -The Kalman Filter and Regularization Theory

Roland Potthast

Deutscher Wetterdienst / University of Reading / Universität Göttingen

DWD Offenbach Feb 13-17, 2011

Introduction and Setup Derivation of the Kalman Filter via IdVar A Bayesian Approach to Kalman Filtering Peoularization Theory

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering Regularization Theory

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Derivation of the Kalman Filter via AdVar A Bayesian Approach to Kalman Filtering Regularization Theory State Space, Model, Meas

urements

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering Regularization Theory

Introduction

We want to calculate and predict the state of a dynamical system.

urements

We get measurements in at particular points in time.

Our task is to calculate an optimal state estimate.

Derivation of the Kalman Filter via adVar A Bayesian Approach to Kalman Filtering Regularization Theory

Some Notation

• State Space X with states w.

urements

- Model M_k mapping the state w_k at time t_k into the state w_{k+1} at time t_{k+1} .
- Measurements *f_k* at time *t_k* in the measurement space *Y*.

Introduction and Setup Derivation of the Kalman Filter via IdVar

Derivation of the Kalman Filter via AdVar A Bayesian Approach to Kalman Filtering Setup of

pace, Model, Measurements

Background Material

Here we assume that 3dVar and 4dVar are well-known from preceeding lectures. Recall the 3dVar analysis equation

$$w_k^{(a)} = w_k^{(b)} + BH'(R + HBH')^{-1}(f_k - Hw_k^{(b)})$$
(1)

for $k = 1, 2, 3, \dots$ and the propagation

$$w_k^{(b)} = M_{k-1} w_{k-1}^{(a)}.$$
 (2)

Derivation of the Kalman Filter via dVar A Bayesian Approach to Kalman Filtering Regularization Theory

Background and Analysis

Typical image generated by 3dVar. Background state, also called first guess

urements

$w_k^{(b)}$

Analysis state at time t_k is

 $w_k^{(a)}$

Recall some notation

$$\|w\|^2 := \sum_{j=1}^n w_j^2$$
(3)

for the Euclidean norm or metric d(w, v) = ||w - v|| and

$$\langle w, v \rangle := \sum_{j=1}^{n} w_j v_j$$
 (4)

for the **scalar product**. We might write this in a more *engineering type notation* and a *mathematical notation*

$$\langle \boldsymbol{w}, \boldsymbol{v} \rangle = \boldsymbol{w}^T \boldsymbol{v} = \boldsymbol{w} \cdot \boldsymbol{v} = \boldsymbol{w}^T \circ \boldsymbol{v}$$
 (5)

Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering Regularization Theory

4dVar

4dVar is fitting whole trajectories to the measurements.

urements

Here, we need some window, over which the fitting is carried out.

Then, the states are propagated to the start time of a new window and another cycle of 4dVar is calculated. Introduction and Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering

dVar Step by Step Kalman Smoother Kalman Filter

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering

4dVar Step by Step Kalman Smoother Kalman Filter

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step

Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Kalman Filtering

4dVar Step by Step Kalman Smoother Kalman Filter

4dVar versus 3dVar

Comparison of 4dVar and 3dVar

Our key question.

How do we need to modify 3dVar to make it equivalent to 4dVar (at least for linear systems)? Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering Regularization Theory

4dVar Step by Step Kalman Smoother Kalman Filter

4dVar Step by Step???

Let us study the 4dVar minimization with

measurements f_1 at t_1 and with f_2 at t_2

$$J_{4dvar}(w) := \|w - w_0^{(b)}\|_{B^{-1}}^2 + \|f_1 - HM_0w\|_{R^{-1}}^2 + \|f_2 - HM_1M_0w\|_{R^{-1}}^2$$
(6)

We assume that M_0 , M_1 and H are linear.

Can we do that in two steps?

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering Reputarization Theory

4dVar Step by Step Kalman Smoother Kalman Filter

4dVar Step by Step???

Decompose

$$J_{4dvar}(w) := \|w - w_0^{(b)}\|_{B^{-1}}^2 + \|f_1 - HM_0w\|_{R^{-1}}^2 + \|f_2 - HM_1M_0w\|_{R^{-1}}^2$$
(7)

into

$$J_1(w) := \|w - w_0^{(b)}\|_{B^{-1}}^2 + \|f_1 - HM_0w\|_{R^{-1}}^2$$
(8)

and

$$J_{2}(w) := \|w - \tilde{w}^{(a)}\|_{\tilde{B}^{-1}}^{2} + \|f_{2} - HM_{1}M_{0}w\|_{R^{-1}}^{2}$$
(9)

where $\tilde{w}^{(a)}$ and \tilde{B} incorporate the information from the the first step!

Introduct Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approven to Kalman Filtering Hanularization Theory

4dVar Step by Step Kalman Smoother Kalman Filter

Decompose it into two steps

We first want to assimilate f_1 measured at t_1 .

Then, in a second step, we want to assimilate f_2 measured at t_2 .

But we want to get the same as if we had done it both simultaneously!

