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Statement of the problem

I The dynamics of the atmosphere are governed by nonlinear
partial differential equations.

I We represent the atmosphere in terms of numerical models of
the atmosphere, that is by discretizing nonlinear equations
that govern the dynamics.

I Ongoing observations of the atmosphere using instruments
with different spatial and temporal coverage as well as
different accuracy give us valuable information on the current
state of the atmosphere.

I Our objective is to combine these two sources of information
and to produce an estimate on the grid of our numerical
model.
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Pros of Kalman filter

I The Kalman filter produces the optimal analysis subject to the
assumptions that dynamics are linear and have additive,
state-independent Gaussian model and observation errors.

I The Kalman filter provides algebraic formulas for the change
of mean and error covariance by the Bayesian update
equation.

I In addition to the analysis we do get an estimate of analysis
error consistent with the dynamics, prescribed model and
observational error statistics.

I The Kalman filter provides us with formulas for advancing the
error covariance matrix in time.
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Cons of Kalman filter

I A negative of Kalman filter are assumptions that dynamics are
linear and have additive, state-independent Gaussian model
and observation errors.

I We are working with large dimensional systems, for example
dimension n of the estimate (or state of the atmosphere at
given time) that we would like to have can be of order 108.
The use of Kalman filter equations for large dimensional
systems requires us to handle matrices of dimension n × n.

I For large dimensional systems, the complete error structure of
a time-evolving forecast error covariance is impossible to know
or even to represent accurately.



Cons of Kalman filter

I A negative of Kalman filter are assumptions that dynamics are
linear and have additive, state-independent Gaussian model
and observation errors.

I We are working with large dimensional systems, for example
dimension n of the estimate (or state of the atmosphere at
given time) that we would like to have can be of order 108.
The use of Kalman filter equations for large dimensional
systems requires us to handle matrices of dimension n × n.

I For large dimensional systems, the complete error structure of
a time-evolving forecast error covariance is impossible to know
or even to represent accurately.



Cons of Kalman filter

I A negative of Kalman filter are assumptions that dynamics are
linear and have additive, state-independent Gaussian model
and observation errors.

I We are working with large dimensional systems, for example
dimension n of the estimate (or state of the atmosphere at
given time) that we would like to have can be of order 108.
The use of Kalman filter equations for large dimensional
systems requires us to handle matrices of dimension n × n.

I For large dimensional systems, the complete error structure of
a time-evolving forecast error covariance is impossible to know
or even to represent accurately.



Why the ensemble Kalman filter approach?

I The Kalman filter is difficult to implement in realistic systems
because of:

I computational costs,
I the nonlinearity of dynamics and
I poorly characterized error sources.

I This led to a range of approximate Kalman filters for use with
large systems.

I The ensemble Kalamn filter (EnKF) (Evensen 1994) uses
ensembles (a sample) to calculate the uncertainty of the
background and analysis error covariance.

I Ensembles are propagated with full nonlinear numerical
model. This can be done over long time periods, and results in
flow dependent error covariances.
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Ensemble Kalman filter methods:
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Initial step of sequential data assimilation algorithm

The inputs to the Kalman filter are:

I An initial state at time t0 and the corresponding covariance
matrix B0

I Observations fok and observational error covariance Rk at each
analysis time

I Covariance matrix of model error Qk

We do not need to specify the covariances matrices of background
error Bb

k . It is generated and propagated by the filter using full
nonlinear dynamics of the model.

However, we do need to specify Qk and Rk for all k as well as B0.
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Step 1: Analysis
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I Bb
k determines directly the quality of the analysis since it

determines the weight each observation has.

Now we will consider how is Bb
k generated in the ensemble Kalman

filter approach.
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For EnKF background error covariance is calculated as
sample covariance from the ensemble

Covariances represented through

Bb
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1

r − 1
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[wb,i
k −wb

k ][wb,i
k −wb

k ]T .

Bb
k is the ensemble derived forecast error covariance;

wb,i
k are ensemble members i = 1, . . . , r of size n at time tk ;

wb
k is the average over ensemble.
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r
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For EnKF nonlinear observation operators can be used on
each ensemble member

Covariances are represented by
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Hk operates on each of N ensemble members rather than on n
columns of Bb

k !



For EnKF background error covariance can be represented
in square root form

I Bb
k is by definition positive semi-definite covariance.

I Bb
k has rank at most r.

Bb
k represented through
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1
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[wb,i
k −wb

k ][wb,i
k −wb
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can be written in matrix form as:

Bb
k = Wb

k(Wb
k)T

where Wb
k = 1√

r−1
[wb,1

k −wb
k . . .w

b,r
k −wb

k ].

I Matrix Wb
k is of size n × r , where r � n.



Different ensembles can span the same state space and
have the same covariance

However this representation of Bb
k is not unique!

It is also true that

Bb
k = Wb

kUk(Wb
kUk)T

where Uk is any matrix of size r × r such that

UkU
T
k = UT

k Uk = Ir .

Ensemble Transform Kalman Filter (ETKF) uses Uk = Ir .



For EnKF analysis error covariance can be calculated using
the square root form
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kTkUk where Uk is any orthogonal matrix of size
r × r .
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Derivation of ETKF

I There are several different ensemble Kalman filter methods
that differ by choice of square root matrix Tk .

I We will derive one of them – the ETKF.

Using the Shermann-Morrison-Woodbury identity
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Derivation of ETKF
In terms of unique nonnegative square root
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(Hunt et al. 2007)
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k

Wa
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kT
ETKF
k
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TETKF
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k(Ir + Dk)−1/2 (Bishop et al. 2001)
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Example 1: How good is our analysis?

