Winterschool on Data Assimilation The Kalman Filter and Regularization Theory

Roland Potthast

Deutscher Wetterdienst / University of Reading / Universität Göttingen

DWD Offenbach
Feb 13-17, 2011

Outline

Introduction and Setup
Setup of State Space, Model, Measurements
Derivation of the Kalman Filter via 4dVar
4dVar Step by Step
Kalman Smoother
Kalman Filter
A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step
Kalman Smoother
Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Outline

Introduction and Setup

Setup of State Space, Model, Measurements
Derivation of the Kalman Filter via 4dVar
4dVar Step by Step
Kalman Smoother
Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Introduction

We want to calculate and predict the state of a dynamical system.

We get measurements in at particular points in time.

Our task is to calculate an optimal state estimate.

Some Notation

- State Space X with states w.
- Model M_{k} mapping the state w_{k} at time t_{k} into the state w_{k+1} at time t_{k+1}.
- Measurements f_{k} at time t_{k} in the measurement space Y.

Background Material

Here we assume that 3dVar and 4dVar are well-known from preceeding lectures. Recall the 3dVar analysis equation

$$
\begin{equation*}
w_{k}^{(a)}=w_{k}^{(b)}+B H^{\prime}\left(R+H B H^{\prime}\right)^{-1}\left(f_{k}-H w_{k}^{(b)}\right) \tag{1}
\end{equation*}
$$

for $k=1,2,3, \ldots$ and the propagation

$$
\begin{equation*}
w_{k}^{(b)}=M_{k-1} w_{k-1}^{(a)} \tag{2}
\end{equation*}
$$

Background and Analysis

Typical image generated by 3dVar.

Background state, also called first guess

$$
w_{k}^{(b)}
$$

Analysis state at time t_{k} is

$$
w_{k}^{(a)}
$$

Recall some notation

$$
\begin{equation*}
\|w\|^{2}:=\sum_{j=1}^{n} w_{j}^{2} \tag{3}
\end{equation*}
$$

for the Euclidean norm or metric $d(w, v)=\|w-v\|$ and

$$
\begin{equation*}
\langle w, v\rangle:=\sum_{j=1}^{n} w_{j} v_{j} \tag{4}
\end{equation*}
$$

for the scalar product. We might write this in a more engineering type notation and a mathematical notation

$$
\begin{equation*}
\langle w, v\rangle=w^{T} v=w \cdot v=w^{T} \circ v \tag{5}
\end{equation*}
$$

4dVar

4dVar is fitting whole trajectories to the measurements.

Here, we need some window, over which the fitting is carried out.

Then, the states are propagated to the start time of a new window and another cycle of 4 dVar is calculated.

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step
Kalman Smoother
Kalman Filter
A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step
Kalman Smoother
Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

4dVar versus 3dVar

Comparison of 4dVar and 3dVar

Our key question.

How do we need to modify 3dVar to make it equivalent to 4dVar (at least for linear systems)?

4dVar Step by Step???

Let us study the 4dVar minimization with
measurements f_{1} at t_{1} and with f_{2} at t_{2}

$$
\begin{equation*}
J_{4 d v a r}(w):=\left\|w-w_{0}^{(b)}\right\|_{B^{-1}}^{2}+\left\|f_{1}-H M_{0} w\right\|_{R^{-1}}^{2}+\left\|f_{2}-H M_{1} M_{0} w\right\|_{R^{-1}}^{2} \tag{6}
\end{equation*}
$$

We assume that M_{0}, M_{1} and H are linear.

Can we do that in two steps?

4dVar Step by Step???

Decompose

$$
\begin{equation*}
J_{4 d v a r}(w):=\left\|w-w_{0}^{(b)}\right\|_{B^{-1}}^{2}+\left\|f_{1}-H M_{0} w\right\|_{R^{-1}}^{2}+\left\|f_{2}-H M_{1} M_{0} w\right\|_{R^{-1}}^{2} \tag{7}
\end{equation*}
$$

into

$$
\begin{equation*}
J_{1}(w):=\left\|w-w_{0}^{(b)}\right\|_{B^{-1}}^{2}+\left\|f_{1}-H M_{0} w\right\|_{R^{-1}}^{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{2}(w):=\left\|w-\tilde{w}^{(a)}\right\|_{\tilde{B}^{-1}}^{2}+\left\|f_{2}-H M_{1} M_{0} w\right\|_{R^{-1}}^{2} \tag{9}
\end{equation*}
$$

where $\tilde{W}^{(a)}$ and \tilde{B} incorporate the information from the the first step!

Decompose it into two steps

We first want to assimilate f_{1} measured at t_{1}.

