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Numerical Weather

Monday, Feb 13

Tuesday, Feb 14

Wednesday, Feb 15

Thursday, Feb 16

Friday, Feb 17

09:15-10:45 Craig Janjic-Pfander Stephan Rhodin
Lecture 3: Lecture 6: Special Special
Obs. / Model Error | Localization Radar Data DWD Systems |
and Covariances BLAU GRUN GMENCON
BLAU GRUN
Coffee Coffee Coffee Coffee
11:15-12:45 | Registration Potthast Képken-Watts and | Leuenberger/ Reich
Lecture 4: Faulwetter Reich Special
Filtering Theary, Special Exercise DWD Systems Il
Kalman Filter and | Satellite Data | GRUN MEXICO COSMO
Regularization GRUN GRUN
BLAU
Lunch Lunch Lunch Lunch Lunch
14:15-15:45 | Potthast Leuenberger/ Leuenberger/ Reich | Stiller
Lecture 1: Reich Exercise Lecture 7:
Survey about Exercise GRUN/ MEXICO Clouds in DA
Data Assimilation | GRUN/MEXICO BLAU
BLAU
Coffee Coffee Coffee Coffee
16:15-17:45 | Craig Janjic-Pfander Faulwetter Rhodin
Lecture 2: Lecture 5: Special Lecture 8:
Variational DA Ensemble Methods | Satellite Data Il Quality Control and
BLAU BLAU GRUN Bias

Correction
BLAU
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Numerical Weather

Warn and Protect
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Numerical Weathel

Weather is Relevant Il ...

Logistics

Air Control
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Numerical Weather

Outline

Numerical Weather Prediction and DWD
Can Numerics Help?
Research and Development at DWD

Dynamical Systems, Inverse Problems and Data Assimilation
Fluid Dynamics and Micro- and Macro-Physics
Measurements: Stations, Sondes, Planes, Satellites

Data Assimilation Methods
Tikhonov Regularization and 3dVar
4dVar
Kalman Filter: Deterministic and Stochastic View
Ensemble Kalman Filter
Local Ensemble Transform Kalman Filter (LETKF)

Challenges and Open Questions
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Numerical Weather Prediction and DWD
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Outline

Numerical Weather Prediction and DWD
Can Numerics Help?
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Remarks on the History of Weather Prediction |

® |n 1901 Cleveland Abbe it the founder of the United States Weather
Bureau. He suggested that the atmosphere followed the principles of
thermodynamics and hydrodynamics

® |n 1904, Vilhelm Bjerknes proposed a two-step procedure for
model-based weather forecasting. First, a analysis step of data
assimilation to generate initial conditions, then a forecasting step solving
the initial value problem.

® |n 1922, Lewis Fry Richardson carried out the first attempt to perform the
weather forecast numerically.

® |n 1950, a team of the American meteorologists Jule Charney, Philip
Thompson, Larry Gates, and Norwegian meteorologist Ragnar Fjortoft
and the applied mathematician John von Neumann, succeeded in the first
numerical weather forecast using the ENIAC digital computer.

Bjerknes
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Research and Development at'i§ @

Remarks on the History of Weather Prediction Il

Nimbus 1: 1964

e |n September 1954, Carl-Gustav Rossby’s group at the Swedish

Meteorological and Hydrological Institute produced the first
operational forecast (i.e. routine predictions for practical use)
based on the barotropic equation. Operational numerical
weather prediction in the United States began in 1955 under the
Joint Numerical Weather Prediction Unit (JNWPU), a joint
project by the U.S. Air Force, Navy, and Weather Bureau.

In 1959, Karl-Heinz Hinkelmann produced the first reasonable
primitive equation forecast, 37 years after Richardson’s failed
attempt. Hinkelmann did so by removing high-frequency noise
from the numerical model during initialization.

