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Model
grid

Observation
grid

corrected representation of the atmosphere




Data assimilation matters
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NWP is continuously improving

ECMWF has been leading for decades

This is to a large extent due to efforts for data assimilation (other scores less drastic, but generally consistent)

The computing time for data assimilation is nowadays often larger than for the deterministic forecast




Data assimilation algorithm combine forecast and
observations to produce the best analysis
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Analysis systems are dependent on appropriate statistics for observation
and background errors.



Data assimilation algorithm combine forecast and
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Analysis systems are dependent on appropriate statistics for observation
and background errors.

Our goal: Best analysis for a prediction.



One major contributor to the forecast uncertainty is the
model error.
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Model resolution (slide ECMWF )



Model error

Unfortunately model error statistics are not perfectly known and their
determination remains a major challenge in assimilation systems.

Reasons behind the model error:
» accuracy of numerical schemes
» unrepresented subgrid scale processes
» inaccurate forcing and boundary conditions

> representation of orography as well as parametrisation uncertainty.



Model error

Unfortunately model error statistics are not perfectly known and their
determination remains a major challenge in assimilation systems.

Reasons behind the model error:
» accuracy of numerical schemes
» unrepresented subgrid scale processes
» inaccurate forcing and boundary conditions

> representation of orography as well as parametrisation uncertainty.

Model error statistics produced by use of multiple physics
packages,inclusion of stochastic kinetic energy backscatter scheme,
parameter variations, as well as use of deterministic stochastic dynamical
models (Berner et al. 2011).



Model Error

NWP model
Real world H orld
from time k to time k+1 atmosphere from time k to time k+1
evolves without us knowing perfectly numerical model, F, propagates

time propagator, F¢. w"

Model error is the difference: ~ [TF* (w) - F(WF).




Observation Error
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Atmospheric Data Assimilation

The state w = w(x, t) of the atmosphere at time t:
wi (X, tk)
w(x, tx) =

Wq(xa tk)

where w; :R3xR =R, Vi=1,...,q, w €B.
(B is a vector space of scalar valued, continuous functions.)



Atmospheric Data Assimilation

The state w = w(x, t) of the atmosphere at time t:

W1(X, tk)
w(x, tg) = :
Wq(xv tk)

where w; :R3xR =R, Vi=1,...,q, w €B.
(B is a vector space of scalar valued, continuous functions.)

Discrete problem: Find an estimate of some projection NMw of w on the
space of the dynamical model.

HW1(X, tk)
MNw(x, ty) = :

M Wq(xa tk)

where Mw; :R3 xR =R, Vi=1,...,q.
Mw;(x, tx) € By, where By is an N-dimensional subspace of B.



Observation error
€ consists of measurement error and representativeness error. It can be
divided into three parts:
€ =€, +e+ef
where

€, = Hw(-, tx) — HiNw(-, ty)
Hi (1= Mw(-, 1)

€}, — will be called error due to unresolved scales.
e, = HNw(-, tx) — HNw(-, tx)
[Hi — Hi]Mw(-, &)

€}, — will be called forward interpolation error.



Observations for global models

Conventional observations  Non-conventional observations
- Observations of model variables - Complex observation operators
(u, v, q, p) (for mapping from model to observation space)

- Mainly from satellite

Radiosondes, pilot, dropsondes Passive instruments (mainly T, q and O3 information)
Surface stations, ships - Microwave radiance

Buoys - Infrared radiance

Aircraft (clouds are usually seen as contamination)

Atmospheric Motion Vectors (often only data over oceans is used)

Wind profiler

Active instruments
- Radar (scatterometer surface winds)
- GPS radio-occultation

- Lidar (not operational)
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Representativeness error
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Observational error lidar: Radiosonde/Dropsonde:
0.75-1 mls (most accurate operational
wind observation)