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Kalman Filtering Peoularization Theory

4dVar Step by Step Kalman Smoother Kalman Filter

(6)

Pull it all to the time t_0

First, we need to generate a uniform framework.

We work with states \tilde{w}_k at time t_0 representing states w_k at time t_k which need to assimilate data f_k .

$$w_k = M_{0,k} \tilde{w}_k$$

Simle example in one dimension

$$a(x-b)^2 + c(e-x)^2 + d = g(x-h)^2 + constant$$
 (10)

We need to determine g and h.

We calculate

$$a(x-b)^2 + c(x-e)^2 + d = (a+c)x^2 - 2(ab+ec)x + constant$$

and

$$d(x-e)^2 = dx^2 - 2dex + constant$$

This yields d = a + c and $e = d^{-1}(ab + ec)$.

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering

4dVar Step by Step Kalman Smoother Kalman Filter

4dVar versus 3dVar

Bring the quadratic function into **vertex form**.

The scaling is given by g, the centre and minimum is located at h.

Collecting all terms quadratic in w, then all terms linear in w etc we obtain

$$J_{1}(w) = \left\langle w - w_{0}^{(b)}, B^{-1}(w - w_{0}^{(b)}) \right\rangle \\ + \left\langle f_{1} - HM_{0}w, R^{-1}(f_{1} - HM_{0}w) \right\rangle$$

$$= \underbrace{\left\langle w, (B^{-1} + M_0^* H^* R^{-1} H M_0) w \right\rangle}_{\text{terms quadratic in } w} (11)$$

$$-2 \left\langle w, B^{-1} w_0^{(b)} + M_0^* H^* R^{-1} f_1 \right\rangle + c$$

terms linear in w

with some constant *c* not depending on *w*.

Collecting all terms quadratic in w, then all terms linear in w etc we obtain

$$J_{1}(w) = \left\langle w - w_{0}^{(b)}, B^{-1}(w - w_{0}^{(b)}) \right\rangle \\ + \left\langle f_{1} - HM_{0}w, R^{-1}(f_{1} - HM_{0}w) \right\rangle$$

$$= \underbrace{\left\langle w, \left(B^{-1} + M_0^* H^* R^{-1} H M_0\right) w \right\rangle}_{\text{terms quadratic in } w} (11)$$

$$-2 \underbrace{\left\langle w, B^{-1} w_0^{(b)} + M_0^* H^* R^{-1} f_1 \right\rangle}_{\text{terms linear in } w} + c$$

with some constant *c* not depending on *w*.

In the same way we have

$$\|w - \tilde{w}^{(a)}\|_{\tilde{B}^{-1}}^2 = \left\langle w, \tilde{B}^{-1}w \right\rangle - 2\left\langle w, \tilde{B}^{-1}\tilde{w}^{(a)} \right\rangle + \tilde{c} \qquad (12)$$

with some constant \tilde{c} not depending on w. From above we had

$$J_{1}(w) = \left\langle w, (B^{-1} + M_{0}^{*}H^{*}R^{-1}HM_{0})w \right\rangle$$
$$-2\left\langle w, B^{-1}w_{0}^{(b)} + M_{0}^{*}H^{*}R^{-1}f_{1} \right\rangle + c$$

We now need to determine $\tilde{w}^{(a)}$ and \tilde{B} such that

$$J_1(w) \stackrel{!}{=} \|w - \tilde{w}^{(a)}\|_{\tilde{B}^{-1}}^2 \tag{13}$$

In the same way we have

$$\|w - \tilde{w}^{(a)}\|_{\tilde{B}^{-1}}^2 = \left\langle w, \tilde{B}^{-1}w \right\rangle - 2\left\langle w, \tilde{B}^{-1}\tilde{w}^{(a)} \right\rangle + \tilde{c} \qquad (12)$$

with some constant \tilde{c} not depending on w. From above we had

$$J_{1}(w) = \left\langle w, (B^{-1} + M_{0}^{*}H^{*}R^{-1}HM_{0})w \right\rangle$$
$$-2\left\langle w, B^{-1}w_{0}^{(b)} + M_{0}^{*}H^{*}R^{-1}f_{1} \right\rangle + c$$

We now need to determine $\tilde{w}^{(a)}$ and \tilde{B} such that

$$J_1(w) \stackrel{!}{=} \|w - \tilde{w}^{(a)}\|_{\tilde{B}^{-1}}^2 \tag{13}$$

In the same way we have

$$\|w - \tilde{w}^{(a)}\|_{\tilde{B}^{-1}}^2 = \left\langle w, \tilde{B}^{-1}w \right\rangle - 2\left\langle w, \tilde{B}^{-1}\tilde{w}^{(a)} \right\rangle + \tilde{c} \qquad (12)$$

with some constant \tilde{c} not depending on w. From above we had

$$J_{1}(w) = \left\langle w, (B^{-1} + M_{0}^{*}H^{*}R^{-1}HM_{0})w \right\rangle$$
$$-2\left\langle w, B^{-1}w_{0}^{(b)} + M_{0}^{*}H^{*}R^{-1}f_{1} \right\rangle + c$$

