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SUMMARY

Most operational assimilation schemes rely on linear estimation theory. Under this assumption, it is shown
how simple consistency diagnostics can be obtained for the covariances of observation, background and estimation
errors in observation space. Those diagnostics are shown to be nearly cost-free since they only combine quantities
available after the analysis, i.e. observed values and their background and analysis counterparts in observation
space. A first application of such diagnostics is presented on analyses provided by the French 4D-Var assimilation.
A procedure to refine background and observation-error variances is also proposed and tested in a simple toy
analysis problem. The possibility to diagnose cross-correlations between observation errors is also investigated
in this same simple framework. A spectral interpretation of the diagnosed covariances is finally presented, which
allows us to highlight the role of the scale separation between background and observation errors.
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1. INTRODUCTION

Most main operational assimilation systems are now based on the variational for-
malism (Lewis and Derber 1985; Courtier and Talagrand 1987, Rabier et al. 2000).
Such a formalism allows the use of a large spectrum of observations and in particular
satellite data that are not directly and linearly linked with model variables. However,
those variational algorithms still rely on the theory of least-variance linear statistical
estimation (Talagrand 1997). In the linear estimation theory, each set of information is
given a weight proportional to the inverse of its specified error covariance. The pieces of
information are classically given by observations and a background estimate of the state
of the atmospheric flow. Analysis systems are then dependent on appropriate statistics
for observation and background errors. Unfortunately those statistics are not perfectly
known and their determination remains a major challenge in assimilation systems.
One source of information on the observation and background errors is contained in
the statistics of the innovations, that is the differences between observations and their
background counterparts. Those statistics have for example been used by Hollingsworth
and Lönnberg (1986), assuming that background errors carry cross-correlations while
observation errors do not. From a slightly different point of view, Dee and da Silva
(1999) have used a maximum likelihood method to estimate the information error statis-
tics. Desroziers and Ivanov (2001) have proposed an approach based on a consistency
criterion of the analysis relying on statistics of observation-minus-analysis differences
to adapt observation-error statistics. The consistency criterion used in this method was
defined by Talagrand (1999). Chapnik et al. (2004) investigated the properties of the
algorithm and especially showed that it was equivalent to a maximum likelihood
method, though less expensive to implement. Chapnik et al. (2006) also applied the
same algorithm in an operational framework to tune observation-error variances.

This paper presents a set of diagnostics based on combinations of observation-
minus-background (O–B), observation-minus-analysis (O–A) and background-minus-
analysis (B–A) differences, which provide an additional consistency check of an
analysis scheme.
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In section 2 the general least-variance statistical estimation framework is intro-
duced, as well as the consistency diagnostics. A geometrical interpretation of those
diagnostics is given in section 3. An application of the computation of the diagnostics
on operational analyses given by a four-dimensional variational (4D-Var) assimilation
scheme is presented in section 4. Then, it is shown in section 5 how the diagnostics
can be used to optimize observation and background errors, and an application of such
a tuning algorithm in a simple assimilation toy problem is presented. It is shown in
section 6 how such a method can also be used to determine cross-correlations between
the errors corresponding to different observations. A spectral interpretation of the diag-
nosed covariances is proposed in section 7. Conclusions and perspectives are given in
section 8.

2. DIAGNOSTICS IN OBSERVATION SPACE

(a) Consistency diagnostic on innovations
In statistical linear estimation theory, the expression of the analysed state xa is given

by

xa = xb + δxa = xb + Kdo
b,

where xb is the background state, δxa the analysis increment,

K = BHT(HBHT + R)−1

the gain matrix in the analysis process and do
b the innovation vector (Talagrand 1997).

The vector do
b is the difference between observations yo and their background counter-

parts H(xb), where H is the possibly nonlinear observation operator and H the matrix
corresponding to the linearized version of H . B is the background-error covariance
matrix.

From the definition of the innovation vector, the following sequence of relations
can be derived:

do
b = yo − H(xb) = yo − H(xt) + H(xt) − H(xb) � εo − Hεb,

where xt is the unknown true state, εo the vector of observation errors and εb the vector
of background errors. Then, the covariance of innovations is

E[do
b(d

o
b)

T] = E[εo(εo)T] + HE[εb(εb)T]HT,

using the linearity of the statistical expectation operator E, and assuming that observa-
tion errors εo and background errors εb are uncorrelated.

As a consequence, it is easy to check that the relation

E[do
b(d

o
b)

T] = R + HBHT (1)

should be fulfilled, if the covariance of observation errors, R, and the covariance of
background errors in observation space, HBHT, are correctly specified in the analysis.
This is a classical result that provides a global check on the specification of those
covariances (Andersson 2003).