Rep. error < 0.5 m/s
(Frehlich and Sharman 2004) Observational error <0.5 mis

Assigned error: 1-1.5 mis Assigned error: 2-3 mis

Assigned error AMV: 2-5 m/s




Satellite observations

Advantages Disadvantages
GEO | - large regional coverage - no global coverage by single satellite
. o i Global Geostationar
(high) ;
MSG
GOES
MTSAT
- very high temporal resolution - moderate s;zatial resolution (VIS/IR)
> short-range forecasting/nowcasting > 5-10 km for VIS/IR
> feature-tracking (motion vectors) > much worse for MW
> tracking of diurnal cycle (convection)
LEO |- global coverage with smgle satellite - low temporal resolution
Low o —
Earth |- high spatial resolutio
Orbit >best for NWP!
NOAA
Metop
Terra, Aqua
2513 5
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What do satellites measure?

Satellite instruments measure: Radiances
| Emitted radiation - From earth & atmosphere (thermal radiation) |
Reflected radiation: - Solar radiation

- Radar / Lidar radiation

Electromagnetic spectrum

VIS = visible light
= infrared radiation Mw = microwave radiation
1000 10000 le+05
wavclt:nglh [pm]
I #— o ~———— # —
UV VIS Near-IR Far-IR MW

Typical wave-lengths for earth observation satellites
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Measurement principles
Active: radar, lidar, radio-occultations

Passive: / Radiance measurements \

Resolution Wavelength Agency / purpose
Sounders Imagers Visible l Microwave R&D operational
vert. res. horiz. res. Infrared ESA, NASA, JAXA EUMETSAT,
NOAA, JMA
solar M‘
| snagtiyr L spectry u\ el el ol
1 1000 10000 le+05
wavi clcngth [lm]
A #

UV VIS Near-IR Far-IR MW




Comparison IR and MW

Infra-red

Stronger emission
- higher resolution

Sensitive to clouds

Meteosat SEVIRI
GOES
MTSAT

HIRS
IASI
AIRS

Microwave

Weaker emission, typically lower resolution

Can see through clouds

Can be used to correct cloud-contaminated IR

AMSU-A: Temperature

SSM/I: Window channel, TCWWV
AMSU-B: Humidity

MHS: Microwave Humidity Sounder
AMSR-E
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Clouds in MW and IR

= strongly nonlinear
(opaque)

= good identification
of cloud location

- more than 80% of
channels are affected by cloud

= cloud impact on IR sounders is
subtracted from RT computations.

usually opaque

MW

multiple scattering MW
important

sees only thick
clouds and rain

less than 20% of
channels are affected by cloud

cloud information from MW imagers is
assimilated

signal modified by cloud

ECMWF now uses
- “all-sky” MW radiances

- contaminated IR-radiances for fully overcast scenes (in both observation and forecast)

One of the major contributions to forecast improvement in recent years

Issues: (1) cloud radiative transfer and (2) model clouds may not be realistic
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Conclusion part 1

» Data assimilation algorithms require us to specify the statistical
properties of the observation and model error.

> Both of these errors depend on the state of the atmosphere.

> Since we are searching for the best estimate for the scales that our
model can represent,

» the unresolved scales are part of the model error as well as
observation error.

» The error of unresolved scales is particularly large for the sonde
observations, and the forward observation error for the satellite data.



Data assimilation methods

v

3DVar
4DVar (ECMWF)

v

v

Kalman filter

v

Ensemble Kalman filter (Enviroment Canada)

Hybrid methods (NCEP)

v



3DVar

J=(x—x5)"B7(x —xp) + (y — Hx)TR™!(y — Hx)

or
J = 0x"B71ox 4 (d — Hox) "R™!(d — Hox)

where

dx=x—xpandd =y — H(xp)
with gradient given by

VJ=B"15x — H'R™}(d — Hix).

> B needs to be specified from climatology.



3DVar

Due to the large minimization problem (of the order 108) iterative
techniques used for minimization

To speed up the minimization process transformation of variables is
used as well.

