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Remarks on the History of Weather Prediction I

• In 1901 Cleveland Abbe it the founder of the United States Weather
Bureau. He suggested that the atmosphere followed the principles of
thermodynamics and hydrodynamics

• In 1904, Vilhelm Bjerknes proposed a two-step procedure for
model-based weather forecasting. First, a analysis step of data
assimilation to generate initial conditions, then a forecasting step solving
the initial value problem.

• In 1922, Lewis Fry Richardson carried out the first attempt to perform the
weather forecast numerically.

• In 1950, a team of the American meteorologists Jule Charney, Philip
Thompson, Larry Gates, and Norwegian meteorologist Ragnar Fjörtoft
and the applied mathematician John von Neumann, succeeded in the first
numerical weather forecast using the ENIAC digital computer.

Bjerknes
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Remarks on the History of Weather Prediction II

1962

Nimbus 1: 1964

• In September 1954, Carl-Gustav Rossby’s group at the Swedish

Meteorological and Hydrological Institute produced the first

operational forecast (i.e. routine predictions for practical use)

based on the barotropic equation. Operational numerical

weather prediction in the United States began in 1955 under the

Joint Numerical Weather Prediction Unit (JNWPU), a joint

project by the U.S. Air Force, Navy, and Weather Bureau.

• In 1959, Karl-Heinz Hinkelmann produced the first reasonable

primitive equation forecast, 37 years after Richardson’s failed

attempt. Hinkelmann did so by removing high-frequency noise

from the numerical model during initialization.

• In 1966, West Germany and the United States began producing

operational forecasts based on primitive-equation models,

followed by the United Kingdom in 1972, and Australia in 1977.
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Organizational Structure DWD

Research and Development

• Section on Modelling
• Unit Num. Modelling
• Unit Data Assimilation
• Unit Physics
• Unit Verification

• Central Development

- Visualization
- Products
- Model Output Statistics

• Meteorological Observatory

Lindenberg

• Meteorological Observatory

Hohenpeissenberg

DWD Business Areas

• Research and Development

• Climate and Environment

• Human Ressources

• Weather Forecast

• Technical Infrastructure
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             decentral organisation units

RKB  -  Regional Climate Office
*            entrusted with the business of
* *         dual function
(1)         6 affiliated administration offices
(2)         4 affiliated Regional Observing
             Network Groups with 16 aeronautical 
             meteorological offices and 58 meteorological
             watch offices incl.
             12 climate reference stations
(3 a-c)   3 affiliated service bases 
(4)         with affiliated Measurement Technology
             Section
(5)         with the network competence centre and
             Web Competence Centre of the Federal
             Administration of Transport, Building and
             Urban Development (BVBS)
(6)         including KU 41B Berlin-Buch

E  x  e  c  u  t  i  v  e      B  o  a  r  d      o  f      D  i  r  e  c  t  o  r  s

Scientific Advisory BoardAdministrative Advisory Board Deutscher Wetterdienst
Organisation Chart

Frankfurter Strasse 135                     63067 Offenbach
Postal address:  Postfach 10 04 65,  63004 Offenbach
Telephone  :  +49 69 8062 - 0
Telefax       :  +49 69 8062 - 4484
Internet      :  http://www.dwd.de
E-mail        :  info@dwd.de

Status :  01 January 2011

MetBw

Bundeswehr Goeinformation Service
Meteorological Division

with the DWD
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Press and
Public Relations

BI

Office of the
President and

International Affairs

IP

Internal Audit

ST

Strategy
Quality Management

Officer

President
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Prof. Dr Adrian

Hans-Joachim Koppert
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Weather Forecasting Services (WV)

Dr Jochen Dibbern
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Development Units: FE1, FE12 (Data Assimilation)

Around 50-60 Scientists on Numerical Modelling

Research > Development > Coding > Operation > Monitoring
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National and International Network

Max Planck Institute Meteorologie Hamburg, GFZ

Potsdam, Alfred Wegner Institute Bremerhafen, DLR

Oberpfaffenhofen, KIT (Karlsruhe Institute of

Technologf), Universities in Bremen, Cologne, Bonn,

Göttingen, Reading, Postsdam, Munich, Berlin, ...