Then, in a second step, we want to assimilate f_{2} measured at t_{2}.

But we want to get the same as if we had done it both simultaneously!

Pull it all to the time t_{0}

First, we need to generate a uniform framework.

We work with states \tilde{w}_{k} at time t_{0} representing states w_{k} at time t_{k} which need to assimilate data f_{k}.

$$
w_{k}=M_{0, k} \tilde{w}_{k}
$$

Simle example in one dimension

$$
\begin{equation*}
a(x-b)^{2}+c(e-x)^{2}+d=g(x-h)^{2}+\text { constant } \tag{10}
\end{equation*}
$$

We need to determine g and h.

We calculate

$$
a(x-b)^{2}+c(x-e)^{2}+d=(a+c) x^{2}-2(a b+e c) x+\text { constant }
$$

and

$$
d(x-e)^{2}=d x^{2}-2 d e x+\text { constant }
$$

This yields $d=a+c$ and $e=d^{-1}(a b+e c)$.

4dVar versus 3dVar

Bring the quadratic function into
vertex form.

The scaling is given by g, the centre and minimum is located at h.

Collecting all terms quadratic in w, then all terms linear in w etc we obtain

$$
\begin{aligned}
J_{1}(w)=\left\langle w-w_{0}^{(b)},\right. & \left.B^{-1}\left(w-w_{0}^{(b)}\right)\right\rangle \\
& +\left\langle f_{1}-H M_{0} w, R^{-1}\left(f_{1}-H M_{0} w\right)\right\rangle
\end{aligned}
$$

terms linear in w
with some constant c not depending on w.

Collecting all terms quadratic in w, then all terms linear in w etc we obtain

$$
\begin{align*}
& J_{1}(w)=\left\langle w-w_{0}^{(b)}, B^{-1}\left(w-w_{0}^{(b)}\right)\right\rangle \\
& \\
& +\left\langle f_{1}-H M_{0} w, R^{-1}\left(f_{1}-H M_{0} w\right)\right\rangle \tag{11}\\
& =\underbrace{\left\langle w,\left(B^{-1}+M_{0}^{*} H^{*} R^{-1} H M_{0}\right) w\right\rangle}_{\text {terms quadratic in } w} \\
& \quad \underbrace{\left\langle w, B^{-1} w_{0}^{(b)}+M_{0}^{*} H^{*} R^{-1} f_{1}\right\rangle}_{\text {terms linear in } w}+c
\end{align*}
$$

with some constant c not depending on w.

In the same way we have

$$
\begin{equation*}
\left\|w-\tilde{w}^{(a)}\right\|_{\tilde{B}^{-1}}^{2}=\left\langle w, \tilde{B}^{-1} w\right\rangle-2\left\langle w, \tilde{B}^{-1} \tilde{w}^{(a)}\right\rangle+\tilde{c} \tag{12}
\end{equation*}
$$

with some constant \tilde{c} not depending on w. From above we had

We now need to determine $\tilde{w}^{(a)}$ and \tilde{B} such that

In the same way we have

$$
\begin{equation*}
\left\|w-\tilde{w}^{(a)}\right\|_{\tilde{B}^{-1}}^{2}=\left\langle w, \tilde{B}^{-1} w\right\rangle-2\left\langle w, \tilde{B}^{-1} \tilde{w}^{(a)}\right\rangle+\tilde{c} \tag{12}
\end{equation*}
$$

with some constant \tilde{c} not depending on w. From above we had

$$
\begin{aligned}
& J_{1}(w)=\left\langle w,\left(B^{-1}+M_{0}^{*} H^{*} R^{-1} H M_{0}\right) w\right\rangle \\
&-2\left\langle w, B^{-1} w_{0}^{(b)}+M_{0}^{*} H^{*} R^{-1} f_{1}\right\rangle+c
\end{aligned}
$$

We now need to determine $\tilde{W}^{(a)}$ and \tilde{B} such that

In the same way we have

$$
\begin{equation*}
\left\|w-\tilde{w}^{(a)}\right\|_{\tilde{B}^{-1}}^{2}=\left\langle w, \tilde{B}^{-1} w\right\rangle-2\left\langle w, \tilde{B}^{-1} \tilde{w}^{(a)}\right\rangle+\tilde{c} \tag{12}
\end{equation*}
$$

with some constant \tilde{c} not depending on w. From above we had

$$
\begin{aligned}
& J_{1}(w)=\left\langle w,\left(B^{-1}+M_{0}^{*} H^{*} R^{-1} H M_{0}\right) w\right\rangle \\
&-2\left\langle w, B^{-1} w_{0}^{(b)}+M_{0}^{*} H^{*} R^{-1} f_{1}\right\rangle+c
\end{aligned}
$$

