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Introduction

We want to calculate and predict the

state of a dynamical system.

We get measurements in at

particular points in time.

Our task is to calculate an optimal

state estimate.
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Some Notation

• State Space X with states w .

• Model Mk mapping the state

wk at time tk into the state

wk+1 at time tk+1.

• Measurements fk at time tk in

the measurement space Y .
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Background Material

Here we assume that 3dVar and 4dVar are well-known from preceeding

lectures. Recall the 3dVar analysis equation

w
(a)
k = w

(b)
k + BH′(R + HBH′)−1(fk − Hw

(b)
k ) (1)

for k = 1, 2, 3, ... and the propagation

w
(b)
k = Mk−1w

(a)
k−1. (2)
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Background and Analysis

Typical image generated by 3dVar.

Background state, also called first

guess

w
(b)
k

Analysis state at time tk is

w
(a)
k
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Recall some notation

‖w‖2 :=
n∑

j=1

w2
j (3)

for the Euclidean norm or metric d(w, v) = ‖w − v‖ and

〈w, v〉 :=
n∑

j=1

wjvj (4)

for the scalar product. We might write this in a more engineering type notation

and a mathematical notation

〈w, v〉 = wT v = w · v = wT ◦ v (5)
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4dVar

4dVar is fitting whole trajectories to

the measurements.

Here, we need some window, over

which the fitting is carried out.

Then, the states are propagated to

the start time of a new window and

another cycle of 4dVar is calculated.

10/60



Introduction and Setup
Derivation of the Kalman Filter via 4dVar

A Bayesian Approach to Kalman Filtering
Regularization Theory

4dVar Step by Step
Kalman Smoother
Kalman Filter

Outline

Introduction and Setup
Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step

Kalman Smoother

Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory
Spectral Theorem and Singular Value Decomposition

Regularization Theory

11/60



Introduction and Setup
Derivation of the Kalman Filter via 4dVar

A Bayesian Approach to Kalman Filtering
Regularization Theory

4dVar Step by Step
Kalman Smoother
Kalman Filter

Outline

Introduction and Setup
Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step

Kalman Smoother

Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory
Spectral Theorem and Singular Value Decomposition

Regularization Theory

12/60



Introduction and Setup
Derivation of the Kalman Filter via 4dVar

A Bayesian Approach to Kalman Filtering
Regularization Theory

4dVar Step by Step
Kalman Smoother
Kalman Filter

4dVar versus 3dVar

Comparison of 4dVar and 3dVar

Our key question.
How do we need to modify 3dVar to

make it equivalent to 4dVar (at least

for linear systems)?
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4dVar Step by Step???

Let us study the 4dVar minimization with

measurements f1 at t1 and with f2 at t2

J4dvar(w) := ‖w−w
(b)
0 ‖2

B−1 +‖f1−HM0w‖2
R−1 +‖f2−HM1M0w‖2

R−1 (6)

We assume that M0, M1 and H are linear.

Can we do that in two steps?
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4dVar Step by Step???

Decompose

J4dvar(w) := ‖w − w
(b)
0 ‖2

B−1 + ‖f1 − HM0w‖2
R−1 + ‖f2 − HM1M0w‖2

R−1

(7)

into

J1(w) := ‖w − w
(b)
0 ‖2

B−1 + ‖f1 − HM0w‖2
R−1 (8)

and

J2(w) := ‖w − w̃(a)‖2
B̃−1 + ‖f2 − HM1M0w‖2

R−1 (9)

where w̃(a) and B̃ incorporate the information from the the first step!
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Decompose it into two steps

We first want to assimilate f1
measured at t1.

Then, in a second step, we want to

assimilate f2 measured at t2.

But we want to get the same as if we

had done it both simultaneously!
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Pull it all to the time t0

First, we need to generate a uniform

framework.

We work with states w̃k at time t0
representing states wk at time tk
which need to assimilate data fk .

wk = M0,k w̃k
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Simle example in one dimension

a(x − b)2 + c(e − x)2 + d = g(x − h)2 + constant (10)

We need to determine g and h.

We calculate

a(x − b)2 + c(x − e)2 + d = (a + c)x2 − 2(ab + ec)x + constant

and

d(x − e)2 = dx2 − 2dex + constant

This yields d = a + c and e = d−1(ab + ec).
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4dVar versus 3dVar

Bring the quadratic function into

vertex form.