In 1966, West Germany and the United States began producing
operational forecasts based on primitive-equation models,
followed by the United Kingdom in 1972, and Australia in 1977.
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Numerical Weather
Systems, Invers

Skills and Scores
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Outline

Numerical Weather Prediction and DWD

Research and Development at DWD
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Numerical Weathei

Monday, Feb 13 | Tuesday, Feb 14 |Wednesday, Feb 15 | Thursday, Feb 16 | Friday, Feb 17
09:15-10:45 Craig Janjic-Pfander ! Rhodin
Lecture 3: Lecture 6: Special
Obs. / Model Error | Localization DWD Systems |
and Covariances BLAU GMENCON
BLAU GRUN
Coffee Coffee
11:15-12:45 | Registration Potthast Reich
Lecture 4: Special
Filtering Theory, DWD Systems II
Kalman Filter and COSMO
Regularization GRUN
BLAU
Lunch Lunch Lunch Lunch Lunch
14:15-15:45 | Potfthast Leuenberger/ Leuenberger/ Reich
Lecture 1: Reich Exercise
Survey about Exercise GRUN: MEXICO.
Data Assimilation | GRUN MEXICO
BLAU
Coffee Coffee
16:15-17:45 | Craig Janjic-Pfander
Lecture 2: Lecture 5:
Variational DA Ensemble Methods
BLAU BLAU
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Numerical Weather
§ystems, Invers

Organizational Structure DWD

Research and Development
e Section on Modelling

Unit Num. Modelling

Unit Data Assimilation

Unit Physics

Unit Verification

e Central Development
- Visualization DWD Business Areas

- Products e Research and Development
- Model Output Statistics
e Climate and Environment
e Meteorological Observatory

. e Human Ressources
Lindenberg

e Meteorological Observatory Weather Forecast

Hohenpeissenberg

Technical Infrastructure
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Numerical Weather - %
§ystems, Invers

Around 50-60 Scientists on Numerical Modelling

Research > Development > Coding > Operation > Monitoring
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Main Sites Reading and
DWD Offenbach/Frankfurt

and Selection of
Partner Locations

'
o
of

i e -
Max Planck Institute Meteorologie Hamburg, GFZ
Potsdam, Alfred Wegner Institute Bremerhafen, DLR
Oberpfaffenhofen, KIT (Karlsruhe Institute of
Technologf), Universities in Bremen, Cologne, Bonn,

Goéttingen, Reading, Postsdam, Munich, Berlin, ...
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Numerical Weather

0-Physics
, Planes, Satellites

Outline

Dynamical Systems, Inverse Problems and Data Assimilation

18/55



‘0-Physics
, Planes, Satellites

Outline

Dynamical Systems, Inverse Problems and Data Assimilation
Fluid Dynamics and Micro- and Macro-Physics
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‘0-Physics
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Numerical Weather

‘0-Physics
, Planes, Satellites

Fluid Dynamics, Winds, Radiation, Heat, Rain, Clouds, Aerosols

Differential Equtions/ Primitive Equations
e Conservation of momentum

e Thermal energy equations

e Continuity equations: conservation of mass M-t ol

Hadley cell

Multiphysics Processes

1. Fluid flow, synoptic flow, convection,
turbulence

Hadley cell

Midlatitude cell

2. Radiation from the sun
3. Micro-Physics, rain formation

4. Ice growth, snow dynamics
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0-Physics
, Planes, Satellites

Outline

Dynamical Systems, Inverse Problems and Data Assimilation

Measurements: Stations, Sondes, Planes, Satellites
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Numerical Weather Pragi

Fluid Dynamics and Micro- and I}

€5, Planes, Satellites @

Synop, TEMP,
Radiosondes,
Buoys,
Airplanes,
Radar, Wind
Profiler, Scat-
terometer,
Radiances,
GPS/GNSS,
Ceilometer,
Lidar
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Numerical Weather

0-Physics
, Planes, Satellites

Synop ...

Observation coverage oss
Land ond Ship Synops
Date of Anulyses‘ 2008112000 TIME : 23:15 = 00:00
land (3035} Manned ship (SUE‘
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Numerical Weather

0-Physics
, Planes, Satellites

Buoys ...

DWD Observation Coverage ass
Buoy
Date of Analyses: 2008112000 TIME : 23:59 - 00:00
uoy (5193)?

e
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Numerical Weathel

0-Physics
, Planes, Satellites

Radio-Sondes ...

Observation coverage oss
Lond and Ship TEMPS
Date of Analyses: 2008112000 TIME : 23:59 - 00:00

Lond Temp (610 Ship Temp (5) Dropsonde(0)
180 1 73; 80 40 8] 40
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Aircrafts ...

0-Physics

, Planes, Satellites

=

Observation coverage
Aircroft doto
Date of Analyses: 2008112000
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Numerical Weather

fo-Physics
, Planes, Satellites

AMV Winds ...