We now need to determine $\tilde{w}^{(a)}$ and \tilde{B} such that

$$
\begin{equation*}
J_{1}(w) \stackrel{!}{=}\left\|w-\tilde{w}^{(a)}\right\|_{\tilde{B}^{-1}}^{2} \tag{13}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\tilde{B}^{-1}=B^{-1}+M_{0}^{*} H^{*} R^{-1} H M_{0} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{B}^{-1} \tilde{w}^{(a)}=B^{-1} w_{0}^{(b)}+M_{0}^{*} H^{*} R^{-1} f_{1} . \tag{15}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\tilde{w}^{(a)}=\tilde{B}\left(B^{-1} w_{0}^{(b)}+M_{0}^{*} H^{*} R^{-1} f_{1}\right) . \tag{16}
\end{equation*}
$$

We further note

$$
(a b)^{-1}=b^{-1} a^{-1}
$$

such that

$$
\begin{aligned}
\tilde{B} & =(B^{-1}+\underbrace{B^{-1} B}_{=I} M_{0}^{*} H^{*} R^{-1} H M_{0})^{-1} \\
& =\left(B^{-1}\left\{I+B M_{0}^{*} H^{*} R^{-1} H M_{0}\right\}\right)^{-1} \\
& =\left(I+B M_{0}^{*} H^{*} R^{-1} H M_{0}\right)^{-1} B
\end{aligned}
$$

We finally get

$$
\begin{align*}
\tilde{w}^{(a)} & =\tilde{B}\left(B^{-1} w_{0}^{(b)}+M_{0}^{*} H^{*} R^{-1} f_{1}\right) \\
& =\left(I+B M_{0}^{*} H^{*} R^{-1} H M_{0}\right)^{-1}\left(w_{0}^{(b)}+B M_{0}^{*} H^{*} R^{-1} f_{1}\right) \tag{17}\\
& =w_{0}^{(b)}+\left(I+B M_{0}^{*} H^{*} R^{-1} H M_{0}\right)^{-1} B M_{0}^{*} H^{*} R^{-1}\left(f_{1}-H M_{0} w_{0}^{(b)}\right) \\
& =w_{0}^{(b)}+B M_{0}^{*} H^{*}\left(R+H M_{0} B M_{0}^{*} H^{*}\right)^{-1}\left(f_{1}-H M_{0} w_{0}^{(b)}\right)
\end{align*}
$$

which is the minimizer of J_{1} as in 3dVar with the covariance matrix B !

Some Notation

M_{0} maps states from t_{0} to t_{1}. M_{1} maps states from t_{1} to t_{2}. M_{2} maps states from t_{2} to t_{3}.
$M_{1} M_{0}$ maps from t_{0} to t_{2}. $M_{2} M_{1} M_{0}$ maps from t_{0} to t_{3}.
$M_{0, k}:=M_{k-1} M_{k-2} \cdots M_{1} M_{0}$ maps from t_{0} to t_{k}

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step
Kalman Smoother
Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Definition (Kalman Smoother (KS))

Let H and $M_{k}, k=0,1,2, \ldots$ be linear and assume that measurements f_{1}, f_{2}, \ldots at times t_{1}, t_{2}, \ldots are given. Then, we calculate weight matrices

$$
\begin{equation*}
\tilde{B}_{k}^{-1}:=\tilde{B}_{k-1}^{-1}+M_{0, k}^{*} H_{k}^{*} R^{-1} H_{k} M_{0, k}, \quad k=1,2, \ldots \tag{18}
\end{equation*}
$$

with $\tilde{B}_{0}=B$ and analysis states $\tilde{w}_{k}^{(a)}$ at time t_{0} defined by

$$
\begin{align*}
\tilde{w}_{k}^{(a)}:= & \tilde{w}_{k-1}^{(a)}+\tilde{B}_{k-1} M_{0, k}^{*} H_{k}^{*} \tag{19}\\
& \left(R+H_{k} M_{0, k} \tilde{B}_{k-1} M_{0, k}^{*} H_{k}^{*}\right)^{-1}\left(f_{k}-H_{k} M_{0, k} \tilde{w}_{k-1}^{(a)}\right)
\end{align*}
$$

for $k=1,2, \ldots$ with $\tilde{w}_{0}^{(a)}=w_{0}^{(b)}$.

Kalman Smoother Adapts the weight

The Kalman Smoother generates the orange dotted result.

For linear systems the Kalman Smoother is equivalent to 4dVar.