COSMO Consortium
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Modelling of the Atmosphere: Geometry

• GME/ICON

Resolution 20km

• COSMO-EU

Resolution 7km

• COSMO-DE

Resolution 2.8km
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Fluid Dynamics, Winds, Radiation, Heat, Rain, Clouds, Aerosols

Differential Equtions/ Primitive Equations

• Conservation of momentum

• Thermal energy equations

• Continuity equations: conservation of mass

Multiphysics Processes

1. Fluid flow, synoptic flow, convection,

turbulence

2. Radiation from the sun

3. Micro-Physics, rain formation

4. Ice growth, snow dynamics

22/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Fluid Dynamics and Micro- and Macro-Physics
Measurements: Stations, Sondes, Planes, Satellites

Outline

Numerical Weather Prediction and DWD
Can Numerics Help?

Research and Development at DWD

Dynamical Systems, Inverse Problems and Data Assimilation
Fluid Dynamics and Micro- and Macro-Physics

Measurements: Stations, Sondes, Planes, Satellites

Data Assimilation Methods
Tikhonov Regularization and 3dVar

4dVar

Kalman Filter: Deterministic and Stochastic View

Ensemble Kalman Filter

Local Ensemble Transform Kalman Filter (LETKF)

Challenges and Open Questions

23/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Fluid Dynamics and Micro- and Macro-Physics
Measurements: Stations, Sondes, Planes, Satellites

Data Survey ...

Synop, TEMP,

Radiosondes,

Buoys,

Airplanes,

Radar, Wind

Profiler, Scat-

terometer,

Radiances,

GPS/GNSS,

Ceilometer,

Lidar
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Basic Approach

Let H be the operator mapping the state w onto the measurements f . Then we

need to find w by solving the equation

Hw = f (1)

• Usually, the size of w is much larger than the size of f !

• Usually, H involves remote sensing operators!

• There is measurement error as well as numerical approximation error and

model error!

When we have some initial guess w0, we transform the equation into

H(w − w0) = f − H(w0) (2)

and update

w = w0 + H−1(f − H(w0)). (3)

42/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Tikhonov Regularization and 3dVar
4dVar
Kalman Filter: Deterministic and Stochastic View
Ensemble Kalman Filter
Local Ensemble Transform Kalman Filter (LETKF)

Basic Approach

Let H be the operator mapping the state w onto the measurements f . Then we

need to find w by solving the equation

Hw = f (1)

• Usually, the size of w is much larger than the size of f !

• Usually, H involves remote sensing operators!

• There is measurement error as well as numerical approximation error and

model error!

When we have some initial guess w0, we transform the equation into

H(w − w0) = f − H(w0) (2)

and update

w = w0 + H−1(f − H(w0)). (3)

42/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Tikhonov Regularization and 3dVar
4dVar
Kalman Filter: Deterministic and Stochastic View
Ensemble Kalman Filter
Local Ensemble Transform Kalman Filter (LETKF)

Basic Approach

Let H be the operator mapping the state w onto the measurements f . Then we

need to find w by solving the equation

Hw = f (1)

• Usually, the size of w is much larger than the size of f !

• Usually, H involves remote sensing operators!

• There is measurement error as well as numerical approximation error and

model error!

When we have some initial guess w0, we transform the equation into

H(w − w0) = f − H(w0) (2)

and update

w = w0 + H−1(f − H(w0)). (3)

42/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Tikhonov Regularization and 3dVar
4dVar
Kalman Filter: Deterministic and Stochastic View
Ensemble Kalman Filter
Local Ensemble Transform Kalman Filter (LETKF)

Basic Approach

Let H be the operator mapping the state w onto the measurements f . Then we

need to find w by solving the equation

Hw = f (1)

• Usually, the size of w is much larger than the size of f !

• Usually, H involves remote sensing operators!

• There is measurement error as well as numerical approximation error and

model error!