We now need to determine $\tilde{w}^{(a)}$ and \tilde{B} such that

$$J_1(w) \stackrel{!}{=} \|w - \tilde{w}^{(a)}\|_{\tilde{B}^{-1}}^2$$
(13)

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Theory

4dVar Step by Step Kalman Smoother Kalman Filter

This yields

$$\tilde{B}^{-1} = B^{-1} + M_0^* H^* R^{-1} H M_0$$
(14)

and

$$\tilde{B}^{-1}\tilde{w}^{(a)} = B^{-1}w_0^{(b)} + M_0^*H^*R^{-1}f_1.$$
(15)

leading to

$$\tilde{w}^{(a)} = \tilde{B} \Big(B^{-1} w_0^{(b)} + M_0^* H^* R^{-1} f_1 \Big).$$
(16)

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Kalman Filtering Devularization Theory

4dVar Step by Step Kalman Smoother Kalman Filter

We further note

$$(ab)^{-1} = b^{-1}a^{-1},$$

such that

$$\tilde{B} = \left(B^{-1} + \underbrace{B^{-1}B}_{=I} M_0^* H^* R^{-1} H M_0\right)^{-1}$$
$$= \left(B^{-1} \left\{I + B M_0^* H^* R^{-1} H M_0\right\}\right)^{-1}$$
$$= \left(I + B M_0^* H^* R^{-1} H M_0\right)^{-1} B$$

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approven to Kalman Filtering Regularization Theory

4dVar Step by Step Kalman Smoother Kalman Filter

We finally get

$$\begin{split} \tilde{w}^{(a)} &= \tilde{B} \Big(B^{-1} w_0^{(b)} + M_0^* H^* R^{-1} f_1 \Big) \\ &= (I + B M_0^* H^* R^{-1} H M_0)^{-1} \Big(w_0^{(b)} + B M_0^* H^* R^{-1} f_1 \Big) \end{split}$$
(17)
$$&= w_0^{(b)} + (I + B M_0^* H^* R^{-1} H M_0)^{-1} B M_0^* H^* R^{-1} \Big(f_1 - H M_0 w_0^{(b)} \Big), \\ &= w_0^{(b)} + B M_0^* H^* (R + H M_0 B M_0^* H^*)^{-1} \Big(f_1 - H M_0 w_0^{(b)} \Big), \end{split}$$

which is the minimizer of J_1 as in 3dVar with the covariance matrix B!

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Kalman Filtering Peoularization Theory

Some Notation

 M_0 maps states from t_0 to t_1 . M_1 maps states from t_1 to t_2 . M_2 maps states from t_2 to t_3 .

Kalman Smoother

...

 $M_1 M_0$ maps from t_0 to t_2 . $M_2 M_1 M_0$ maps from t_0 to t_3 .

 $M_{0,k} := M_{k-1}M_{k-2}\cdots M_1M_0$ maps from t_0 to t_k

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering

Var Step by Step

alman Filter

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step

Kalman Smoother

Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approven to Kalman Filtering Hegularization Theory

dVar Step by Step Kalman Smoother Kalman Filter

Definition (Kalman Smoother (KS))

Let *H* and M_k , k = 0, 1, 2, ... be linear and assume that measurements $f_1, f_2, ...$ at times $t_1, t_2, ...$ are given. Then, we calculate weight matrices

$$\tilde{B}_{k}^{-1} := \tilde{B}_{k-1}^{-1} + M_{0,k}^{*} H_{k}^{*} R^{-1} H_{k} M_{0,k}, \quad k = 1, 2, \dots$$
(18)

with $\tilde{B}_0 = B$ and analysis states $\tilde{w}_k^{(a)}$ at time t_0 defined by

$$\widetilde{w}_{k}^{(a)} := \widetilde{w}_{k-1}^{(a)} + \widetilde{B}_{k-1} M_{0,k}^{*} H_{k}^{*}$$

$$(R + H_{k} M_{0,k} \widetilde{B}_{k-1} M_{0,k}^{*} H_{k}^{*})^{-1} \left(f_{k} - H_{k} M_{0,k} \widetilde{w}_{k-1}^{(a)} \right)$$

$$(A) = (A)$$

for k = 1, 2, ... with $\tilde{w}_0^{(a)} = w_0^{(b)}$.

DWC

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approved to Kalman Filtering Regularization Theory

dVar Step by Step

alman Filter

Kalman Smoother Adapts the weight

The Kalman Smoother generates the orange dotted result.

For linear systems the Kalman Smoother is equivalent to 4dVar.

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering Secularization Theory

dVar Step by Step

Kalman Filter

4dVar and the Kalman Smoother

Theorem (Equivalence 4dVar/KS)

Let H and M_k , k = 0, 1, 2, ... be linear and data $f_1, f_2, ...$ be given. Then, 4dVar carried out with data $f_1, ..., f_k$ is equivalent to the Kalman Smoother in the sense that the minimum of the 4dVar functional is given by the analysis $\tilde{w}_k^{(a)}$ for k = 1, 2, ..., K.