4dVar and the Kalman Smoother

Theorem (Equivalence 4dVar/KS)

Let H and $M_{k}, k=0,1,2, \ldots$ be linear and data f_{1}, f_{2}, \ldots be given. Then, 4dVar carried out with data f_{1}, \ldots, f_{k} is equivalent to the Kalman Smoother in the sense that the minimum of the 4dVar functional is given by the analysis $\tilde{w}_{k}^{(a)}$ for $k=1,2, \ldots, K$.

- The Kalman Smoother calculates an analysis at some time t_{0}.
- Of course, we can now cycle the Kalman Smoother. Then, we obtain smoothened analysis results for successive analysis times.
- For nonlinear systems we need the adjoint tangent linear model for the smoother, which is often challenging to calculate.

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar

4dVar Step by Step
Kalman Smoother

Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Map it back from t_{0} to time t_{k}

We go back from our uniform framework to carry out our analysis at measurement time.

We work with states w_{k} at time t_{k}.

$$
w_{k}=M_{0, k} \tilde{w}_{k}
$$

Transformation of Kalman Smoother to time t_{k}

For the Kalman Smoother we calculated states $\tilde{w}_{k}^{(a)}$ at time t_{0}.

We proparage them to time t_{k} by

$$
\begin{equation*}
w_{k}^{(a)}=M_{0, k} \tilde{w}_{k}^{(a)}=M_{k-1} M_{k-2} \cdots M_{1} M_{0} \tilde{w}_{k}^{(a)} \tag{20}
\end{equation*}
$$

for $k=1,2,3, \ldots$.

Recall that the background at time t_{k} is calculated from the analysis at time t_{k-1} by propagation

$$
w_{k}^{(b)}=M_{k-1} w_{k-1}^{(a)}
$$

Transformation of Kalman Smoother to time t_{k}

For the Kalman Smoother we calculated states $\tilde{w}_{k}^{(a)}$ at time t_{0}.

We proparage them to time t_{k} by

$$
\begin{equation*}
w_{k}^{(a)}=M_{0, k} \tilde{w}_{k}^{(a)}=M_{k-1} M_{k-2} \cdots M_{1} M_{0} \tilde{w}_{k}^{(a)} \tag{20}
\end{equation*}
$$

for $k=1,2,3, \ldots$

Recall that the background at time t_{k} is calculated from the analysis at time t_{k-1} by propagation

Transformation of Kalman Smoother to time t_{k}

For the Kalman Smoother we calculated states $\tilde{w}_{k}^{(a)}$ at time t_{0}.
We proparage them to time t_{k} by

$$
\begin{equation*}
w_{k}^{(a)}=M_{0, k} \tilde{w}_{k}^{(a)}=M_{k-1} M_{k-2} \cdots M_{1} M_{0} \tilde{w}_{k}^{(a)} \tag{20}
\end{equation*}
$$

for $k=1,2,3, \ldots$
Recall that the background at time t_{k} is calculated from the analysis at time t_{k-1} by propagation

$$
\begin{equation*}
w_{k}^{(b)}=M_{k-1} w_{k-1}^{(a)} \tag{21}
\end{equation*}
$$

Propagation of Covariance Matrices

The matrices \tilde{B} are propagated from t_{0} to t_{k} by

$$
\begin{equation*}
B_{k}^{(b)}=M_{0, k} \tilde{B}_{k-1} M_{0, k}^{*} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k}^{(a)}=M_{0, k} \tilde{B}_{k} M_{0, k}^{*} \tag{23}
\end{equation*}
$$

for $k=1,2,3, \ldots$, where the background matrix at time t_{k} is obtained by propagating the analysis matrix from time t_{k-1} to t_{k} by

$$
\begin{equation*}
B_{k}^{(b)}=M_{k-1} B_{k-1}^{(a)} M_{k-1}^{*} \tag{24}
\end{equation*}
$$

Calculations to carry out the transformation

Multiply the analysis of the Kalman Smoother by $M_{0, k}$ to obtain

$$
\begin{align*}
M_{0, k} \tilde{w}_{k}^{(a)}= & M_{0, k} \tilde{w}_{k-1}^{(a)}+M_{0, k} \tilde{B}_{k-1} M_{0, k}^{*} H_{k}^{*} \tag{25}\\
& \left(R+H_{k} M_{0, k} \tilde{B}_{k-1} M_{0, k}^{*} H_{k}^{*}\right)^{-1}\left(f_{k}-H_{k} M_{0, k} \tilde{w}_{k-1}^{(a)}\right)
\end{align*}
$$

which by $w_{k}^{(a)}=M_{0, k} \tilde{w}_{k}^{(a)}, w_{k}^{(b)}=M_{0, k} \tilde{w}_{k-1}^{(a)}$ and $B_{k}^{(b)}=M_{k-1} B_{k-1}^{(a)} M_{k-1}^{*}$ is equal to

$$
\begin{equation*}
w_{k}^{(a)}=w_{k}^{(b)}+B_{k}^{(b)} H_{k}^{*}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1}\left(f_{k}-H_{k} w_{k}^{(b)}\right) \tag{26}
\end{equation*}
$$