Further approximation include number of iterations performed,
simplifications of covariances and linearity of observation operator.

analysis not consistent model state and timing of the observations
ignored



4DVar

J(6x0) = dx¢ B 1oxo

+ > (di = HiMy g .. Mg 16%0) TR, (die — HieMy 1 ... Mg 160)

K
k=0

» B needs to be specified from climatology.

v

needs tangent linear model and adjoint

waits for the observations

v

v

invalid for strong nolinearities



4DVar

> assimilates observations at correct time
» B is evolved according to dynamics

> Analysis close to consistent model state



Kalman filter

x7 = xp + Ki(yg — Hexp),

Ky is taken as
Ki = PPH] (HPH] + R,) !

or
Ky =PIH/R .
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Kalman filter

x7 = xp + Ki(yg — Hexp),

Ky is taken as
Ki = PPH] (HPH] + R,) !

or
Ky =PIH/R .

2 — (1 - KgH,) P2,

x2 = Mxb
P:=MP:MT Q.

Derived under assumptions that g ~ N(0,Q) and r ~ N(0,R) and
< rkqj >= 0



Kalman filter

» Recursive filter. There is no need to store past measurements, all
the information is embodies in the prior estimate.

» It is the optimal filter in case observation operator is linear,
dynamics are linear, observation and model errors are Gaussian and
uncorrelated.
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Kalman filter

>

Recursive filter. There is no need to store past measurements, all
the information is embodies in the prior estimate.

It is the optimal filter in case observation operator is linear,
dynamics are linear, observation and model errors are Gaussian and
uncorrelated.

Relation to 3DVar: For same error statistics both methods result in
same analysis, under the above conditions. However 3DVar does not
propagate background error covariance in time, and uses
minimization of the cost function.

Relation to 4DVar: 4DVar updates state and background error
covariance implicitly through data assimilation window, at the end
of the window background error covariance is restarted from
climatology each time.

However, over the same time interval under assumption that model
is perfect and that both algorithms use the same data, then there is
equivalence between final analysis produced by Kalman filter and
final value of the optimal trajectory estimated by 4DVar.



Why ensemble Kalman filter

» The Kalman filter is difficult to implement in realistic systems
because of:

» computational costs,
» the nonlinearity of dynamics and
» poorly characterized error sources.

> The ensemble Kalamn filter (EnKF) (Evensen 1994) uses ensembles
(a sample) to calculate the uncertainty of the background and
analysis error covariance.

» Ensembles are propagated with full nonlinear numerical model. This
can be done over long time period, and results in flow dependent
covariances.



Ensemble Kalman filter

» Kalman filter equations are used with covariance calculated from
the sample.

» Covariances are flow dependent and computationally algorithm is
not expensive.

» Additional step to the calculation of the analysis is added, the
resampling step, where new ensemble are generated.

» ETKF algorithm takes an advantage of the small number of
ensemble members to have the equation written in reduced form.



Ensemble Kalman filter

» Only small number of ensembles can be evolved due to complexity
of the dynamical systems;

» Due to the small ensemble numbers covariances are not representing
correctly uncertainty, in particular long-distance correlations, and
this effects the accuracy of the analysis.

> The analysis increment is restricted to the r dimensional subspace
> Localization is introduced to elevate the problem.
» Uses full nonlinear model

> evaluates its own B.



Conclusion Part 2

> All data assimilation algorithms require us to specify the statistical
properties of errors.

» Different methods would give us the same results only under the
assumptions that are not satisfied for the large dimensional problem
of atmospheric data assimilation.



Conclusion Part 2

> All data assimilation algorithms require us to specify the statistical
properties of errors.

» Different methods would give us the same results only under the
assumptions that are not satisfied for the large dimensional problem
of atmospheric data assimilation.

> Master thesis http://www.meteo.physik.uni-
muenchen.de/dokuwiki/doku.php?id=lscraig:herz:master



