Exercise: Variational methods

Consider the model for the wind on three height levels:

$$
\begin{align*}
u_{i}^{t}\left(t_{k+1}\right) & =u_{i}^{t}\left(t_{k}\right)+\alpha u_{i}^{t^{2}}\left(t_{k}\right), \quad i=1,2,3, \quad \alpha=0.2 \tag{1}\\
\mathbf{u}^{t}\left(t_{0}\right) & =\left(\begin{array}{c}
-3 \\
2 \\
4
\end{array}\right) \tag{2}
\end{align*}
$$

1. True solution. Calculate the 'true solution' for $\mathbf{u}^{t}\left(t_{1}\right)$.
2. Tangent linear model. Write the tangent linear model for this example.
3. Single direct observation Assume we have the observation $u_{2}^{o}\left(t_{1}\right)=2.8$ with observation error covariance $\sigma_{o}^{2}=1$ and a background (first guess) $\mathbf{u}^{b}\left(t_{0}\right)=(-3,0,3)^{T}$ with background error covariance $\mathrm{B}=\sigma_{b}^{2} \mathrm{I}, \sigma_{b}=2$. Compute the 3DVAR analysis, i.e.:
(a) Determine H .
(b) Compute the analysis field \mathbf{u}^{a}.
(c) Compute the root mean square error of the analysis against the true solution $\sqrt{\left(\mathbf{u}^{a}-\mathbf{u}^{t}\left(t_{0}\right)\right)^{T}\left(\mathbf{u}^{a}-\mathbf{u}^{t}\left(t_{0}\right)\right)}$.
4. Indirect observation. Repeat above assuming the observation $\mathbf{u}_{1.5}^{o}\left(t_{1}\right)=$ 0.8 was made halfway between grid points 1 and 2 .
5. Sherman-Morrison-Woodbary formula gives an expression for the inverse of the matrix $\mathbf{A}+\mathbf{U V}^{T}$, where \mathbf{A} is $n \times n$ matrix and \mathbf{U}, \mathbf{V} are $n \times k$:

$$
\begin{equation*}
\left.\left(\mathbf{A}+\mathbf{U} \mathbf{V}^{T}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{I}+\mathbf{V}^{T} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V}^{T}\right) \mathbf{A}^{-1} \tag{3}
\end{equation*}
$$

Using this formula show that

$$
\begin{equation*}
\left(\mathbf{B}^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1}=\mathbf{B}-\mathbf{B H}^{T}\left(\mathbf{R}+\mathbf{H B} \mathbf{H}^{T}\right)^{-1} \mathbf{H B} \tag{4}
\end{equation*}
$$

