
ECMWFSlide 1

ECMWF 

Data Assimilation 
Training Course 

- 
Background Error Covariance 

Modelling

Elias Holm –
 

slides courtesy Mike Fisher



ECMWFSlide 2

Importance of Background Covariances


 

The formulation of the Jb

 

term of the cost function is 
crucial to the performance of current analysis systems.


 

To see why, suppose we have a single observation
 

of the 
value of a model field

 
at one gridpoint.


 

For this simple case, the observation operator is:

H = ( 0,...,0,1,0,...,0)
 

.


 

The gradient of the 3dVar cost function is:

J = B-1(x-xb
 

) + HTR-1(Hx-y) = 0


 
Multiply through by B and rearrange a bit:

x -
 

xb
 

= B HTR-1(y-Hx)


 
But, for this simple case, R-1(y-Hx) is a scalar
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Importance of Background Covariances


 

So, we have:


 
But, H = ( 0,...,0,1,0,...,0)


 

=> The analysis increment is proportional to a 
column of B.


 

The role of B is:
1.

 
To spread out the information from the observations.

2.
 

To provide statistically consistent increments at the 
neighbouring gridpoints

 
and levels of the model.

3.
 

To ensure that observations of one model variable (e.g. 
temperature) produce dynamically consistent increments in the 
other model variables (e.g. vorticity

 
and divergence). 

TBHxx  b
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Main Issues in Covariance Modelling


 

There are 2 problems to be addressed in specifying B:

1.
 

We want to describe the statistics of the errors in the 
background.
- However, we don't know what the errors in the background are, 

since we don't know the true
 

state of the atmosphere.

2.
 

The B matrix is enormous (~107x107).
- We are forced to simplify it just to fit it into the computer.

- Even if we could fit it into the computer, we don't have enough 
statistical information to determine all its elements.
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Diagnosing Background Error Statistics


 

Problem:
- We cannot produce samples of background error. (We don’t 

know the true state.)


 

Instead, we must either:


 
Disentangle background errors from the information we do have: 
innovation (observation-minus-background) statistics.


 

Or:


 
Use a surrogate quantity whose error statistics are similar to 
those of background error. Two possibilities are:



 
Differences between forecasts that verify at the same time.



 
differences between background fields from an ensemble of 
analyses.
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Diagnosing Background Error Statistics


 

Three approaches to estimating Jb

 

statistics:
1.

 
The Hollingsworth and Lönnberg

 
(1986) method

- Differences between observations and the background are a combination 
of background and observation error.

- The method tries to partition this error into background errors and 
observation errors by assuming that the observation errors are spatially 
uncorrelated.

2.
 

The NMC method (Parrish and Derber, 1992)
- This method assumes that the spatial correlations of backgound

 

error are 
similar to the correlations of differences between 48h and 24h forecasts 
verifying at the same time.

3.
 

The Analysis-Ensemble method (Fisher, 2003)
- This method runs the analysis system several times for the same period 

with randomly-perturbed observations. Differences between background 
fields for different runs provide a surrogate for a sample of background 
error.
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Estimating Background Error Statistics 
from Innovation Statistics


 
Assume:
1.

 

Background errors are independent of observation errors.

2.

 

Observations have spatially uncorrelated errors (for some observation types).


 

Let di

 

=yi

 

-Hi

 

(xb

 

) be the innovation (obs-bg) for the ith
 observation.


 

Then, denoting background error by ε, observation error 
by  η, and neglecting representativeness error, we have 
di

 

=ηi

 

-Hi

 

(ε).
1. => Var(di

 

) = Var(ηi

 

) + Var(Hi

 

(ε))

2. => Cov(di

 

, dk

 

) = Cov(Hi

 

(ε) , Hk

 

(ε))   (for obs. i and k not co-located)


 

We can extract a lot of useful information by plotting 
Cov(di

 

, dk

 

) as a function of the distance between pairs 
of observations.
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Estimating Background Error Statistics 
from Innovation Statistics

(from Järvinen, 2001)

Covariance of 
d=y-H(xb

 

) for 
AIREP 
temperatures 
over USA, 
binned as a 
function of 
observation 
separation.
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Estimating Background Error Statistics 
from Ensembles of Analyses


 
Suppose we perturb all the inputs to the 
analysis/forecast system with random perturbations, 
drawn from the relevant distributions:


 

The result will be a perturbed analysis and forecast, with 
perturbations characteristic of analysis and forecast 
error.