DWD Observation coveroge ass
AMV Winds
Date of Analyses: 2008112000 TIME : 23:30 - 00:30
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Numerical Weather

0-Physics
, Planes, Satellites

Scatterometer Winds ...

DWD Observation coverage ass
Scatterometer Winds
Date of Analyses: 2009020912 TIME : 10:30 — 13:29
ASCAT (120792) QSCAT (23825|3)

D Y ey 7

qscat 2009012318 klaus smooth
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0-Physics
, Planes, Satellites

Radiances ...

DWD Observation coverage ass
ATOVS Rodiances
Date of Analyses: 2008112000 TIME :2230 - 0130
NOAA 15 (55,‘:»878)_ NOM;;E (ss?aa)nv\cm 1;{59555)/ X AI\;EHTOP (55466(])
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0-Physics
, Planes, Satellites

Radar ...

RY-Komposit

11. NOV 2008 05:00 UTC

Hean: 0.266758 hins e 12,7861
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Fluid Dynamics and Micro- and I}
€s, Planes, Satellites

Radiooccultations ...

Occulting GPS

Satellite
Time Delay & Bend Angle
Provide Density vs. Altitude

Occulting LEO

. IONOSPHERE Satellite
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tochastic View

Filter (LETKF)

Outline

Data Assimilation Methods
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tochastic View

Filter (LETKF)

Outline

Data Assimilation Methods
Tikhonov Regularization and 3dVar
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tochastic View
Filter (LETKF)

Basic Approach

Let H be the operator mapping the state w onto the measurements f. Then we
need to find w by solving the equation

Hw = f (1)
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e There is measurement error as well as numerical approximation error and
model error!
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tochastic View

Filter (LETKF)

Basic Approach

Let H be the operator mapping the state w onto the measurements f. Then we
need to find w by solving the equation

Hw = f (1)

e Usually, the size of w is much larger than the size of f!
e Usually, H involves remote sensing operators!

e There is measurement error as well as numerical approximation error and
model error!

When we have some initial guess wg, we transform the equation into
Hw — wp) = f — H(wp) 2)

and update
w=w+H "(f - H(w)). (3)
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Numerical Weather

tochastic View

Filter (LETKF)

Regularization 1

Consider an equation
Hw = f

where H™" is unstable or unbounded.
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Consider an equation
Hw = f

where H™" is unstable or unbounded.

Hw = f
= H'Hw = H'f
= (al+ H'H)w = H*f.
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Numerical Weather

tochastic View

Filter (LETKF)

Regularization 1

Consider an equation
Hw = f

where H™" is unstable or unbounded.

Hw = f
= H'Hw = H'f
= (al+ H'H)w = H*f.
Tikhonov Regularization: Replace H~ ' by the stable version
Ry = (al + H*H)'H*

with regularization parameter o > 0.
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tochastic View

Filter (LETKF)

Regularization 2: Least Squares

Tikhonov regularization is equivalent to the minimization of

J(w) = (allwl® + [#w — 1)
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Numerical Weather e
‘ tochastic View
Filter (LETKF)

Regularization 2: Least Squares

Tikhonov regularization is equivalent to the minimization of

J(w) = (| wl]> + [|w — 1] )

The normal equations are obtained from first order optimality conditions
dJ(w)

|
=0 8)

Vi =
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2 tochastic View
Filter (LETKF)

Regularization 2: Least Squares

Tikhonov regularization is equivalent to the minimization of

J(w) = (allwl® + [#w — 1) o)

The normal equations are obtained from first order optimality conditions
dJ(w)

!
br =0. (8)

Vid =
Differentiation leads to
0 = 2aw + 2H*(Hw — f)
= 0= (al+ H"H)w — H*f, (9)

which is our well-known Tikhonov equation

(al + H*"H)w = H*f.
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2 tochastic View
Filter (LETKF)

Covariances and Weighted Norms

Usually, the relation between variables at different points is incorporated by
using covariances / weighted norms:

Jw) = (Jlw = woll3-, =+ [l — 1], (10

The update formula is now

w = w+ (B '+HRH)TTH'R(f — H(w))
= wy+ BH*(R+ HBH*) " '(f — Hw). (11)
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(Nna‘PnaQn) (12)
is a a set of singular values (@, and a pair of orthonormal basis functions @, g,
such that
Hpn = [ingn
H*gn = KUn®Pn- (13)
We have
o0
W= anpn (14)
n=1
and

oo
Wx = 1n0tnn. (15)
n=1
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A singular system of an operator W : X — Y written as

(Nna‘PnaQn) (12)
is a a set of singular values (@, and a pair of orthonormal basis functions @, g,
such that
Hpn = [ingn
H*gn = KUn®Pn- (13)
We have
o0
W= anpn (14)
n=1
and
(o]
Wx = 1n0tnn. (15)
n=1

In the spectral basis the operator H is a multiplication operator! .
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In spectral terms we obtain
H"Heon = tH5pn
alp, = ap,
thus

(al+HH)py = (a+ p)pa, n€N.