When we have some initial guess w0, we transform the equation into

H(w − w0) = f − H(w0) (2)

and update

w = w0 + H−1(f − H(w0)). (3)

42/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Tikhonov Regularization and 3dVar
4dVar
Kalman Filter: Deterministic and Stochastic View
Ensemble Kalman Filter
Local Ensemble Transform Kalman Filter (LETKF)

Basic Approach

Let H be the operator mapping the state w onto the measurements f . Then we

need to find w by solving the equation

Hw = f (1)

• Usually, the size of w is much larger than the size of f !

• Usually, H involves remote sensing operators!

• There is measurement error as well as numerical approximation error and

model error!

When we have some initial guess w0, we transform the equation into

H(w − w0) = f − H(w0) (2)

and update

w = w0 + H−1(f − H(w0)). (3)

42/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Tikhonov Regularization and 3dVar
4dVar
Kalman Filter: Deterministic and Stochastic View
Ensemble Kalman Filter
Local Ensemble Transform Kalman Filter (LETKF)

Basic Approach

Let H be the operator mapping the state w onto the measurements f . Then we

need to find w by solving the equation

Hw = f (1)

• Usually, the size of w is much larger than the size of f !

• Usually, H involves remote sensing operators!

• There is measurement error as well as numerical approximation error and

model error!

When we have some initial guess w0, we transform the equation into

H(w − w0) = f − H(w0) (2)

and update

w = w0 + H−1(f − H(w0)). (3)

42/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Tikhonov Regularization and 3dVar
4dVar
Kalman Filter: Deterministic and Stochastic View
Ensemble Kalman Filter
Local Ensemble Transform Kalman Filter (LETKF)

Basic Approach

Let H be the operator mapping the state w onto the measurements f . Then we

need to find w by solving the equation

Hw = f (1)

• Usually, the size of w is much larger than the size of f !

• Usually, H involves remote sensing operators!

• There is measurement error as well as numerical approximation error and

model error!

When we have some initial guess w0, we transform the equation into

H(w − w0) = f − H(w0) (2)

and update

w = w0 + H−1(f − H(w0)). (3)

42/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Tikhonov Regularization and 3dVar
4dVar
Kalman Filter: Deterministic and Stochastic View
Ensemble Kalman Filter
Local Ensemble Transform Kalman Filter (LETKF)

Regularization 1

Consider an equation

Hw = f (4)

where H−1 is unstable or unbounded.

Hw = f

⇒ H∗Hw = H∗f

⇒ (αI + H∗H)w = H∗f . (5)

Tikhonov Regularization: Replace H−1 by the stable version

Rα := (αI + H∗H)−1H∗ (6)

with regularization parameter α > 0.
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Regularization 2: Least Squares

Tikhonov regularization is equivalent to the minimization of

J(w) :=
(
α‖w‖2 + ‖Hw − f‖2

)
(7)

The normal equations are obtained from first order optimality conditions

∇x J =
dJ(w)

dx

!
= 0. (8)

Differentiation leads to

0 = 2αw + 2H∗(Hw − f)

⇒ 0 = (αI + H∗H)w − H∗f , (9)

which is our well-known Tikhonov equation

(αI + H∗H)w = H∗f .
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Covariances and Weighted Norms

Usually, the relation between variables at different points is incorporated by

using covariances / weighted norms:

J(w) :=
(
‖w − w0‖2

B−1 + ‖Hw − f‖2
R−1

)
(10)

The update formula is now

w = w0 + (B−1 + H∗R−1H)−1H∗R−1(f − H(w0))

= w0 + BH∗(R + HBH∗)−1(f − Hw0). (11)
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Regularization 3: Spectral Methods

A singular system of an operator W : X → Y written as

(µn, ϕn, gn) (12)

is a a set of singular values µn and a pair of orthonormal basis functions ϕn, gn

such that

Hϕn = µngn

H∗gn = µnϕn. (13)

We have

w =
∞∑

n=1

αnϕn (14)

and

Wx =
∞∑

n=1

µnαngn. (15)

In the spectral basis the operator H is a multiplication operator!
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Regularization 3: Spectral Methods

In spectral terms we obtain

H∗Hϕn = µ2
nϕn

αIϕn = αϕn

thus

(αI + H∗H)ϕn = (α + µ2
n)ϕn, n ∈ N. (16)

Consider

f =
∞∑

n=1

βngn ∈ Y . (17)

Tikhonov regularization (αI + H∗H)x = H∗y is equivalent to the spectral

damping scheme

αn =
µn

α + µ2
n

βn, n ∈ N. (18)
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Regularization 3: Spectral Methods

True Inverse

w true
n =

1

µn
β true

n . (19)

This inversion is unstable, if µn → 0, n→∞!