Kalman Filter Equations - Covariance

The calculation for the covariance update

$$
\begin{equation*}
\tilde{B}_{k}^{-1}:=\tilde{B}_{k-1}^{-1}+M_{0, k}^{*} H_{k}^{*} R^{-1} H_{k} M_{0, k}, \quad k=1,2, \ldots \tag{27}
\end{equation*}
$$

is multiplied by $M_{0, k}^{-1}$ from the right and by $\left(M_{0, k}^{*}\right)^{-1}$ from the left to obtain

$$
\begin{equation*}
\left(M_{0, k}^{*}\right)^{-1} \tilde{B}_{k}^{-1} M_{0, k}^{-1}:=\left(M_{0, k}^{*}\right)^{-1} \tilde{B}_{k-1}^{-1} M_{0, k}^{-1}+H_{k}^{*} R^{-1} H_{k}, \quad k=1,2, \ldots \tag{28}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\left(B_{k}^{(a)}\right)^{-1}=\left(B_{k}^{(b)}\right)^{-1}+H_{k}^{*} R^{-1} H_{k} \tag{29}
\end{equation*}
$$

Kalman Filter Equations - Analysis State

The analysis equation is given by

$$
\begin{equation*}
w_{k}^{(a)}=w_{k}^{(b)}+B_{k}^{(b)} H_{k}^{*}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1}\left(f_{k}-H_{k} w_{k}^{(b)}\right) \tag{30}
\end{equation*}
$$

for $k \in \mathbb{N}$, usually written in the form

$$
\begin{equation*}
w_{k}^{(a)}=w_{k}^{(b)}+K_{k}\left(f_{k}-H_{k} w_{k}^{(b)}\right) \tag{31}
\end{equation*}
$$

with the Kalman gain matrix (or Tikhonov Regularization Operator)

$$
\begin{equation*}
K_{k}:=B_{k}^{(b)} H_{k}^{*}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1} . \tag{32}
\end{equation*}
$$

The weight update is

$$
\begin{equation*}
\left(B_{k}^{(a)}\right)^{-1}=\left(B_{k}^{(b)}\right)^{-1}+H_{k}^{*} R^{-1} H_{k} . \tag{33}
\end{equation*}
$$

B matrix analysis equation

Lemma

For $k \in N$ we have

$$
\begin{equation*}
B_{k}^{(a)}=\left(I-K_{k} H_{k}\right) B_{k}^{(b)} \tag{34}
\end{equation*}
$$

Proof. We start from (33) in the form

$$
\begin{equation*}
B_{k}^{(a)}=\left(I+B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k}\right)^{-1} B_{k}^{(b)} \tag{35}
\end{equation*}
$$

We expand

$$
\begin{align*}
T:= & \left(I+B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k}\right)\left(I-K_{k} H_{k}\right) \\
= & \left(I+B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k}\right)\left(I-B_{k}^{(b)} H_{k}^{*}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1} H_{k}\right) \\
= & I+B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k}-B_{k}^{(b)} H_{k}^{*}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1} H_{k} \\
& -B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k} B_{k}^{(b)} H_{k}^{*}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1} H_{k} \tag{36}
\end{align*}
$$

B matrix analysis equation

$$
\begin{align*}
T= & I+\underbrace{B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k}}_{=: S}-\underbrace{B_{k}^{(b)} H_{k}^{*}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1} H_{k}}_{=: s_{1}} \\
& -\underbrace{B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k} B_{k}^{(b)} H_{k}^{*}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1} H_{k}}_{:=S_{2}} \tag{37}
\end{align*}
$$

Remark that

$$
\begin{align*}
S & =B_{k}^{(b)} H_{k}^{*} R^{-1}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1} H_{k} \tag{38}\\
& =S_{1}+S_{2}
\end{align*}
$$

which yields $T=I$. Thus

$$
\left(I+B_{k}^{(b)} H_{k}^{*} R^{-1} H_{k}\right)^{-1}=\left(I-K_{k} H_{k}\right)
$$

and the proof is complete.