The scaling is given by g, the centre

and minimum is located at h.
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Collecting all terms quadratic in w , then all terms linear in w etc we obtain

J1(w) =
〈

w − w
(b)
0 , B−1(w − w

(b)
0 )
〉

+
〈

f1 − HM0w,R−1(f1 − HM0w)
〉

=
〈

w, (B−1 + M∗0 H∗R−1HM0)w
〉

︸ ︷︷ ︸
terms quadratic in w

(11)

−2
〈

w, B−1w
(b)
0 + M∗0 H∗R−1f1

〉
︸ ︷︷ ︸

terms linear in w

+ c

with some constant c not depending on w .
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In the same way we have

‖w − w̃(a)‖2
B̃−1 =

〈
w, B̃−1w

〉
− 2
〈

w, B̃−1w̃(a)
〉
+ c̃ (12)

with some constant c̃ not depending on w . From above we had

J1(w) =
〈

w, (B−1 + M∗0 H∗R−1HM0)w
〉

−2
〈

w, B−1w
(b)
0 + M∗0 H∗R−1f1

〉
+ c

We now need to determine w̃(a) and B̃ such that

J1(w)
!
= ‖w − w̃(a)‖2

B̃−1 (13)
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This yields

B̃−1 = B−1 + M∗0 H∗R−1HM0 (14)

and

B̃−1w̃(a) = B−1w
(b)
0 + M∗0 H∗R−1f1. (15)

leading to

w̃(a) = B̃
(

B−1w
(b)
0 + M∗0 H∗R−1f1

)
. (16)
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We further note

(ab)−1 = b−1a−1,

such that

B̃ =
(

B−1 + B−1B︸ ︷︷ ︸
=I

M∗0 H∗R−1HM0

)−1

=
(

B−1
{

I + B M∗0 H∗R−1HM0

})−1

= (I + B M∗0 H∗R−1HM0)
−1B
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We finally get

w̃(a) = B̃
(

B−1w
(b)
0 + M∗0 H∗R−1f1

)
= (I + BM∗0 H∗R−1HM0)

−1
(

w
(b)
0 + BM∗0 H∗R−1f1

)
(17)

= w
(b)
0 + (I + BM∗0 H∗R−1HM0)

−1BM∗0 H∗R−1
(

f1 − HM0w
(b)
0

)
,

= w
(b)
0 + BM∗0 H∗(R + HM0BM∗0 H∗)−1

(
f1 − HM0w

(b)
0

)
,

which is the minimizer of J1 as in 3dVar with the covariance matrix B!
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Some Notation

M0 maps states from t0 to t1.

M1 maps states from t1 to t2.

M2 maps states from t2 to t3.

...

M1M0 maps from t0 to t2.

M2M1M0 maps from t0 to t3.

...

M0,k := Mk−1Mk−2 · · ·M1M0

maps from t0 to tk
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Definition (Kalman Smoother (KS))

Let H and Mk , k = 0, 1, 2, ... be linear and assume that measurements

f1, f2, ... at times t1, t2, ... are given. Then, we calculate weight matrices

B̃−1
k := B̃−1

k−1 + M∗0,k H∗k R−1Hk M0,k , k = 1, 2, ... (18)

with B̃0 = B and analysis states w̃
(a)
k at time t0 defined by

w̃
(a)
k := w̃

(a)
k−1 + B̃k−1M∗0,k H∗k (19)

(R + Hk M0,k B̃k−1M∗0,k H∗k )
−1
(

fk − Hk M0,k w̃
(a)
k−1

)
for k = 1, 2, ... with w̃

(a)
0 = w

(b)
0 .

27/60



Introduction and Setup
Derivation of the Kalman Filter via 4dVar

A Bayesian Approach to Kalman Filtering
Regularization Theory

4dVar Step by Step
Kalman Smoother
Kalman Filter

Kalman Smoother Adapts the weight

The Kalman Smoother generates

the orange dotted result.

For linear systems the Kalman

Smoother is equivalent to 4dVar.
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4dVar and the Kalman Smoother

Theorem (Equivalence 4dVar/KS)

Let H and Mk , k = 0, 1, 2, ... be linear and data f1, f2, ... be given. Then,

4dVar carried out with data f1, ..., fk is equivalent to the Kalman Smoother in

the sense that the minimum of the 4dVar functional is given by the analysis

w̃
(a)
k for k = 1, 2, ..., K .

• The Kalman Smoother calculates an analysis at some time t0.

• Of course, we can now cycle the Kalman Smoother. Then, we obtain

smoothened analysis results for successive analysis times.