Tikhonov Inverse (stable if α > 0)

βn =
µn

α + µ2
n

βn, n ∈ N. (20)

Tikhonov shifts the eigenvalues of H∗H by α.
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Use the system dynamics!

So far we have not used the system M : w0 7→ x(t).

Consider some regular grid in time:

tk =
k

n
T , wk := w(tk ) = M(tk )w0, k = 0, ..., n. (21)

The 4dVar functional is given by:

J(w) := ‖w − w0‖2 +
n∑

k=1

‖Hwk − fk‖2 (22)
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Kalman Filter Deterministic

Consider the case n = 2. We need to minimize

‖x − w0‖2
B−1 + ‖HM0w − f1‖2 + ‖HM1w − f2‖2 (23)

Decompose it into

J1(w) = ‖w − w0‖2
B−1 + ‖HM0w − f1‖2 (24)

and

J2(w) = ‖w − w1‖2
B̃−1 + ‖HM1w − f2‖2 (25)

where B̃−1 is chosen such that

‖w − w1‖2
B̃−1 = ‖w − w0‖2

B−1 + ‖HM0w − f1‖2 + c (26)

with some constant c.
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Kalman Update Formula for the weights (with R error covariance matriw)

B−1
k+1 = B−1

k + M∗k H∗R−1HMk , k = 1, 2, ... (27)

and for the mean

wk+1 = wk +Bk M∗k H∗(R+HMk B
(b)
k M∗k H∗)−1(fk+1−HMk wk ), k = 1, 2, ...

(28)

Theorem

For linear systems and linear observation operators 4dVar and the Kalman

Filter are equivalent.
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Regularization 4: Bayesian Methods

Conditional probability

P(A|B) :=
P(A ∩ B)

P(B)
, (29)

for A, B sets in a probability space.

Conditional probability density

p(w|f) :=
p(w, f)

p(f)
, (w, f) ∈ X × Y . (30)

From

p(w, f) = p(w|f) · p(f) = p(f |w) · p(w)

we obtain Bayes’ formula

p(w|f) =
p(w)p(f |w)

p(f)
, w ∈ X , f ∈ Y . (31)

Here p(f) can be considered as a normalization constant!
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Regularization 4: Bayesian Methods

Bayes’ Formula

f measurement,

w unknown state of system

p(w|f)︸ ︷︷ ︸
posteriorprob.

=
1

p(f)︸︷︷︸
normalization

p(w)︸︷︷︸
priorprob.

p(f |w)︸ ︷︷ ︸
measurementprob.
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Regularization 4: Bayesian Methods

Gaussian case

p(w) = e−
1
2

wT B−1w , w ∈ Rn

with prior covariance matrix B,

p(f |w) = e−
1
2
(f−Hw)T R−1(f−Hw), f ∈ Y

with measurement covariance matrix R,

leads to the posterior density

p(w|f) = const · e
− 1

2

(
wT B−1w+(f−Hw)T R−1(f−Hw)

)
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Regularization 4: Bayesian Methods

Maximum Likelyhood Estimator (ML)

ML: ”Find the value w ∈ X for which p(w|f) is maximal”

Maximizing

e
− 1

2

(
wT B−1w+(f−Hw)T R−1(f−Hw)

)
is equivalent to minimizing

J(w) = wT B−1w + (f − Hw)T R−1(f − Hw)

which for B = αI and R = I is given by

J(w) = α‖w‖2 + ‖Hw − f‖2.