 

The perturbed forecast may be used as the background 
for the next (perturbed) cycle.


 

After a few cycles, the system will have forgotten the 
original initial background perturbations.

Analysis
xb+εb

y+εo

SST+εSST

 
(etc.)

xa+εa
Forecast

xf+εf
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Estimating Background Error Statistics 
from Ensembles of Analyses

Analysis
xt+εb

yt+εo

SSTt+εSST

 
(etc.)

xt+εa
Forecast

xt+εf

Analysis
xb

y
SST (etc.)

xa
Forecast

xf

Analysis
xb+εb

y+εo

SST+εSST

 
(etc.)

xa+εa
Forecast

xf+εf

Normal Analysis

Perturbed Analysis
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Estimating Background Error Statistics 
from Ensembles of Analyses


 
Run the analysis system several times with different 
perturbations, and form differences between pairs of 
background fields.


 

These differences will have the statistical characteristics 
of background error (but twice the variance).

Analysis Forecast
xb+εb

Analysis Forecast
xb+εb

Analysis Forecast
xb+εb

Analysis Forecast
xb+ηb

Analysis Forecast
xb+ηb

Analysis Forecast
xb+ηb

Background differences
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Estimating Background Error Statistics 
from Ensembles of Analyses

500hPa Geopotential
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Estimating Background Error Statistics 
from Ensembles of Analyses

~200hPa

~500hPa

~850hPa

NMC Method Analysis-Ensemble Method
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Estimating Background Error Statistics – 
Pros and Cons of the Various Methods


 
Innovation statistics:


 

The only direct method for diagnosing background error statistics.


 

Provides statistics of background error in observation space.


 

Statistics are not global, and do not cover all model levels.


 

Requires a good uniform observing network.


 

Statistics are biased towards data-dense areas.


 

Forecast Differences:


 

Generates global statistics of model variables at all levels.


 

Inexpensive.


 

Statistics are a mixture of analysis and background error.


 

Not good in data-sparse regions.


 

Ensembles of Analyses:


 

Assumes statistics of observation error (and SST, etc.) are well

 

known.


 

Diagnoses the statistics of the actual analysis system.


 

Danger of feedback. (Noisy analysis system => noisy stats => noisier system.)
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Jb Formulation – The control variable


 

The incremental analysis problem may be rewritten in terms of 
a new variable,   , defined by                       , where LLT=B.


 

The cost function becomes:


 

It is not necessary for L to be invertible (or even square), but
 

it 
usually is.


 

The covariance matrix for      is the identity matrix. This is 
obvious if L is invertible:

   TT 11( ( ) ( )
2 b bJ      χ) χ χ y x HLχ R y x HLχH H

( )b Lχ x xχ

T 1 T T 1 T -T

1 -T

( )( ) ( )( )b b b b
  



     




χχ L x x x x L L x x x x L

L BL
I

χ
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Jb Formulation – The control variable

We may interpret L as an operator that takes a 
control vector      with covariance matrix I, and 
introduces

 
correlations to give

 
the background 

departures, (x-xb ).
With this interpretation, we may factorize L into a 

sequence steps, each of which adds some aspect of 
correlation into the background departures.

χ
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The ECMWF Jb Formulation – 
The balance operator


 
The most obvious correlation in the background errors is 
the balance between mass errors and wind errors in the 
extra-tropics.


 

We therefore define our change of variable as:
L = KBu

1/2


 

where K accounts for all the correlation between 
variables (e.g. between the mass and wind fields).


 

The matrix Bu

 

is a covariance matrix for variables that are 
uncorrelated with each other.


 

=> Bu

 

is block diagonal, with one block for each variable.
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The ECMWF Jb Formulation – 
The balance operator


 
K accounts for the correlations between variables:


 

The inverse is: 
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The ECMWF Jb Formulation – 
The balance operator


 

The most important part of the balance operator is the 
sub-matrix N, which calculates a balanced part of (T,ps

 

), 
determined from the vorticity.


 

N is implemented in 2 parts:
1.

 
A balanced “geopotential”

 
is calculated from ζ.