• For nonlinear systems we need the adjoint tangent linear model for the

smoother, which is often challenging to calculate.
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Map it back from t0 to time tk

We go back from our uniform

framework to carry out our analysis

at measurement time.

We work with states wk at time tk .

wk = M0,k w̃k
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Transformation of Kalman Smoother to time tk

For the Kalman Smoother we calculated states w̃
(a)
k at time t0.

We proparage them to time tk by

w
(a)
k = M0,k w̃

(a)
k = Mk−1Mk−2 · · ·M1M0w̃

(a)
k (20)

for k = 1, 2, 3, ....

Recall that the background at time tk is calculated from the analysis at time

tk−1 by propagation

w
(b)
k = Mk−1w

(a)
k−1 (21)
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Propagation of Covariance Matrices

The matrices B̃ are propagated from t0 to tk by

B
(b)
k = M0,k B̃k−1M∗0,k (22)

and

B
(a)
k = M0,k B̃k M∗0,k (23)

for k = 1, 2, 3, ..., where the background matrix at time tk is obtained by

propagating the analysis matrix from time tk−1 to tk by

B
(b)
k = Mk−1B

(a)
k−1M∗k−1. (24)
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Calculations to carry out the transformation

Multiply the analysis of the Kalman Smoother by M0,k to obtain

M0,k w̃
(a)
k = M0,k w̃

(a)
k−1 + M0,k B̃k−1M∗0,k H∗k (25)

(R + Hk M0,k B̃k−1M∗0,k H∗k )
−1
(

fk − Hk M0,k w̃
(a)
k−1

)
which by w

(a)
k = M0,k w̃

(a)
k , w

(b)
k = M0,k w̃

(a)
k−1 and B

(b)
k = Mk−1B

(a)
k−1M∗k−1 is

equal to

w
(a)
k = w

(b)
k + B

(b)
k H∗k (R + Hk B

(b)
k H∗k )

−1(fk − Hk w
(b)
k ) (26)
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Kalman Filter Equations - Covariance

The calculation for the covariance update

B̃−1
k := B̃−1

k−1 + M∗0,k H∗k R−1Hk M0,k , k = 1, 2, ... (27)

is multiplied by M−1
0,k from the right and by (M∗0,k)

−1 from the left to obtain

(M∗0,k)
−1B̃−1

k M−1
0,k := (M∗0,k)

−1B̃−1
k−1M−1

0,k + H∗k R−1Hk , k = 1, 2, ... (28)

which yields

(B
(a)
k )−1 = (B

(b)
k )−1 + H∗k R−1Hk (29)
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Kalman Filter Equations - Analysis State

The analysis equation is given by

w
(a)
k = w

(b)
k + B

(b)
k H∗k (R + Hk B

(b)
k H∗k )

−1(fk − Hk w
(b)
k ) (30)

for k ∈ N, usually written in the form

w
(a)
k = w

(b)
k + Kk(fk − Hk w

(b)
k ) (31)

with the Kalman gain matrix (or Tikhonov Regularization Operator)

Kk := B
(b)
k H∗k (R + Hk B

(b)
k H∗k )

−1. (32)

The weight update is

(B
(a)
k )−1 = (B

(b)
k )−1 + H∗k R−1Hk . (33)
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B matrix analysis equation

Lemma

For k ∈ N we have

B
(a)
k = (I − Kk Hk)B

(b)
k . (34)

Proof. We start from (33) in the form

B
(a)
k =

(
I + B

(b)
k H∗k R−1Hk

)−1
B
(b)
k . (35)

We expand

T :=
(

I + B
(b)
k H∗k R−1Hk

)
(I − Kk Hk)

=
(

I + B
(b)
k H∗k R−1Hk

)(
I − B

(b)
k H∗k (R + Hk B

(b)
k H∗k )

−1Hk

)
= I + B

(b)
k H∗k R−1Hk − B

(b)
k H∗k (R + Hk B

(b)
k H∗k )

−1Hk

−B
(b)
k H∗k R−1Hk B

(b)
k H∗k (R + Hk B

(b)
k H∗k )

−1Hk (36)
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B matrix analysis equation

T = I + B
(b)
k H∗k R−1Hk︸ ︷︷ ︸

=:S

− B
(b)
k H∗k (R + Hk B

(b)
k H∗k )

−1Hk︸ ︷︷ ︸
=:S1

− B
(b)
k H∗k R−1Hk B

(b)
k H∗k (R + Hk B

(b)
k H∗k )

−1Hk︸ ︷︷ ︸
:=S2

. (37)