Kalman Filter

Definition (Kalman Filter)

Starting with an initial state $w_{0}^{(b)}$ and an initial matrix $B_{0}^{(a)}:=B$, for $k \in \mathbb{N}$ the Kalman Filter iteratively calculates an analysis $w_{k}^{(a)}$ at time t_{k} by

1. propagating the state $w_{k-1}^{(a)}$ from t_{k-1} to t_{k} via (21), $w_{k}^{(b)}=M_{k-1} w_{k-1}^{(a)}$
2. propagating $B_{k-1}^{(a)}$ from t_{k-1} to t_{k} following (24),

$$
\begin{equation*}
B_{k}^{(b)}=M_{k-1} B_{k-1}^{(a)} M_{k-1}^{*} \tag{39}
\end{equation*}
$$

3. calculating an analysis state by (30)

$$
\begin{align*}
K_{k} & :=B_{k}^{(b)} H_{k}^{*}\left(R+H_{k} B_{k}^{(b)} H_{k}^{*}\right)^{-1} \tag{40}\\
w_{k}^{(a)} & =w_{k}^{(b)}+K_{k}\left(f_{k}-H_{k} w_{k}^{(b)}\right) \tag{41}
\end{align*}
$$

4. calculating an analysis weight by (34), $B_{k}^{(a)}=\left(I-K_{k} H_{k}\right) B_{k}^{(b)}$.

Equivalence Result

Theorem (Equivalence 4dVar/KF/KS)

Let H_{k} for $k \in \mathbb{N}$ and M_{k} for $k \in \mathbb{N}_{0}$ be linear. Let $w_{k}^{(a)}$ be the analysis of the Kalman Filter at time $t_{k}, \tilde{w}_{k}^{(a)}$ the analysis of the Kalman smoother with data f_{1}, \ldots, f_{k} at time $t_{0}, \tilde{w}_{4 d, k}^{(a)}$ the minimizer of the $4 d V$ Var functional at time t_{0} and define

$$
\begin{equation*}
w_{4 d, k}^{(a)}:=M_{0, k} \tilde{w}_{4 d, k}^{(a)}, \quad k=1,2,3, \ldots \tag{42}
\end{equation*}
$$

Then 4dVar is equivalent to the Kalman Filter and to the Kalman Smoother in the sense that

$$
\begin{equation*}
w_{4 d, k}^{(a)}=w_{k}^{(a)}=M_{0, k} \tilde{w}_{k}^{(a)} \tag{43}
\end{equation*}
$$

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step
Kalman Smoother
Kalman Filter

A Bayesian Approach to Kalman Filtering

Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Outline

Introduction and Setup
Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step
Kalman Smoother
Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Bayes Formula

Let π be some probability density on the state space X.

Then, Bayes Formula for calculating a conditional probability density given some observation is given by

$$
\begin{equation*}
\pi(w \mid f)=\frac{\pi(w) \pi(f \mid w)}{\pi(f)} \tag{44}
\end{equation*}
$$

Often, we have

$$
\begin{equation*}
\pi(f \mid w)=\pi_{d a t a}(f-H w) \tag{45}
\end{equation*}
$$

with the obervation operator H. The value $\pi(f)$ is given by the normalization condition. This leads to

$$
\begin{equation*}
\pi(w \mid f)=c \pi_{\text {prior }}(w) \pi_{\text {data }}(f-H w) \tag{46}
\end{equation*}
$$

Bayes Formula Visualized

Prior distribution black.
Measurement error distribution green.

The orange curve shows the analysis density.

Bayes Formula for Data Assimilation

Definition (Bayes Data Assimilation.)

Bayes Data Assimilation determines probability distributions $\pi_{k}^{(a)}$ at time t_{k} for the states $w \in X$ by cycling the following propagation and analysis steps.

1. (Propagation Step.) Calculate the prior density $\pi_{k}^{(b)}(w)$ at time t_{k} by propagating the analysis density $\pi_{k-1}^{(a)}$ from time t_{k-1} to t_{k} based on the (linear or nonlinear) model dynamics M_{k-1}.
2. (Analysis Step.) Calculate the posterior or analysis density $\pi_{k}^{(a)}\left(w \mid f_{k}\right)$ at time t_{k} by Bayes formula (44).

