
Review for
Introduction to Data assimilation
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Data assimilation algorithm combine forecast and
observations to produce the best analysis
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Analysis systems are dependent on appropriate statistics for observation
and background errors.

Our goal: Best analysis for a prediction.
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One major contributor to the forecast uncertainty is the
model error.

Model resolution (slide ECMWF )



Model error

Unfortunately model error statistics are not perfectly known and their
determination remains a major challenge in assimilation systems.

Reasons behind the model error:

I accuracy of numerical schemes

I unrepresented subgrid scale processes

I inaccurate forcing and boundary conditions

I representation of orography as well as parametrisation uncertainty.

Model error statistics produced by use of multiple physics
packages,inclusion of stochastic kinetic energy backscatter scheme,
parameter variations, as well as use of deterministic stochastic dynamical
models (Berner et al. 2011).
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Atmospheric Data Assimilation

The state w ≡ w(x, t) of the atmosphere at time tk :

w(x, tk) ≡

w1(x, tk)
...

wq(x, tk)


where wi : R3 × R→ R, ∀i = 1, . . . , q, wi ∈ B.
(B is a vector space of scalar valued, continuous functions.)

Discrete problem: Find an estimate of some projection Πw of w on the
space of the dynamical model.

Πw(x, tk) ≡

Πw1(x, tk)
...

Πwq(x, tk)


where Πwi : R3 × R→ R, ∀i = 1, . . . , q.
Πwi (x, tk) ∈ BN , where BN is an N-dimensional subspace of B.
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Observation error

εok consists of measurement error and representativeness error. It can be
divided into three parts:

εok = ε′k + ε′′k + εmk

where

ε′k ≡ Hc
kw(·, tk)−Hc

kΠw(·, tk)

= Hc
k(I−Π)w(·, tk)

ε′k – will be called error due to unresolved scales.

ε′′k ≡ Hc
kΠw(·, tk)−HkΠw(·, tk)

= [Hc
k −Hk ]Πw(·, tk)

ε′′k – will be called forward interpolation error .

















Conclusion part 1

I Data assimilation algorithms require us to specify the statistical
properties of the observation and model error.

I Both of these errors depend on the state of the atmosphere.

I Since we are searching for the best estimate for the scales that our
model can represent,

I the unresolved scales are part of the model error as well as
observation error.

I The error of unresolved scales is particularly large for the sonde
observations, and the forward observation error for the satellite data.



Data assimilation methods

I 3DVar

I 4DVar (ECMWF)

I Kalman filter

I Ensemble Kalman filter (Enviroment Canada)

I Hybrid methods (NCEP)



3DVar

J = (x− xb)TB−1(x− xb) + (y −Hx)TR−1(y −Hx)

or
J = δxTB−1δx + (d−Hδx)TR−1(d−Hδx)

where

δx = x− xb and d = y − H(xb)

with gradient given by

∇J = B−1δx−HTR−1(d−Hδx).

I B needs to be specified from climatology.



3DVar

I Due to the large minimization problem (of the order 108) iterative
techniques used for minimization

I To speed up the minimization process transformation of variables is
used as well.

I Further approximation include number of iterations performed,
simplifications of covariances and linearity of observation operator.

I analysis not consistent model state and timing of the observations
ignored



4DVar

J(δx0) = δxT0 B−1δx0

+
K∑

k=0

(dk −HkMk−1,k ...M0,1δx0)TR−1k (dk −HkMk−1,k ...M0,1δx0)

I B needs to be specified from climatology.

I needs tangent linear model and adjoint

I waits for the observations

I invalid for strong nolinearities



4DVar

I assimilates observations at correct time

I B is evolved according to dynamics

I Analysis close to consistent model state



Kalman filter

xak = xbk + Kk(yo
k −Hkxbk),

Kk is taken as
Kk = Pb

kHT
k (HkPb

kHT
k + Rk)−1

or
Kk = Pa

kHT
k R−1k .

Pa
k = (I−KkHk)TPb

k .

xbk =Mxbk

Pb
k = MPa

kMT + Q.

Derived under assumptions that q ∼ N (0,Q) and r ∼ N (0,R) and
< rkqj >= 0
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Kalman filter

I Recursive filter. There is no need to store past measurements, all
the information is embodies in the prior estimate.

I It is the optimal filter in case observation operator is linear,
dynamics are linear, observation and model errors are Gaussian and
uncorrelated.

I Relation to 3DVar: For same error statistics both methods result in
same analysis, under the above conditions. However 3DVar does not
propagate background error covariance in time, and uses
minimization of the cost function.

I Relation to 4DVar: 4DVar updates state and background error
covariance implicitly through data assimilation window, at the end
of the window background error covariance is restarted from
climatology each time.

I However, over the same time interval under assumption that model
is perfect and that both algorithms use the same data, then there is
equivalence between final analysis produced by Kalman filter and
final value of the optimal trajectory estimated by 4DVar.
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Why ensemble Kalman filter

I The Kalman filter is difficult to implement in realistic systems
because of:

I computational costs,
I the nonlinearity of dynamics and
I poorly characterized error sources.

I The ensemble Kalamn filter (EnKF) (Evensen 1994) uses ensembles
(a sample) to calculate the uncertainty of the background and
analysis error covariance.

I Ensembles are propagated with full nonlinear numerical model. This
can be done over long time period, and results in flow dependent
covariances.



Ensemble Kalman filter

I Kalman filter equations are used with covariance calculated from
the sample.

I Covariances are flow dependent and computationally algorithm is
not expensive.

I Additional step to the calculation of the analysis is added, the
resampling step, where new ensemble are generated.

I ETKF algorithm takes an advantage of the small number of
ensemble members to have the equation written in reduced form.



Ensemble Kalman filter

I Only small number of ensembles can be evolved due to complexity
of the dynamical systems;

I Due to the small ensemble numbers covariances are not representing
correctly uncertainty, in particular long-distance correlations, and
this effects the accuracy of the analysis.

I The analysis increment is restricted to the r dimensional subspace

I Localization is introduced to elevate the problem.

I Uses full nonlinear model

I evaluates its own B.



Conclusion Part 2

I All data assimilation algorithms require us to specify the statistical
properties of errors.

I Different methods would give us the same results only under the
assumptions that are not satisfied for the large dimensional problem
of atmospheric data assimilation.

I Master thesis http://www.meteo.physik.uni-
muenchen.de/dokuwiki/doku.php?id=lscraig:herz:master
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