- The Kalman Smoother calculates an analysis at some time t₀.
- Of course, we can now **cycle** the Kalman Smoother. Then, we obtain *smoothened* analysis results for successive analysis times.
- For nonlinear systems we need the **adjoint tangent linear** model for the smoother, which is often challenging to calculate.

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation to Kalman Filtering

dVar Step by Step (alman Smoother

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother

Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Kalman Filtering Derivativation Theory

dVar Step by Step Kalman Smoother

Map it back from t_0 to time t_k

We go back from our uniform framework to carry out our analysis at measurement time.

We work with states w_k at time t_k .

$$w_k = M_{0,k} \tilde{w}_k$$

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Kalman Filtering Begularization Theory

dVar Step by Step alman Smoother

Transformation of Kalman Smoother to time *t_k*

For the Kalman Smoother we calculated states $\tilde{w}_k^{(a)}$ at time t_0 .

We proparage them to time t_k by

$$w_k^{(a)} = M_{0,k} \tilde{w}_k^{(a)} = M_{k-1} M_{k-2} \cdots M_1 M_0 \tilde{w}_k^{(a)}$$
(20)

for $k = 1, 2, 3, \dots$

Recall that the background at time t_k is calculated from the analysis at time t_{k-1} by propagation

$$w_k^{(b)} = M_{k-1} w_{k-1}^{(a)}$$
(21)

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Kalman Filtering Begularization Theory

dVar Step by Step alman Smoother

Transformation of Kalman Smoother to time *t_k*

For the Kalman Smoother we calculated states $\tilde{w}_k^{(a)}$ at time t_0 .

We proparage them to time t_k by

$$w_{k}^{(a)} = M_{0,k} \tilde{w}_{k}^{(a)} = M_{k-1} M_{k-2} \cdots M_{1} M_{0} \tilde{w}_{k}^{(a)}$$
(20)

for *k* = 1, 2, 3,

Recall that the background at time t_k is calculated from the analysis at time t_{k-1} by propagation

$$w_k^{(b)} = M_{k-1} w_{k-1}^{(a)} \tag{21}$$

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approvint of Kalman Filtering Segularization Theory

dVar Step by Step alman Smoother

Transformation of Kalman Smoother to time *t_k*

For the Kalman Smoother we calculated states $\tilde{w}_k^{(a)}$ at time t_0 .

We proparage them to time t_k by

$$w_k^{(a)} = M_{0,k} \tilde{w}_k^{(a)} = M_{k-1} M_{k-2} \cdots M_1 M_0 \tilde{w}_k^{(a)}$$
(20)

for *k* = 1, 2, 3,

Recall that the background at time t_k is calculated from the analysis at time t_{k-1} by propagation

$$w_k^{(b)} = M_{k-1} w_{k-1}^{(a)}$$
(21)

Introduction of Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Kalman Filtering Peoularization Theory

dVar Step by Step alman Smoother

Propagation of Covariance Matrices

The matrices \tilde{B} are propagated from t_0 to t_k by

$$B_k^{(b)} = M_{0,k} \tilde{B}_{k-1} M_{0,k}^*$$
(22)

and

$$B_k^{(a)} = M_{0,k} \tilde{B}_k M_{0,k}^*$$
(23)

for k = 1, 2, 3, ..., where the *background matrix* at time t_k is obtained by propagating the *analysis matrix* from time t_{k-1} to t_k by

$$B_{k}^{(b)} = M_{k-1}B_{k-1}^{(a)}M_{k-1}^{*}.$$
(24)

Introduction of Setup Derivation of the Kalman Filter vid 4dVar A Bayesian Approach to Kalman Filtering Secularization Theory

dVar Step by Step (alman Smoother

Calculations to carry out the transformation

Multiply the analysis of the Kalman Smoother by $M_{0,k}$ to obtain

$$M_{0,k}\tilde{w}_{k}^{(a)} = M_{0,k}\tilde{w}_{k-1}^{(a)} + M_{0,k}\tilde{B}_{k-1}M_{0,k}^{*}H_{k}^{*}$$

$$(R + H_{k}M_{0,k}\tilde{B}_{k-1}M_{0,k}^{*}H_{k}^{*})^{-1}(f_{k} - H_{k}M_{0,k}\tilde{w}_{k-1}^{(a)})$$

$$(Q) \qquad (Q) \qquad (Q)$$

which by $w_k^{(a)} = M_{0,k} \tilde{w}_k^{(a)}$, $w_k^{(b)} = M_{0,k} \tilde{w}_{k-1}^{(a)}$ and $B_k^{(b)} = M_{k-1} B_{k-1}^{(a)} M_{k-1}^*$ is equal to

$$w_{k}^{(a)} = w_{k}^{(b)} + B_{k}^{(b)} H_{k}^{*} (R + H_{k} B_{k}^{(b)} H_{k}^{*})^{-1} (f_{k} - H_{k} w_{k}^{(b)})$$
(26)