2.
 

Balanced (T,ps

 

) are calculated using statistical regression 
between (T,ps

 

) and geopotential.

- (Using regression avoids some numerical problems 
associated with inverting the hydrostatic equation.)

0 0 0
0 0

( , ) 0 ( )
0 0 0

u

s u

    
    
    
    
        
    

s

ζ I ζ
D M I D
T p N P I T,p
q I q
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The ECMWF Jb Formulation – 
The balance operator


 
The original (Derber

 
and Bouttier, 1999) ECMWF balance 

operator calculated balanced geopotential
 

from vorticity
 using a statistical regression.


 

The regression gave results that were nearly 
indistinguishable from linear balance.


 

We have replaced this part of the balance operator with 
an analytical balance: nonlinear balance, linearized

 about the background state.


 
This gives a flow-dependent balance operator:

- The extra, flow-dependent, terms are particularly important in 
regions of strong curvature (jet entrances, exits, etc.).

 2 . . .b b f              v v v v k v
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QG Omega Equation


 

A similar approach allows us to augment the balance 
operator with a term that calculates balanced divergence 
from vorticity

 
and temperature, according to the quasi-

 geostrophic
 

omega equation:


 

Linearize
 

Q about the background:

2
2 2

0 2( ) 2 .f
p

       


Q

b b
b b

R T T T T
p x x x x

            
                     

v v v v
Q i j
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Wind increments at level 31 from a single height observation at 300hPa.

Jb

 

includes:
Nonlinear balance
equation and omega
equation.

Linear balance
only.
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Temperature increments at level 31 from a height observation at 300hPa.

Jb

 

includes:
Nonlinear balance
equation and omega
equation.

Linear balance
only.
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Vorticity
 

increments at level 31 from a height observation at 300hPa.

Jb

 

includes:
Nonlinear balance
equation and omega
equation.

Linear balance
only.
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Divergence increments at level 31 from a height observation at 300hPa.

Jb

 

includes:
Nonlinear balance
equation and omega
equation.

Linear balance
only.
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The Derber-Bouttier Jb Formulation – 
Error Covariances


 
We assume that the balance operator accounts for all 
inter-variable correlations.


 

So, Bu

 

is block diagonal:
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The Derber-Bouttier Jb Formulation – 
Error Covariances


 
Each of the covariance matrices, Cζ

 

etc., can be further 
split into a product of the form:

C = ΣTHTVTVHΣ


 
Σ

 
is a matrix of standard deviations of background error.
- The standard deviations are represented in gridpoint

 
space.

o I.e. Σ
 

consists of an inverse spectral transform followed by a 
diagonal matrix of gridpoint

 
standard deviations, followed by 

a transform back to spectral coefficients.


 

H (in the ECMWF system) is diagonal
 

and its elements 
vary only with total (spherical harmonic) wavenumber, n.


 

V (in the ECMWF system) is block diagonal
 

with one 
(vertical correlation) matrix for each total wavenumber, n.
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The ECMWF Jb Formulation – 
The Error Covariances


 
This form of V and H gives correlations which are:

- Homogeneous.
- Isotropic.
- Non-seperable.

o I.e. The vertical and horizontal correlations are linked so that
 small horizontal scales have sharper vertical correlations 

than larger horizontal scales.


 

The elements of V  and H can be calculated using the 
NMC method, or from background differences from an 
ensemble of analyses.


 

The standard deviations, Σ, could also be calculated in 
this way.

- In fact, we use a cycling algorithm that takes into account cycle-to-cycle 
changes in the observation network.
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The Derber-Bouttier Jb Formulation – 
Error Covariances
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The Derber-Bouttier Jb Formulation – 
Balance Operator

Fraction of T variance
explained by the
balance operator:
1-

 
Var(Tu

 

)/Var(T)

NB: 30-level model
=> Very old slide!
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The Derber-Bouttier Jb Formulation – 
Balance Operator

Fraction of Divergence
variance explained by
the balance operator:
1-

 
Var(Du

 

)/Var(D)

NB: 30-level model
=> Very old slide!



ECMWFSlide 34

The Balance Operator
Actual T correlation T correlation implied by B

Mid-latitude correlations given by
The balance operator acting on Cζ

 

.
Tropical correlations
Determined by CTu
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Diffusion Operators and Digital Filters


 

The spectral approach is efficient and convenient for 
models with regular (e.g. spherical or rectangular) 
domains.