The minimum ist calculated by the Tikhonov operator.
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Use an ensemble of states

Kalman Update Formula

(B
(a)
k )−1 = ((B

(b)
k )−1 + H∗R−1H)

with B
(b)
k via stochastic estimator

and for the mean

w
(a)
k = w

(b)
k +B

(b)
k H∗(R+HB

(b)
k H∗)−1(fk−Hw

(b)
k )

• Employ an ensemble of states to
capture the distribution of possibilities!

• Use stochastic estimators to dynamically
calculate the variances and covariances
of the distribution.

� =⇒ very efficient way to calculate the
update of the weight matrix

� But does calculations only in a low
dimensional subspace! Poor
approximation?!
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LETKF Basic Idea

• Transform the states: work in

the ensemble space!

• Localize all calculations!

Kalman Update Formula for the

weights (with R error covariance

matriw)

(B
(a)
k )−1 = ((B

(b)
k )−1 + H∗R−1H)

with Γk+1 via stochastic estimator

and for the mean

w
(a)
k = w

(b)
k +B

(b)
k H∗(R+HB

(b)
k H∗)−1(fk−Hw

(b)
k )
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Challenges and Open Questions 1: Algorithms

1. Convergence concepts

2. Show different types of convergence for nonlinear systems

3. Stability and instability for cycled problems

4. Localization and convergence

5. Localization for practical problems: tomographic data?!

6. Ensemble generation, ensemble control, spread

7. Iterative inversion methods < − > cycled dynamical reconstruction

71/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Challenges and Open Questions 1: Algorithms

1. Convergence concepts

2. Show different types of convergence for nonlinear systems

3. Stability and instability for cycled problems

4. Localization and convergence

5. Localization for practical problems: tomographic data?!

6. Ensemble generation, ensemble control, spread

7. Iterative inversion methods < − > cycled dynamical reconstruction

71/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Challenges and Open Questions 1: Algorithms

1. Convergence concepts

2. Show different types of convergence for nonlinear systems

3. Stability and instability for cycled problems

4. Localization and convergence

5. Localization for practical problems: tomographic data?!

6. Ensemble generation, ensemble control, spread

7. Iterative inversion methods < − > cycled dynamical reconstruction

71/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Challenges and Open Questions 1: Algorithms

1. Convergence concepts

2. Show different types of convergence for nonlinear systems

3. Stability and instability for cycled problems

4. Localization and convergence

5. Localization for practical problems: tomographic data?!

6. Ensemble generation, ensemble control, spread

7. Iterative inversion methods < − > cycled dynamical reconstruction

71/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Challenges and Open Questions 1: Algorithms

1. Convergence concepts

2. Show different types of convergence for nonlinear systems

3. Stability and instability for cycled problems

4. Localization and convergence

5. Localization for practical problems: tomographic data?!

6. Ensemble generation, ensemble control, spread

7. Iterative inversion methods < − > cycled dynamical reconstruction

71/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Challenges and Open Questions 1: Algorithms

1. Convergence concepts

2. Show different types of convergence for nonlinear systems

3. Stability and instability for cycled problems

4. Localization and convergence

5. Localization for practical problems: tomographic data?!

6. Ensemble generation, ensemble control, spread

7. Iterative inversion methods < − > cycled dynamical reconstruction

71/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Challenges and Open Questions 1: Algorithms

1. Convergence concepts

2. Show different types of convergence for nonlinear systems

3. Stability and instability for cycled problems

4. Localization and convergence

5. Localization for practical problems: tomographic data?!

6. Ensemble generation, ensemble control, spread

7. Iterative inversion methods < − > cycled dynamical reconstruction

71/55



Numerical Weather Prediction and DWD
Dynamical Systems, Inverse Problems and Data Assimilation

Data Assimilation Methods
Challenges and Open Questions

Challenges and Open Questions 2: Data and Inversion

1. Use emerging inversion techniques from scattering

2. Use tomographic data from GPS/GNSS

3. Fully employ Satellite data with clouds

4. Use measurement in boundary layer fully

5. Identify optimal measurement data

6. Use adaptive methods
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