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Data assimilation algorithm combine forecast and
observations to produce the best analysis

wf
k yo

k

h h

h

hh

h

h

h

h

u,v

u,v

u,v

u,v

hhh
u,v u,v

u,v u,v

1day
−120˚ −60˚ 0˚ 60˚ 120˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−1.2 m −0.8 m −0.4 m 0.0 m 0.4 m 0.8 m 1.2 m

Analysis systems are dependent on appropriate statistics for observation
and background errors.

Our goal: Best analysis for a prediction.
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One major contributor to the forecast uncertainty is the
model error.

Model resolution (slide ECMWF )



Model error

Unfortunately model error statistics are not perfectly known and their
determination remains a major challenge in assimilation systems.

Reasons behind the model error:

I accuracy of numerical schemes

I unrepresented subgrid scale processes

I inaccurate forcing and boundary conditions

I representation of orography as well as parametrisation uncertainty.

Model error statistics produced by use of multiple physics
packages,inclusion of stochastic kinetic energy backscatter scheme,
parameter variations, as well as use of deterministic stochastic dynamical
models (Berner et al. 2011).
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Atmospheric Data Assimilation

The state w ≡ w(x, t) of the atmosphere at time tk :

w(x, tk) ≡

w1(x, tk)
...

wq(x, tk)


where wi : R3 × R→ R, ∀i = 1, . . . , q, wi ∈ B.
(B is a vector space of scalar valued, continuous functions.)

Discrete problem: Find an estimate of some projection Πw of w on the
space of the dynamical model.

Πw(x, tk) ≡

Πw1(x, tk)
...

Πwq(x, tk)


where Πwi : R3 × R→ R, ∀i = 1, . . . , q.
Πwi (x, tk) ∈ BN , where BN is an N-dimensional subspace of B.
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Observation error

εok consists of measurement error and representativeness error. It can be
divided into three parts:

εok = ε′k + ε′′k + εmk

where

ε′k ≡ Hc
kw(·, tk)−Hc

kΠw(·, tk)

= Hc
k(I−Π)w(·, tk)

ε′k – will be called error due to unresolved scales.

ε′′k ≡ Hc
kΠw(·, tk)−HkΠw(·, tk)

= [Hc
k −Hk ]Πw(·, tk)

ε′′k – will be called forward interpolation error .



Representativeness error (Lorenc 1986; Daley 1993; Cohn
1997)

I representativeness error introduces spatial correlations in the
observational error

I and it is state and time dependent (Janjic 2001, Janjic and Cohn
2006)

I difficult to estimate

I important for optimal use of observations, since it tell us how
observations are to be provided to best adopt to model resolution

I for variable model resolutions needs to be scale adaptive

I it depends on the observation type

I Example: for 40× 40 km Radiosonde/Dropsonde wind observation,
observational error < 0.5 m/s and Assigned error: 2− 3 m/s
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2 Estimation of Πw(x, t)

w(x, t) = w r (x, t) + wu(x, t),

with

w r (x, t) ≡ Πw(x, t) , wu(x, t) ≡ (I − Π)w(x, t).

Dynamics:
w r (x, tk+1) = F r

k+1,kw
r (x, tk),

Suppose wu(x, tk) satisfies the dynamics

wu(x, tk+1) = F u
k+1,kw

u(x, tk) + F sl
k+1,kw

r (x, tk).
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Observations:
Assume Hk = Hc

k |BN
(i.e., ε′′k = 0),

wo
k = Hc

kw
r (·, tk) + εok ,

where εok is

εok = Hc
kw

u(·, tk) + εmk

= ε′k + εmk .



A Kalman filter method

Augmented vector [Janjic 2001, Janjic and Cohn 2006]

w(x, tk) ≡
[
w r (x, tk)
wu(x, tk)

]
,

[
w r

wu

]
(x, tk+1) =

[
F r
k+1,k 0

F ur
k+1,k F u

k+1,k

] [
w r

wu

]
(x, tk),

with observations given by

wo
k =

[
Hc

k Hc
k

] [w r (·, tk)
wu(·, tk)

]
+ εmk .

This way the correct equations can be derived to take into account
unresolved scales.
We would require estimates of correlation between resolved and
unresolved scales as well as an estimates of the unresolved covariance at
observation points.
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A method for estimation of time varying variance W uu

(Janjic 2001)
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l (λ, ϕ)Y q

p (λ, ϕ).

The characteristic wavenumber will be calculated using the definition

lc(t)2(lc(t) + 1)2 ≡
∫ 2π

0

∫ π/2

−π/2
〈∆wu(λ,ϕ,t)∆wu(λ,ϕ,t)〉 cosϕ dϕ dλ∫ 2π

0

∫ π/2

−π/2
〈wu(λ,ϕ,t)wu(λ,ϕ,t)〉 cosϕ dϕ dλ

.
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Estimating Hc
2k [Hc

1kW
uu
k (·, ·)]T

Desroziers et al. , 2005:

I One source of information on the observation and background errors
is contained in the statistics of the differences between observations
and their background fields.

I This paper presents a set of diagnostics based on combinations of
observation minus- background (OB), observation-minus-analysis
(OA) and background-minus analysis (BA) differences.

I Problem that all deficiencies in the system are treated as one.



Estimating Hc
2k [Hc

1kW
uu
k (·, ·)]T

I Liu and Rabier et al. 2005: 1D idealized study for inferring statistics
for satellite observations.

I Hamill and Whitaker 2005: Estimate the effect of unresolved scales
by using sequence of lower model resolution then NWP model.



Conclusion

I It was possible to get good results even with rather crude
approximations of the unresolved scales.

I We require modeling of the covariance matrix obtained by
evaluating this covariance function at the observation points.

I This covariance matrix depends on the properties of the
observations and it is time and state dependent.

I Scalability of statistics is required.

I The error due to unresolved scales could not be neglected, or kept
stationary.