 

It is difficult to use if the domain is not regular (e.g. 
ocean models).


 

Because the spectral approach is based on 
convolutions, it is difficult to incorporate inhomogeneity

 and anisotropy.


 
Diffusion operators and digital filters provide alternatives 
to the spectral approach that address these difficulties.
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Diffusion Operators


 

The 1-dimensional diffusion equation:


 

Has solution at time T:


 

That is,              is the result of convolving              with 
the Gaussian function:

2

2 0
t t
  
 

 

     
2 / 41, ,0

4
x x T

x

x T e x dx
T

 


 



  

 ,x T  ,0x

 21 exp / 4
4

x T
T
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Diffusion Operators


 

The one-dimensional result generalizes to more 
dimensions, and to different geometries (e.g. on the 
sphere).


 

Weaver and Courtier (2001) realized that numerical 
integration of a diffusion equation could be used to 
perform convolutions for covariance modelling.


 

Irregular boundary conditions (e.g. coastlines) are easily 
handled.


 

More general partial differential equations can be used to 
generate a large class of correlation functions:

 2

1
0

P p

p
pt
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Diffusion Operators


 

The change of variable needs the square-root
 

of the 
diffusion operator. Fortunately, because the operator is 
self-adjoint, the square-root is equivalent to integrating 
the equation from time 0 to T/2.


 

Inhomogeneous covariance models can be produced by 
making the diffusion coefficients vary with location.


 

Anisotropic covariances
 

can be produced by using 
tensor diffusion coefficients.


 

Disadvantages:
- Calculation of the normalization coefficient  (                 in the 1-D 

example) is expensive in the general case.

- The relationship between the diffusion coefficients and the shape of the 
correlation function is complicated. It is difficult to generate

 

suitable 
coefficients to match the correlations implied by data. 

1/ 4 T
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Digital Filters


 

In one-dimension, convolution with a Gaussian may be 
achieved, to good approximation, using a pair of 
recursive filters:


 

In two dimensions, the Fourier transform of the Gaussian 
factorizes:

- => 2-D convolution may be achieved by 1-D filtering in the x-direction, 
and then in the y-direction.


 

NB: This factorization only works for Gaussians!

1

1

n

i i j i j
j

n

i i j i j
j

q p q

s q s

 

 







 

 





 2 2 2 2 2 2 2

exp exp exp
2 2 2

a k l a k a l     
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Digital Filters


 

Non-Gaussian covariance functions may be produced as 
a superposition of Gaussians.

- I.e. the filtered field is the weighted sum of convolutions with
 

a 
set of Gaussians of different widths.


 

Inhomogeneous covariances
 

may be synthesized by 
allowing the filter coefficients to vary with location.


 

Simple anisotropic covariances
 

(ellipses), with different 
north-south and east-west length scales, can be 
produced by using different filters in the north-south 
direction.


 

However, fully general anisotropy (bananas) requires 3 
independent filters (north-south, east-west, and SW-NE) 
in 2 dimensions and 6 filters in 3 dimensions.
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Digital Filters


 

There is a close connection between digital filter 
methods and diffusion operator methods.

- One timestep
 

of integration of a diffusion operator can be viewed 
as one application of a digital filter.


 

Advantages of Digital Filters:
- Computational Efficiency

- Generality


 

Disadvantages:
- Filter coefficients are difficult to determine from data.

- Grid geometry, polar singularities and boundary conditions must 
be handled carefully.
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Summary


 

A good B matrix is vitally important in any (current) data 
assimilation system.


 

In a large-dimension system, covariances
 

must be modelled: 
The matrix is too big to specify every element.


 

Innovation Statistics are the only real data we have to diagnose
 background error statistics, but they are difficult to use.


 

Analysis ensembles allow us to generate a good surrogate for 
samples of background error.


 

Spectral methods work well for simple geometries (spherical or 
rectangular domains), but have limitations:

- Anisotropic and/or inhomogeneous covariances
 

are tricky!


 

Diffusion operators and digital filters have fewer limitations, 
but calculating the diffusion/filter coefficients is non-trivial.
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