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approximation Kalman Filtering Regularization Theory

dVar Step by Step alman Smoother

Kalman Filter Equations - Covariance

The calculation for the covariance update

$$\tilde{B}_{k}^{-1} := \tilde{B}_{k-1}^{-1} + M_{0,k}^{*} H_{k}^{*} R^{-1} H_{k} M_{0,k}, \quad k = 1, 2, \dots$$
(27)

is multiplied by $M_{0,k}^{-1}$ from the right and by $(M_{0,k}^*)^{-1}$ from the left to obtain

$$(M_{0,k}^*)^{-1}\tilde{B}_k^{-1}M_{0,k}^{-1} := (M_{0,k}^*)^{-1}\tilde{B}_{k-1}^{-1}M_{0,k}^{-1} + H_k^*R^{-1}H_k, \ k = 1, 2, \dots$$
(28)

which yields

$$(B_k^{(a)})^{-1} = (B_k^{(b)})^{-1} + H_k^* R^{-1} H_k$$
(29)

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approved to Kalman Filtering Regularization Theory

dVar Step by Step alman Smoother

Kalman Filter Equations - Analysis State

The analysis equation is given by

$$w_{k}^{(a)} = w_{k}^{(b)} + B_{k}^{(b)} H_{k}^{*} (R + H_{k} B_{k}^{(b)} H_{k}^{*})^{-1} (f_{k} - H_{k} w_{k}^{(b)})$$
(30)

for $k \in \mathbb{N}$, usually written in the form

$$w_k^{(a)} = w_k^{(b)} + K_k (f_k - H_k w_k^{(b)})$$
(31)

with the Kalman gain matrix (or Tikhonov Regularization Operator)

$$K_k := B_k^{(b)} H_k^* (R + H_k B_k^{(b)} H_k^*)^{-1}.$$
 (32)

The weight update is

$$(B_k^{(a)})^{-1} = (B_k^{(b)})^{-1} + H_k^* R^{-1} H_k.$$
(33)

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approved to Kalman Filtering Begularization Theory

dVar Step by Step Calman Smoother

B matrix analysis equation

Lemma

For $k \in N$ we have

$$B_{k}^{(a)} = (I - K_{k}H_{k})B_{k}^{(b)}.$$
(34)

Proof. We start from (33) in the form

$$B_{k}^{(a)} = \left(I + B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k}\right)^{-1} B_{k}^{(b)}.$$
(35)

We expand

$$T := \left(I + B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k}\right) \left(I - K_{k} H_{k}\right)$$

$$= \left(I + B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k}\right) \left(I - B_{k}^{(b)} H_{k}^{*} (R + H_{k} B_{k}^{(b)} H_{k}^{*})^{-1} H_{k}\right)$$

$$= I + B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k} - B_{k}^{(b)} H_{k}^{*} (R + H_{k} B_{k}^{(b)} H_{k}^{*})^{-1} H_{k}$$

$$- B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k} B_{k}^{(b)} H_{k}^{*} (R + H_{k} B_{k}^{(b)} H_{k}^{*})^{-1} H_{k}$$
(36)

Introduction Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering Regularization Theory

dVar Step by Step alman Smoother

B matrix analysis equation

$$T = I + \underbrace{B_{k}^{(b)}H_{k}^{*}R^{-1}H_{k}}_{=:S} - \underbrace{B_{k}^{(b)}H_{k}^{*}(R + H_{k}B_{k}^{(b)}H_{k}^{*})^{-1}H_{k}}_{=:S_{1}} - \underbrace{B_{k}^{(b)}H_{k}^{*}R^{-1}H_{k}B_{k}^{(b)}H_{k}^{*}(R + H_{k}B_{k}^{(b)}H_{k}^{*})^{-1}H_{k}}_{:=S_{2}}.$$
(37)

Remark that

$$S = B_k^{(b)} H_k^* R^{-1} (R + H_k B_k^{(b)} H_k^*) (R + H_k B_k^{(b)} H_k^*)^{-1} H_k$$
(38)
= S_1 + S_2,

which yields T = I. Thus

$$\left(I + B_k^{(b)} H_k^* R^{-1} H_k\right)^{-1} = \left(I - K_k H_k\right)$$

and the proof is complete.

Derivation of the Kalman Filter via 40Var A Bayesian Approach to Kalman Filtering dVar Step by Step Kalman Smoother

Kalman Filter

Definition (Kalman Filter)

Starting with an initial state $w_0^{(b)}$ and an initial matrix $B_0^{(a)} := B$, for $k \in \mathbb{N}$ the Kalman Filter iteratively calculates an analysis $w_k^{(a)}$ at time t_k by

- **1.** propagating the state $w_{k-1}^{(a)}$ from t_{k-1} to t_k via (21), $w_k^{(b)} = M_{k-1} w_{k-1}^{(a)}$
- **2.** propagating $B_{k-1}^{(a)}$ from t_{k-1} to t_k following (24),

$$B_{k}^{(b)} = M_{k-1}B_{k-1}^{(a)}M_{k-1}^{*}$$
(39)

3. calculating an analysis state by (30)

$$K_k := B_k^{(b)} H_k^* (R + H_k B_k^{(b)} H_k^*)^{-1}$$
(40)

$$w_k^{(a)} = w_k^{(b)} + K_k (f_k - H_k w_k^{(b)})$$
 (41)

4. calculating an analysis weight by (34), $B_k^{(a)} = (I - K_k H_k) B_k^{(b)}$.