(16)
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Regularization 3: Spectral Methods

In spectral terms we obtain

H*Hp, = ny‘Pn

alp, = ap,
thus
(al+ H H)pn = (o + po)pn, n€N. (16)
Consider
oo
f= Zﬁngn ev. (17)
n=1

Tikhonov regularization (! + H*H)x = H*y is equivalent to the spectral

damping scheme

Hn
=" 38, neN. 18
Qp a_'_,u%/@n n (18)
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W = _/8 n -
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This inversion is unstable, if (1, — 0, n — 00!

50/55



Numerical Weather pe
‘ tochastic View
Filter (LETKF)

Regularization 3: Spectral Methods

True Inverse
Wrt]rue — 1—,8:1"19. (19)
Hn
This inversion is unstable, if (1, — 0, n — 00!
Tikhonov Inverse (stable if &« > 0)
_
Bn = mﬁn, neN. (20)

Tikhonov shifts the eigenvalues of H* H by «.
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Use the system dynamics!

@

So far we have not used the system M : wy — x(1).

Consider some regular grid in time:

k
b = ;T’ Wy = W(tk) = M(tk)W07 k=0,...,n.

The 4dVar functional is given by:

n
J(w) = [lw = woll? + > || Hw — £l ?
k=1

(21)

(22)
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Consider the case n = 2. We need to minimize

I — woll g+ + | HMow — £[|* + || HMy w — o |?

(23)
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Kalman Filter Deterministic

@

Consider the case n = 2. We need to minimize

I — woll g+ + | HMow — £[|* + || HMy w — o |?

Decompose it into
S(w) = [lw = wol[5+ + [[AMow — £ ]]°

and
h(w) = |lw— w3 + |HMw — &2

where B~ is chosen such that
lw —wa 3= = [lw — wol[2— + [|HMow — 4] + ¢

with some constant c.

(23)
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Kalman Update Formula for the weights (with R error covariance matriw)
—1 _ —1 %k p—1 _
Byy = By +MHR HMy, k=1,2,.. (27)

and for the mean

b _
Wity = wk+BkM:H*(R+HMkB£ )MZH*) Y(feg1—HMwy), k=12, ...
(28)
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Kalman Update Formula for the weights (with R error covariance matriw)

By = B '+ MHRHM, k=1,2,.. 27)
and for the mean

b _
Wikt = Wt BM H* (R+HMBEO M H ) 7 (fepn — HMow), k= 1,2, ...
(28)

Theorem

For linear systems and linear observation operators 4dVar and the Kalman
Filter are equivalent.
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Conditional probability
P(AN B)

P(B)

P(A|B) :=

for A, B sets in a probability space.

(29)
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for A, B sets in a probability space.
Conditional probability density
p(w, 1)

p(1)

p(wlf) = , (w,f)exxy.

(29)
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for A, B sets in a probability space.
Conditional probability density
p(w, 1)

p(1)

p(wlf) = , (w,f)exxy.

From
p(w, f) = p(w|f) - p(f) = p(f|lw) - p(w)

(29)
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Regularization 4: Bayesian Methods

@

Conditional probability

for A, B sets in a probability space.
Conditional probability density
p(w, 1)

p(f)

p(wlf) = , (w,f)exxy.