Gaussian Densities

Let us consider Gaussian densities

$$
\begin{equation*}
\pi(w)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(B)}} e^{-\frac{1}{2}(w-\mu)^{T} B^{-1}(w-\mu)}, \quad w \in \mathbb{R}^{n} \tag{47}
\end{equation*}
$$

around some state $\mu=w^{(b)} \in X$ with some positive define invertible matrix B. Assume that also the error distribution is Gaussian

$$
\begin{equation*}
\pi(f \mid w)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(R)}} e^{-\frac{1}{2}(f-H(w))^{T} R^{-1}(f-H(w))}, \quad f \in \mathbb{R}^{m} \tag{48}
\end{equation*}
$$

Gaussian Posterior Density

Then, according to Bayes formula (44) we obtain

$$
\begin{align*}
\pi(w \mid f)=c \cdot \exp \{- & \frac{1}{2}\left((w-\mu)^{T} B^{-1}(w-\mu)\right. \\
& \left.+(f-H(w))^{T} R^{-1}(f-H(w))\right\} \tag{49}
\end{align*}
$$

with some constant $c>0$. If H is linear, this again is a Gaussian density

$$
\begin{equation*}
\pi(w \mid f)=\tilde{c} \exp \left\{-\frac{1}{2}(w-\tilde{\mu})^{T} \tilde{B}^{-1}(w-\tilde{\mu})\right\} \tag{50}
\end{equation*}
$$

with some constant \tilde{c}.
We obtain the same quadratic transformation problem as above!

Bayes for Gaussian densities

The mean $\tilde{\mu}$ of the posterior Gaussian distribution is given by

$$
\begin{equation*}
\tilde{\mu}=w^{(b)}+B H^{*}\left(R+H B H^{*}\right)^{-1}\left(f-H w^{(b)}\right) \tag{51}
\end{equation*}
$$

and its covariance matrix \tilde{B} is given by

$$
\begin{equation*}
\tilde{B}^{-1}=B^{-1}+H^{*} R^{-1} H . \tag{52}
\end{equation*}
$$

Theorem (Bayes for Gaussian Densities and the Kalman Filter.)

For linear operators M_{k} and H the Bayes data assimilation with Gaussian densities is equivalent to a Kalman Filter.

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step
Kalman Smoother
Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Outline

Introduction and Setup
Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step
Kalman Smoother
Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Spectral Theorem

Let A be a real symmetric $n \times n$-matrix. Then, there is a set of n vectors $\psi^{(1)}, \ldots, \psi^{(n)} \in X$ such that

$$
\begin{equation*}
A \psi^{(j)}=\lambda_{j} \psi^{(j)}, \quad j=1, \ldots, n \tag{53}
\end{equation*}
$$

Usually, we assume that the eigenvalues and corresponding eigenvectors are ordered according to its size.
The eigenvectors of A are orthonormal, i.e. we have

$$
\begin{align*}
& \left\langle\psi^{(j)}, \psi^{(k)}\right\rangle= \begin{cases}1 & j=k \\
0 & \text { otherwise }\end{cases} \\
& \left\|\psi^{(j)}\right\|=1, \quad j=1, \ldots, n \tag{54}
\end{align*}
$$

This is called a complete orthonormal set of eigenvectors with real eigenvalues.

A matrix vector multiplication is carried out first by representing the vector in the basis of eigenvectors.

The coefficients are calculated by application of U^{T}, these are projections onto the eigenvectors which constitute U by

$$
U=\left(\psi^{(1)}, \ldots, \psi^{(n)}\right)
$$

Then, application of A corresponds to a diagonal matrix, i.e. to multiplication.

Singular Value Decomposition

Study an arbitrary matrix H. Then $A:=H^{T} H$ is symmetric, since

$$
A^{T}=\left(H^{T} H\right)^{T}=H^{T} H=A
$$

We have a complete set of orthogonal eigenvectors and eigenvalues ordered according to its size. We define the singular values of H

Singular Value Decomposition

Study an arbitrary matrix H. Then $A:=H^{\top} H$ is symmetric, since

$$
A^{T}=\left(H^{\top} H\right)^{T}=H^{\top} H=A .
$$

We have a complete set of orthogonal eigenvectors and eigenvalues ordered according to its size. We define the singular values of H

$$
\begin{equation*}
\mu_{j}:=\sqrt{\lambda_{j}} \tag{55}
\end{equation*}
$$

and call the sets $\left\{\psi^{(j)}: j=1, \ldots, n\right\}$ and $\left\{g^{(j)}:=\mu_{j}^{-1} H \psi_{j}: j=1, \ldots, n\right\}$ its singular vectors. These are two sets of orthonormal vectors, since we have

