Exercise: Variational methods

Consider the model for the wind on three height levels:

$$u_i^t(t_{k+1}) = u_i^t(t_k) + \alpha u_i^{t^2}(t_k), \qquad i = 1, 2, 3, \qquad \alpha = 0.2$$
(1)

$$\mathbf{u}^t(t_0) = \begin{pmatrix} -3 \\ 2 \\ 4 \end{pmatrix} \tag{2}$$

- 1. True solution. Calculate the 'true solution' for $\mathbf{u}^{t}(t_{1})$.
- 2. Tangent linear model. Write the tangent linear model for this example.
- 3. Single direct observation Assume we have the observation $u_2^o(t_1) = 2.8$ with observation error covariance $\sigma_o^2 = 1$ and a background (first guess) $\mathbf{u}^b(t_0) = (-3, 0, 3)^T$ with background error covariance $\mathsf{B} = \sigma_b^2 \mathsf{I}, \sigma_b = 2$. Compute the 3DVAR analysis, i.e.:
 - (a) Determine H.
 - (b) Compute the analysis field \mathbf{u}^a .
 - (c) Compute the root mean square error of the analysis against the true solution $\sqrt{(\mathbf{u}^a \mathbf{u}^t(t_0))^T(\mathbf{u}^a \mathbf{u}^t(t_0))}$.
- 4. Indirect observation. Repeat above assuming the observation $\mathbf{u}_{1.5}^{o}(t_1) = 0.8$ was made halfway between grid points 1 and 2.
- 5. Sherman-Morrison-Woodbary formula gives an expression for the inverse of the matrix $\mathbf{A} + \mathbf{U}\mathbf{V}^T$, where \mathbf{A} is $n \times n$ matrix and \mathbf{U} , \mathbf{V} are $n \times k$:

$$(\mathbf{A} + \mathbf{U}\mathbf{V}^T)^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{I} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}^T)\mathbf{A}^{-1}.$$
 (3)

Using this formula show that

$$(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} = \mathbf{B} - \mathbf{B} \mathbf{H}^T (\mathbf{R} + \mathbf{H} \mathbf{B} \mathbf{H}^T)^{-1} \mathbf{H} \mathbf{B}.$$
 (4)