Introduction and Setup Derivation of the Kalman Filter via 4dVar A Bayesian Approach to Kalman Filtering

dVar Step by Step Calman Smoother

Equivalence Result

Theorem (Equivalence 4dVar/KF/KS)

Let H_k for $k \in \mathbb{N}$ and M_k for $k \in \mathbb{N}_0$ be linear. Let $w_k^{(a)}$ be the analysis of the Kalman Filter at time t_k , $\tilde{w}_k^{(a)}$ the analysis of the Kalman smoother with data f_1, \ldots, f_k at time t_0 , $\tilde{w}_{4d,k}^{(a)}$ the minimizer of the 4dVar functional at time t_0 and define

$$w_{4d,k}^{(a)} := M_{0,k} \tilde{w}_{4d,k}^{(a)}, \ k = 1, 2, 3, ...$$
 (42)

Then 4dVar is equivalent to the Kalman Filter and to the Kalman Smoother in the sense that

$$w_{4d,k}^{(a)} = w_k^{(a)} = M_{0,k} \tilde{w}_k^{(a)}.$$
 (43)

Introduction and Setup Derivation of the Kalman Filter vie IdVar A Bayesian Approach to Kalman Filtering

legularization Theory

Baves Formula

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

DWD

Introduction of Setup Derivation of the Kalman Filter via dVar A Bayesian Approach to Kalman Filtering

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

DWD

Bayes Formula

Let π be some probability density on the state space *X*.

Then, Bayes Formula for calculating a conditional probability density given some observation is given by

$$\pi(w|t) = \frac{\pi(w)\pi(t|w)}{\pi(t)}.$$
(44)

Often, we have

$$\pi(f|w) = \pi_{data}(f - Hw)$$
(45)

with the obervation operator *H*. The value $\pi(f)$ is given by the normalization condition. This leads to

$$\pi(w|f) = c\pi_{\text{prior}}(w)\pi_{\text{data}}(f - Hw). \tag{46}$$

Introduction of Setup Derivation of the Kalman Filter via ddVar A Bayesian Approach to Kalman Filtering

Bayes Formula Visualized

Prior distribution black. Measurement error distribution green.

The orange curve shows the analysis density.

Derivation of the Kalman Filter vie ddVar A Bayesian Approach to Kalman Filtering

Bayes Formula for Data Assimilation

Definition (Bayes Data Assimilation.)

Bayes Data Assimilation determines probability distributions $\pi_k^{(a)}$ at time t_k for the states $w \in X$ by cycling the following propagation and analysis steps.

- 1. (Propagation Step.) Calculate the prior density $\pi_k^{(b)}(w)$ at time t_k by propagating the analysis density $\pi_{k-1}^{(a)}$ from time t_{k-1} to t_k based on the (linear or nonlinear) model dynamics M_{k-1} .
- 2. (Analysis Step.) Calculate the posterior or *analysis density* $\pi_k^{(a)}(w|f_k)$ at time t_k by Bayes formula (44).

Introduction of Setup Derivation of the Kalman Filler via IdVar A Bayesian Approach to Kalman Fillering

Gaussian Densities

Let us consider Gaussian densities

$$\pi(w) = \frac{1}{\sqrt{(2\pi)^n \det(B)}} e^{-\frac{1}{2}(w-\mu)^T B^{-1}(w-\mu)}, \quad w \in \mathbb{R}^n,$$
(47)

around some state $\mu = w^{(b)} \in X$ with some positive define invertible matrix *B*. Assume that also the error distribution is Gaussian

$$\pi(f|w) = \frac{1}{\sqrt{(2\pi)^n \det(R)}} e^{-\frac{1}{2}(f-H(w))^T R^{-1}(f-H(w))}, \quad f \in \mathbb{R}^m,$$
(48)

Introduction of Setup Derivation of the Kalman Filter vie advar A Bayesian Approach to Kalman Filtering

Gaussian Posterior Density

Then, according to Bayes formula (44) we obtain

$$\pi(w|f) = c \cdot \exp\left\{-\frac{1}{2}\left((w-\mu)^{T}B^{-1}(w-\mu) + (f-H(w))^{T}R^{-1}(f-H(w))\right)\right\}$$
(49)

with some constant c > 0. If H is linear, this again is a Gaussian density

$$\pi(w|t) = \tilde{c} \exp\left\{-\frac{1}{2}(w-\tilde{\mu})^T \tilde{B}^{-1}(w-\tilde{\mu})\right\}$$
(50)

with some constant \tilde{c} .

We obtain the same quadratic transformation problem as above!