Singular Value Decomposition

Study an arbitrary matrix H. Then $A:=H^{\top} H$ is symmetric, since

$$
A^{T}=\left(H^{\top} H\right)^{T}=H^{\top} H=A .
$$

We have a complete set of orthogonal eigenvectors and eigenvalues ordered according to its size. We define the singular values of H

$$
\begin{equation*}
\mu_{j}:=\sqrt{\lambda_{j}} \tag{55}
\end{equation*}
$$

and call the sets $\left\{\psi^{(j)}: j=1, \ldots, n\right\}$ and $\left\{g^{(j)}:=\mu_{j}^{-1} H \psi_{j}: j=1, \ldots, n\right\}$ its singular vectors. These are two sets of orthonormal vectors, since we have

$$
\begin{align*}
\left\langle g^{(j)}, g^{(k)}\right\rangle & =\lambda_{j}^{-1}\left\langle H \psi^{(j)}, H \psi^{(k)}\right\rangle \\
& =\lambda_{j}^{-1}\left\langle\psi^{(j)}, H^{\top} H \psi^{(k)}\right\rangle \\
& =\lambda_{j}^{-1} \lambda_{j} \delta_{j, k} \\
& =\delta_{j, k} . \tag{56}
\end{align*}
$$

We call $\left(\mu_{j}, \psi^{(j)}, g^{(j)}\right)$ the singular system of H.

Singular values of observation operator H

Let $\left(\mu_{j}, \psi^{(j)}, g^{(j)}\right)$ denote the singular system of the observation operator H. Here, for simplicity we assume H injective and $X=\mathbb{R}^{n}, Y=\mathbb{R}^{m}$ with $n=m$.

Then, we application of H corresponds to a multiplication by μ_{j} on the particular modes given by the singular vectors $\psi^{(j)}$ of H.

We obtain

$$
\begin{equation*}
H \psi^{(j)}=\mu_{j} g^{(j)} \tag{57}
\end{equation*}
$$

by definition of $g^{(j)}$ and

$$
\begin{equation*}
H^{T} g^{(j)}=\mu_{k} \psi^{(j)} \tag{58}
\end{equation*}
$$

which is obtained from $H^{T} g^{(j)}=\mu_{j}^{-1} H^{\top} H \psi^{(j)}=\mu_{j}^{-1} \mu_{j}^{2} \psi^{(j)}$.

Application of H corresponds to

1) projection onto the basis of eigenvectors $\psi^{(j)}$,
2) multiplication of the coefficients by μ_{j},
3) Set up the result by using the coefficients with respect to the image space basis vectors $g^{(j)}$.

Outline

Introduction and Setup

Setup of State Space, Model, Measurements

Derivation of the Kalman Filter via 4dVar
4dVar Step by Step
Kalman Smoother
Kalman Filter

A Bayesian Approach to Kalman Filtering
Bayes Formula

Regularization Theory

Spectral Theorem and Singular Value Decomposition
Regularization Theory

Spectral resolution of data equation

When we want to solve

$$
\begin{equation*}
H w=f \tag{59}
\end{equation*}
$$

we represent the state by

$$
\begin{equation*}
w=\sum_{j=1}^{n} \alpha_{j} \psi^{(j)} \tag{60}
\end{equation*}
$$

and the measurement f by

$$
\begin{equation*}
f=\sum_{k=1}^{m} \beta_{k} g^{(k)} \tag{61}
\end{equation*}
$$

such that (59) is reduced to

$$
\begin{equation*}
H w=\sum_{k=1}^{n} H \alpha_{k} \psi^{(k)}=\sum_{k=1}^{m} \mu_{k} \alpha_{k} g^{(k)}=\sum_{k=1}^{m} \beta_{k} g^{(k)}=f \tag{62}
\end{equation*}
$$

Picard Theorem

Theorem (Picard Theorem (Simple Version))

The solution of

$$
\begin{equation*}
H w=f \tag{63}
\end{equation*}
$$

with

$$
\begin{equation*}
f=\sum_{k=1}^{m} \beta_{k} g^{(k)} \tag{64}
\end{equation*}
$$

is given by

$$
\begin{equation*}
w=\sum_{k=1}^{n} \frac{\beta_{k}}{\mu_{k}} \psi^{(k)} \tag{65}
\end{equation*}
$$

If μ_{k} is small, then there are strong instabilities in the solution, small errors can be strongly amplified!

Regularization

Regularization means that we bound the influence of

$$
\frac{1}{\mu_{j}}
$$

when solving $H w=f$.
A typical bound is achieved by replacing the term $1 / \mu_{j}$ by

$$
\begin{equation*}
\frac{\mu_{j}}{\alpha+\mu_{j}^{2}} \tag{66}
\end{equation*}
$$

for $\alpha>0$, which for $\alpha \rightarrow 0$ tends to $1 / \mu_{j}$.
The approach (66) is called spectral damping. It is equivalent to an application of the Tikhonov regularization matrix

$$
\begin{equation*}
R_{\alpha}=\left(\alpha I+H^{T} H\right)^{-1} H^{T} \tag{67}
\end{equation*}
$$

replacing the inverse H^{-1}.

Many Thanks!