Let us consider simple passive advection equation

∂h

∂t
+ c

∂h

∂x
= 0

h(x , 0) = sin(x)

Solution is given by ht(x , t) = sin(x − ct).
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Example 1

I We assume that our model is perfect and that we do not
know exactly the initial conditions.

I We take two different approximations to the background error
covariances Bb

k , the diagonal matrix and ensemble derived.

I We generate the ensemble covariance by perturbing the initial
condition.
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Example 1

I Use of diagonal matrix does not propagate information about
observations to the neighborhood grid points.

I Ensemble background error covariance incorporates
information about the model, and this way produces an
analysis consistent with it.

I RMS error calculations against data that is assimilated are
misleading. In this case: RMS = 0.0011 for diagonal Bb

k , RMS
= 0.0138 for 5 ensemble members.
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Example 2: How good are our unobserved variables?

∂h

∂t
+ c

∂h

∂x
= 0

u(x , t) =
∂h

∂x
h(x , 0) = sin(x)

Solution is given by ht(x , t) = sin(x − ct), ut(x , t) = cos(x − ct).

I We observe only h as in Example 1.

I Our wk = [
h
u

]

I Field u should be corrected through the background error
covariance!
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I Diagonal covariance matrix does not correct u since u is not
observed.

I Field u was corrected through the ensemble background error
covariance using the cross correlations between variables u
and h as given by model dynamics!
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Summary of analysis step

As result of the analysis step we obtain

wa
k ,B

a
k starting from wb

k ,B
b
k and data fk

I Since background error covariance can be represented in
reduced rank form, the computation of analysis error
covariance is not expensive and can be easily performed

I we never need to explicitly calculate the covariances we can
always work in square root forms.

I reduced form are not unique resulting in different ensembles
with same mean and covariance.

I The quality of the analysis is determined by the background
error covariance. This is how the information from the data is
transferred to the grid points of model.

I Ensemble background error covariance rely on the numerical
model for cross-correlation between the variables.
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Step 2: Generation of the ensembles

A key element of ensemble Kalman filter is the transformation of
the forecast ensemble into the analysis ensemble with appropriate
statistics.

Two ways

I stochastically by treating observations as random variables

I deterministic requiring that ensembles wa,i
k are generated

around state wa
k using Ba

k .

wa,i
k = wa

k + [Wb
kTkU]i

where Ue = 0 and UUT = Ir , and e = [1 . . . 1].
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Step 2: Resampling
If we generate wa,i

k using

wa,i
k = wa

k +
√

r − 1[Wb
kTkU]i

then
1

r

r∑
i=1

wa,i
k = wa

k +
√

r − 1Wb
kTkUe = wa

k

1

r − 1
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[wa,i
k −wa
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k −wa
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Step 3: Propagation of the ensembles

Our goal is to produce sequence of analysis for times t1, ..., tk ,
tk+1, ....

Our best prior estimate of the state at time tk+1 is given by a
forecast from proceeding analysis using fully nonlinear numerical
model:

wb
k+1 = Mk+1,kw

a
k .
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In majority of ensemble Kalman filter algorithms, full nonlinear
numerical model is used to propagate each ensemble

wb,i
k+1 = Mk+1,kw

a,i
k

and the background is estimated as average of the ensemble
members.

Even if the model is perfect due to the nonlinearity

Mk+1,kw
a
k ≈

1

r

r∑
i=1

wb,i
k+1 = wb

k+1

Step 3 is the expensive step of ensemble Kalman filter methods. It
determines how many ensembles can be used for representing
uncertainty.
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Numerical model of atmosphere is not perfect

Instead of only propagating the analysis ensemble to obtain the
new forecast ensemble, model error ηi

k can be added to:

wb,i
k+1 = Mk+1,kw

a,i
k + ηi

k

where ηi
k will be sample randomly drawn using model error

covariance matrix Qk .

This way we will stay in the reduced space, although Qk is not
necessarily low rank matrix.

Modeling model error is very difficult!
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Example 3: The effect of model error

I Setup follows Example 2 except that model has now wrong
advection speed cm = c/2.

−80 −60 −40 −20 0 20 40 60 80
−1

−0.5

0

0.5

1

ht(x,t)

ht(x,t) with models cm



Example 3: The effect of model error

I Setup follows Example 2 except that model has now wrong
advection speed cm = c/2.

−80 −60 −40 −20 0 20 40 60 80
−1

−0.5

0

0.5

1

ht(x,t)

ht(x,t) with models cm



Example 3: The effect of model error

I Analysis will be produced assuming

1. model is perfect, ηi
k=0;

2. model error is added at every grid point by sampling from
diagonal Qk ;

3. and model uncertainty is put on c . In this case c is sampled
from diagonal Qk .

−80 −60 −40 −20 0 20 40 60 80
−1

−0.5

0

0.5

1

h
k
a with η

k
=0

ha
k
 with additive η

k

h
k
a with random cm



Example 3: The effect of model error

I Analysis will be produced assuming

1. model is perfect, ηi
k=0;

2. model error is added at every grid point by sampling from
diagonal Qk ;

3. and model uncertainty is put on c . In this case c is sampled
from diagonal Qk .

−80 −60 −40 −20 0 20 40 60 80
−1

−0.5

0

0.5

1
ua

k
 with additive η

k u
k
a with random cm

u
k
a with η

k
=0



Conclusion

I Ensemble Kalman filter methods were introduced in square
root form.

I This formulation allows for non expensive calculation of the
analysis and analysis error covariance.

I The idea of representing the uncertainty through the ensemble
of states allows inclusion of the time varying error structures
in algorithm.

I Ensemble covariances that determine the properties of the
analysis incorporate naturally correlations and cross
correlations through the model.

I The inclusion of model error and observation error are still
required.
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