Introduction of Setup Derivation of the Kalmon Filter via IdVar A Bayesian Approach to Kalman Filtering

The mean $\tilde{\mu}$ of the posterior Gaussian distribution is given by

$$\tilde{\mu} = w^{(b)} + BH^* (R + HBH^*)^{-1} (f - Hw^{(b)})$$
(51)

and its covariance matrix \tilde{B} is given by

$$\tilde{B}^{-1} = B^{-1} + H^* R^{-1} H.$$
(52)

Theorem (Bayes for Gaussian Densities and the Kalman Filter.)

For linear operators M_k and H the Bayes data assimilation with Gaussian densities is equivalent to a Kalman Filter.

Introduction of Setup Derivation of the Kalman Filter vis ddvar A Bayesian Approach to Kalman Filtering Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Introduction Setup
Derivation of the Kationa Filter via IdVar
A Bayesian Approxim to Kalman Filtering
Regularization Theory

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition

Regularization Theory

DWD

Decomposition

Spectral Theorem

Let A be a real symmetric $n \times n$ -matrix. Then, there is a set of n vectors $\psi^{(1)}, ..., \psi^{(n)} \in X$ such that

$$A\psi^{(j)} = \lambda_j \psi^{(j)}, \ j = 1, ..., n.$$
 (53)

Usually, we assume that the eigenvalues and corresponding eigenvectors are ordered according to its size.

The eigenvectors of A are orthonormal, i.e. we have

$$\langle \psi^{(j)}, \psi^{(k)} \rangle = \begin{cases} 1 & j = k \\ 0 & \text{otherwise} \end{cases}$$
$$\|\psi^{(j)}\| = 1, \quad j = 1, \dots, n.$$
 (54)

This is called a complete orthonormal set of eigenvectors with real eigenvalues.

Introduction and Setup Derivation of the Kalman Filter vie JdVar A Bayesian Approach to Kalman Filtering Regularization Theory

ue Decomposition

A matrix vector multiplication is carried out first by representing the vector in the basis of eigenvectors.

The coefficients are calculated by application of U^T , these are projections onto the eigenvectors which constitute U by

$$U = (\psi^{(1)}, ..., \psi^{(n)}).$$

Then, application of *A* corresponds to a diagonal matrix, i.e. to multiplication.

Introduction and Setup Derivation of the Kalman Filter via 4dVar **Regularization Theory**

Regularization Theory

Decomposition

Singular Value Decomposition

Study an arbitrary matrix H. Then $A := H^T H$ is symmetric, since

$$A^{\mathsf{T}} = (H^{\mathsf{T}}H)^{\mathsf{T}} = H^{\mathsf{T}}H = A.$$

We have a complete set of orthogonal eigenvectors and eigenvalues ordered according to its size. We define the singular values of H

$$\mu_j := \sqrt{\lambda_j} \tag{55}$$

$$\langle g^{(j)}, g^{(k)} \rangle = \lambda_j^{-1} \langle H\psi^{(j)}, H\psi^{(k)} \rangle$$

$$= \lambda_j^{-1} \langle \psi^{(j)}, H^T H\psi^{(k)} \rangle$$

$$= \lambda_j^{-1} \lambda_j \delta_{j,k}$$

$$= \delta_{j,k}.$$
(5)

Introduction of Setup Derivation of the Kalman Filter via JdVar A Bayesian Approach to Kalman Filtering Begularization Theory

Spectral Theorem and S Regularization Theory Value Decomposition

Singular Value Decomposition

Study an arbitrary matrix *H*. Then $A := H^T H$ is symmetric, since

$$A^T = (H^T H)^T = H^T H = A.$$

We have a complete set of orthogonal eigenvectors and eigenvalues ordered according to its size. We define the **singular values** of *H*

$$\mu_j := \sqrt{\lambda_j} \tag{55}$$

and call the sets $\{\psi^{(j)} : j = 1, ..., n\}$ and $\{g^{(j)} := \mu_j^{-1}H\psi_j : j = 1, ..., n\}$ its singular vectors. These are two sets of orthonormal vectors, since we have

$$\langle g^{(j)}, g^{(k)} \rangle = \lambda_j^{-1} \langle H\psi^{(j)}, H\psi^{(k)} \rangle$$

$$= \lambda_j^{-1} \langle \psi^{(j)}, H^T H\psi^{(k)} \rangle$$

$$= \lambda_j^{-1} \lambda_j \delta_{j,k}$$

$$= \delta_{j,k}.$$
(56)

We call $(\mu_j, \psi^{(j)}, g^{(j)})$ the **singular system** of *H*.