From
p(w, f) = p(w|f) - p(f) = p(f|lw) - p(w)

we obtain Bayes’ formula

p(wl|f) = ’M, weX, fEY.

p(f)

(29)
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Regularization 4: Bayesian Methods

Conditional probability

P(AN B)
P(A|B) := 29
(AlB) PB) (29)
for A, B sets in a probability space.
Conditional probability density
p(w, f)
f) = fle X xXY. 30
p(w|f) o) (w, 1) (30)
From
p(w, f) = p(w|f) - p(f) = p(f|lw) - p(w)
we obtain Bayes’ formula
p(w)p(f|lw)
plw|f) = ——1—, weX, feYy. (81)
Wl = =205 :

Here p(f) can be considered as a normalization constant!
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Regularization 4: Bayesian Methods

Bayes’ Formula

f measurement,
w unknown state of system

1
pwl) = —=  plw)  p(ilw)
— p( f ) N~ —

posteriorprob. “~~  priorprob. measurementprob.

normalization
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Posterior PD!

o
'

o
¥

Probability
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with prior covariance matrix B,
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Regularization 4: Bayesian Methods
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1,7t
p(w)=e "8 " weR"
with prior covariance matrix B,

p(flw) = e—%(f—Hw)TR_‘(f—Hw)’ fey

with measurement covariance matrix R,
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Regularization 4: Bayesian Methods

@

Gaussian case

p(w) = e B W eR
with prior covariance matrix B,
p(flw) = e~ —HITATI(I=Hw) ¢y
with measurement covariance matrix R,

leads to the posterior density

o) = const o (77 )
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Regularization 4: Bayesian Methods

@

Maximum Likelyhood Estimator (ML)
ML: "Find the value w € X for which p(w/|f) is maximal”
Maximizing
—3 <th3—1 w(f—Hw) TR (f—Hw))
e
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Regularization 4: Bayesian Methods

@

Maximum Likelyhood Estimator (ML)
ML: "Find the value w € X for which p(w/|f) is maximal”

Maximizing
1 — —
-1 (wTB "w+(f—Hw) R 1(f—/—/w)>
e
is equivalent to minimizing

Jw) = w'B 'w+ (f — Hw) TR (f — Hw)
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Regularization 4: Bayesian Methods

@

Maximum Likelyhood Estimator (ML)
ML: "Find the value w € X for which p(w/|f) is maximal”

Maximizing
1 — —
e—§<wTB "w+(f—Hw) R 1(f—/—/w)>

is equivalent to minimizing
Jw) = w'B 'w+ (f — Hw) TR (f — Hw)
which for B = ««/ and R = [ is given by
J(w) = a|w|* + [ Hw — ]]*.

The minimum ist calculated by the Tikhonov operator.
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® Use stochastic estimators to dynamically

calculate the variances and covariances
Kalman Update Formula of the distribution.
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B = (B +HRTH)
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Use an ensemble of states

® Employ an ensemble of states to
capture the distribution of possibilities!

® Use stochastic estimators to dynamically
calculate the variances and covariances

40 30 a0 - Mo w2 o e —3

Kalman Update Formula of the distribution.
(a)y—1 _ (b)y—1 * o1 [0 == very efficient way to calculate the
(B) = ((B7) " +HRH) . .
update of the weight matrix
with B,((b) via stochastic estimator

and for the mean
W' = w4 8P b (R+HBY H*) ! (f— Hu®)
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® Employ an ensemble of states to
capture the distribution of possibilities!

® Use stochastic estimators to dynamically

calculate the variances and covariances
Kalman Update Formula of the distribution.

40 30 a0 - Moo 20 3 e —3 X

(BI((a))A _ ((Bl((b))ﬂ + R H) 0O = very eff|0|eth way to F:alculate the
update of the weight matrix

with B,((b) via stochastic estimator [J But does calculations only in a low
dimensional subspace! Poor
approximation?!

W' = w4 8P b (R+HBY H*) ! (f— Hu®)

and for the mean
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LETKF Basic Idea

e Transform the states: work in
the ensemble space!

e Localize all calculations!

Kalman Update Formula for the
weights (with R error covariance
matriw)

B = (B) "+ HAH)

with [ x4 via stochastic estimator
and for the mean

W' = w4 8P b (R+HBY H*) " (e —Hu®)
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Challenges and Open Questions 1: Algorithms

1. Convergence concepts

2. Show different types of convergence for nonlinear systems

3. Stability and instability for cycled problems

4. Localization and convergence

5. Localization for practical problems: tomographic data?!

6. Ensemble generation, ensemble control, spread

7. lterative inversion methods << — > cycled dynamical reconstruction
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Challenges and Open Questions 2: Data and Inversion

—t

. Use emerging inversion techniques from scattering

2. Use tomographic data from GPS/GNSS

3. Fully employ Satellite data with clouds

4. Use measurement in boundary layer fully

5. Identify optimal measurement data

6. Use adaptive methods
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