Remark that

S = B
(b)
k H∗k R−1(R + Hk B

(b)
k H∗k )(R + Hk B

(b)
k H∗k )

−1Hk (38)

= S1 + S2,

which yields T = I. Thus(
I + B

(b)
k H∗k R−1Hk

)−1
= (I − Kk Hk)

and the proof is complete. �
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Kalman Filter

Definition (Kalman Filter)

Starting with an initial state w
(b)
0 and an initial matrix B

(a)
0 := B, for k ∈ N the

Kalman Filter iteratively calculates an analysis w
(a)
k at time tk by

1. propagating the state w
(a)
k−1 from tk−1 to tk via (21), w

(b)
k = Mk−1w

(a)
k−1

2. propagating B
(a)
k−1 from tk−1 to tk following (24),

B
(b)
k = Mk−1B

(a)
k−1M∗k−1 (39)

3. calculating an analysis state by (30)

Kk := B
(b)
k H∗k (R + Hk B

(b)
k H∗k )

−1 (40)

w
(a)
k = w

(b)
k + Kk(fk − Hk w

(b)
k ) (41)

4. calculating an analysis weight by (34), B
(a)
k = (I − Kk Hk)B

(b)
k .
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Equivalence Result

Theorem (Equivalence 4dVar/KF/KS)

Let Hk for k ∈ N and Mk for k ∈ N0 be linear. Let w
(a)
k be the analysis of the

Kalman Filter at time tk , w̃
(a)
k the analysis of the Kalman smoother with data

f1, ..., fk at time t0, w̃
(a)
4d,k the minimizer of the 4dVar functional at time t0 and

define

w
(a)
4d,k := M0,k w̃

(a)
4d,k , k = 1, 2, 3, ... (42)

Then 4dVar is equivalent to the Kalman Filter and to the Kalman Smoother in

the sense that

w
(a)
4d,k = w

(a)
k = M0,k w̃

(a)
k . (43)
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Bayes Formula

Let π be some probability density on the state space X .

Then, Bayes Formula for calculating a conditional probability density given

some observation is given by

π(w|f) = π(w)π(f |w)
π(f)

. (44)

Often, we have

π(f |w) = πdata(f − Hw) (45)

with the obervation operator H. The value π(f) is given by the normalization

condition. This leads to

π(w|f) = cπprior(w)πdata(f − Hw). (46)
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Prior distribution black.

Measurement error distribution

green.

The orange curve shows the

analysis density.
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Bayes Formula for Data Assimilation

Definition (Bayes Data Assimilation.)

Bayes Data Assimilation determines probability distributions π
(a)
k at time tk for

the states w ∈ X by cycling the following propagation and analysis steps.

1. (Propagation Step.) Calculate the prior density π
(b)
k (w) at time tk by

propagating the analysis density π
(a)
k−1 from time tk−1 to tk based on the

(linear or nonlinear) model dynamics Mk−1.

2. (Analysis Step.) Calculate the posterior or analysis density π
(a)
k (w|fk) at

time tk by Bayes formula (44).
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Gaussian Densities

Let us consider Gaussian densities

π(w) =
1√

(2π)n det(B)
e−

1
2
(w−µ)T B−1(w−µ), w ∈ Rn, (47)

around some state µ = w(b) ∈ X with some positive define invertible matrix

B. Assume that also the error distribution is Gaussian

π(f |w) = 1√
(2π)n det(R)

e−
1
2
(f−H(w))T R−1(f−H(w)), f ∈ Rm, (48)
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Gaussian Posterior Density

Then, according to Bayes formula (44) we obtain

π(w|f) = c · exp
{
−1

2

(
(w − µ)T B−1(w − µ)

+(f − H(w))T R−1(f − H(w)
)}

(49)

with some constant c > 0. If H is linear, this again is a Gaussian density

π(w|f) = c̃ exp
{
−1

2
(w − µ̃)T B̃−1(w − µ̃)

}
(50)

with some constant c̃.

We obtain the same quadratic transformation problem as above!
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Bayes for Gaussian densities

The mean µ̃ of the posterior Gaussian distribution is given by

µ̃ = w(b) + BH∗(R + HBH∗)−1(f − Hw(b)) (51)

and its covariance matrix B̃ is given by

B̃−1 = B−1 + H∗R−1H. (52)

Theorem (Bayes for Gaussian Densities and the Kalman Filter.)

For linear operators Mk and H the Bayes data assimilation with Gaussian

densities is equivalent to a Kalman Filter.