Derivation of the Kalman Filter via ddVar A Bayesian Approach to Kalman Filtering Begularization Theory

Spectral Theorem and S Regularization Theory lue Decomposition

Singular Value Decomposition

(0)

Study an arbitrary matrix H. Then $A := H^T H$ is symmetric, since

$$\mathbf{A}^{\mathsf{T}} = (\mathbf{H}^{\mathsf{T}}\mathbf{H})^{\mathsf{T}} = \mathbf{H}^{\mathsf{T}}\mathbf{H} = \mathbf{A}.$$

We have a complete set of orthogonal eigenvectors and eigenvalues ordered according to its size. We define the **singular values** of *H*

$$\mu_j := \sqrt{\lambda_j} \tag{55}$$

and call the sets $\{\psi^{(j)} : j = 1, ..., n\}$ and $\{g^{(j)} := \mu_j^{-1} H \psi_j : j = 1, ..., n\}$ its singular vectors. These are two sets of orthonormal vectors, since we have

$$\langle g^{(j)}, g^{(k)} \rangle = \lambda_j^{-1} \langle H\psi^{(j)}, H\psi^{(k)} \rangle$$

$$= \lambda_j^{-1} \langle \psi^{(j)}, H^T H\psi^{(k)} \rangle$$

$$= \lambda_j^{-1} \lambda_j \delta_{j,k}$$

$$= \delta_{j,k}.$$
(56)

We call $(\mu_j, \psi^{(j)}, g^{(j)})$ the singular system of *H*.

Introduction and Setup Derivation of the Kalman Filter value advar A Bayesian Aport on to Kalman Filtering Regularization Theory Decomposition

Singular values of observation operator H

Let $(\mu_j, \psi^{(j)}, g^{(j)})$ denote the singular system of the observation operator *H*. Here, for simplicity we assume *H* injective and $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$ with n = m.

Regularization Theory

Then, we application of *H* corresponds to a multiplication by μ_j on the particular modes given by the singular vectors $\psi^{(j)}$ of *H*.

We obtain

$$H\psi^{(j)} = \mu_j g^{(j)} \tag{57}$$

by definition of $g^{(j)}$ and

$$\boldsymbol{H}^{\mathsf{T}}\boldsymbol{g}^{(j)} = \mu_k \boldsymbol{\psi}^{(j)} \tag{58}$$

which is obtained from $H^T g^{(j)} = \mu_j^{-1} H^T H \psi^{(j)} = \mu_j^{-1} \mu_j^2 \psi^{(j)}$.

Introduction of Setup Derivation of the Kalman Filter vendVar A Bayesian Approvint o Kalman Filtering Regularization Theory

Spectral Theorem and Sin Regularization Theory

alue Decomposition

Application of H corresponds to

1) projection onto the basis of eigenvectors $\psi^{(j)},$

2) multiplication of the coefficients by μ_j ,

3) Set up the result by using the coefficients with respect to the image space basis vectors $g^{(j)}$.

Introduction of Setup Derivation of the Kalman Filter via dVar A Bayesian Approach to Kalman Filtering Regularization Theory

spectral Theorem and Singular Value Decomposition

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step Kalman Smoother Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition Regularization Theory

Introduction of Setup Derivation of the Kalman Filter vis ddvar A Bayesian Approach to Kalman Filtering Regularization Theory

pectral Theorem and Singular Value Decomposition

Spectral resolution of data equation

When we want to solve

$$Hw = f \tag{59}$$

we represent the state by

$$w = \sum_{j=1}^{n} \alpha_j \psi^{(j)} \tag{60}$$

and the measurement f by

$$f = \sum_{k=1}^{m} \beta_k g^{(k)}.$$
 (61)

such that (59) is reduced to

$$Hw = \sum_{k=1}^{n} H\alpha_{k}\psi^{(k)} = \sum_{k=1}^{m} \mu_{k}\alpha_{k}g^{(k)} = \sum_{k=1}^{m} \beta_{k}g^{(k)} = f.$$
 (62)

Introduction and Setup Derivation of the Kalman Filter visuad/ar A Bayesian Approach to Kalman Filtering Regularization Theory

pectral Theorem and Singular Value Decomposition

Picard Theorem

Theorem (Picard Theorem (Simple Version))

The solution of

$$Hw = f \tag{63}$$

with

$$f = \sum_{k=1}^{m} \beta_k g^{(k)} \tag{64}$$

is given by

$$w = \sum_{k=1}^{n} \frac{\beta_k}{\mu_k} \psi^{(k)} \tag{65}$$

If μ_k is small, then there are strong instabilities in the solution, small errors can be strongly amplified!

 μ_i

Regularization

Regularization means that we bound the influence of

when solving Hw = f.

A typical bound is achieved by replacing the term $1/\mu_i$ by

$$\frac{\mu_j}{\alpha + \mu_j^2} \tag{66}$$

for $\alpha > 0$, which for $\alpha \to 0$ tends to $1/\mu_j$. The approach (66) is called **spectral damping**. It is equivalent to an application of the Tikhonov regularization matrix

$$\boldsymbol{R}_{\alpha} = \left(\alpha \boldsymbol{I} + \boldsymbol{H}^{\mathsf{T}} \boldsymbol{H}\right)^{-1} \boldsymbol{H}^{\mathsf{T}}$$
(67)

replacing the inverse H^{-1} .

Introduction and Setup Derivation of the Kalman Filter via dVar A Bayesian Approach to Kalman Filtering Regularization Theory

pectral Theorem and Singular Value Decomposition

Many Thanks!