48/60



Introduction and Setup
Derivation of the Kalman Filter via 4dVar

A Bayesian Approach to Kalman Filtering
Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Outline

Introduction and Setup
Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step

Kalman Smoother

Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory
Spectral Theorem and Singular Value Decomposition

Regularization Theory

49/60



Introduction and Setup
Derivation of the Kalman Filter via 4dVar

A Bayesian Approach to Kalman Filtering
Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Outline

Introduction and Setup
Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step

Kalman Smoother

Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory
Spectral Theorem and Singular Value Decomposition

Regularization Theory

50/60



Introduction and Setup
Derivation of the Kalman Filter via 4dVar

A Bayesian Approach to Kalman Filtering
Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Spectral Theorem

Let A be a real symmetric n × n-matrix. Then, there is a set of n vectors

ψ(1), ..., ψ(n) ∈ X such that

Aψ(j) = λjψ
(j), j = 1, ..., n. (53)

Usually, we assume that the eigenvalues and corresponding eigenvectors are

ordered according to its size.

The eigenvectors of A are orthonormal, i.e. we have

〈ψ(j), ψ(k)〉 =
{

1 j = k

0 otherwise

‖ψ(j)‖ = 1, j = 1, ..., n. (54)

This is called a complete orthonormal set of eigenvectors with real eigenvalues.
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A matrix vector multiplication is

carried out first by representing the

vector in the basis of eigenvectors.

The coefficients are calculated by

application of UT , these are

projections onto the eigenvectors

which constitute U by

U = (ψ(1), ..., ψ(n)).

Then, application of A corresponds

to a diagonal matrix, i.e. to

multiplication.
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Singular Value Decomposition

Study an arbitrary matrix H. Then A := HT H is symmetric, since

AT = (HT H)T = HT H = A.

We have a complete set of orthogonal eigenvectors and eigenvalues ordered

according to its size. We define the singular values of H

µj :=
√
λj (55)

and call the sets
{
ψ(j) : j = 1, ..., n

}
and
{

g(j) := µ−1
j Hψj : j = 1, ..., n

}
its singular vectors. These are two sets of orthonormal vectors, since we have

〈g(j), g(k)〉 = λ−1
j 〈Hψ(j),Hψ(k)〉

= λ−1
j 〈ψ(j),HT Hψ(k)〉

= λ−1
j λjδj,k

= δj,k . (56)

We call (µj , ψ
(j), g(j)) the singular system of H.
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Singular values of observation operator H

Let (µj , ψ
(j), g(j)) denote the singular system of the observation operator H.

Here, for simplicity we assume H injective and X = Rn, Y = Rm with n = m.

Then, we application of H corresponds to a multiplication by µj on the

particular modes given by the singular vectors ψ(j) of H.

We obtain

Hψ(j) = µjg
(j) (57)

by definition of g(j) and

HT g(j) = µkψ
(j) (58)

which is obtained from HT g(j) = µ−1
j HT Hψ(j) = µ−1

j µ2
j ψ

(j).

54/60



Introduction and Setup
Derivation of the Kalman Filter via 4dVar

A Bayesian Approach to Kalman Filtering
Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Application of H corresponds to

1) projection onto the basis of

eigenvectors ψ(j),

2) multiplication of the coefficients

by µj ,

3) Set up the result by using the

coefficients with respect to the

image space basis vectors g(j).
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Spectral resolution of data equation

When we want to solve

Hw = f (59)

we represent the state by

w =
n∑

j=1

αjψ
(j) (60)

and the measurement f by

f =
m∑

k=1

βk g(k). (61)

such that (59) is reduced to

Hw =
n∑

k=1

Hαkψ
(k) =

m∑
k=1

µkαk g(k) =
m∑

k=1

βk g(k) = f . (62)
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Picard Theorem

Theorem (Picard Theorem (Simple Version))

The solution of

Hw = f (63)

with

f =
m∑

k=1

βk g(k) (64)

is given by

w =
n∑

k=1

βk

µk
ψ(k) (65)

If µk is small, then there are strong instabilities in the solution, small errors can

be strongly amplified!
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Regularization

Regularization means that we bound the influence of

1

µj

when solving Hw = f .

A typical bound is achieved by replacing the term 1/µj by

µj

α+ µ2
j

(66)

for α > 0, which for α→ 0 tends to 1/µj .

The approach (66) is called spectral damping. It is equivalent to an

application of the Tikhonov regularization matrix

Rα = (αI + HT H)−1HT (67)

replacing the inverse H−1.
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Many Thanks!
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