It is shown below how additional relations can be obtained, which provide separate
diagnostics on the background-, observation- and analysis-error statistics.
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(b) Consistency diagnostic on background errors
From the previous expression for xa, the da

b (A–B) differences in observation space
can be written

da
b = H(xa) − H(xb) � Hδxa = HKdo

b.

As a consequence, the cross-product between the da
b (A–B) differences in observation

space and the do
b (O–B) differences is

da
b(d

o
b)

T = HKdo
b(d

o
b)

T.

Matrix HK is given by HBHT(HBHT + R)−1. Thus, the statistical expectation of this
expression is given by

E[da
b(d

o
b)

T] = HBHT(HBHT + R)−1E[do
b(d

o
b)

T],
using the linearity of the statistical expectation operator E. It is easy to check that this
whole expression simplifies to

E[da
b(d

o
b)

T] = HBHT, (2)

if matrix HK = HBHT(HBHT + R)−1 is in agreement with the true covariances for
background and observation errors.

This is a first additional diagnostic to the diagnostic on innovations. It provides a
separate consistency check on background-error covariances in observation space.

(c) Consistency diagnostic on observation errors
Similarly, the do

a (O–A) differences are given by

do
a = yo − H(xb + δxa)

� yo − H(xb) − HKdo
b

= (I − HK)do
b

= R(HBHT + R)−1do
b,

then the statistical expectation of the cross-product between the do
a (O–A) differences

and the do
b (O–B) differences is

E[do
a(d

o
b)

T] = R(HBHT + R)−1E[do
b(d

o
b)

T],
which simplifies to

E[do
a(d

o
b)

T] = R, (3)

if matrix HK = HBHT(HBHT + R)−1 agrees with exact covariances for background
and observation errors.

This is a second additional diagnostic providing a separate consistency check on
observation-error covariances.

(d) Diagnosis of analysis errors
Finally, the cross-product between the da

b (A–B) differences in observation space
and the do

a (O–A) differences can also be derived:

da
b(d

o
a)

T = HKdo
b(d

o
b)

T(I − HK)T

= HBHT(HBHT + R)−1do
b(d

o
b)

T(HBHT + R)−1R.
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Again, the statistical expectation of this expression simplifies to

E[da
b(d

o
a)

T] = HBHT(HBHT + R)−1R,

if matrix HK = HBHT(HBHT + R)−1 is in agreement with the true covariances for
background and observation errors.

It is easy to show that the right-hand side of the last relation is an expression for
HAHT (where A is the analysis-error covariance matrix in model space), if HBHT and
R are correctly specified in the analysis. Thus, in that case, the following relation should
hold:

E[da
b(d

o
a)

T] = HAHT. (4)

This is a third additional diagnostic providing information on analysis errors in obser-
vation space.

3. A GEOMETRICAL INTERPRETATION

From what has been shown in the previous section, relations (1) to (4) should be
fulfilled in an optimal linear analysis, with linearized observation operators. They can
be summarized as follows:

E[da
b(d

o
b)

T] = HBHT, E[do
a(d

o
b)

T] = R,

E[do
b(d

o
b)

T] = HBHT + R, E[da
b(d

o
a)

T] = HAHT.

These relations are matricial, that is to say that they should be also true for cross-
covariances between differences associated with different observations.

A geometrical interpretation of these relations can be proposed in the space of the
eigenvectors V of matrix HK, such as HK = V�VT, where � is the diagonal matrix
of the eigenvalues of HK. With this decomposition of matrix HK, the vector da

b of
the differences between analysis and background in observation space can be rewritten:
da

b = Hδxa = HKdo
b = V�VTdo

b. Then, the projection of da
b onto the eigenvectors of

HK is given by VTda
b = VTV�VTdo

b = �VTdo
b. If [da

b]i and [do
b]i stand respectively

for the projections of da
b and do

b onto a particular eigenvector vi of HK, it follows that
[da

b]i = λi[do
b]i , where λi is the corresponding eigenvalue of HK. (The notations [da

b]i ,[do
b]i are used here to specify that these two vectors are unidimensional vectors.)

In Figure 1, H(xt)i , yo
i and H(xb)i respectively stand for the projections onto

a particular eigenvector vi of the true, observed and background equivalents of x at
observation locations. The triangle H(xb)i , H(xt)i , yo

i is right in H(xt)i since the
projections [εo]i and [Hεb]i of observation errors and background errors onto vector vi

are assumed to be uncorrelated and hence orthogonal. This orthogonality is defined for
the particular scalar product 〈[ε1], [ε2]〉 = E(ε1ε2), where [ε1] and [ε2] are two vectors
of random errors, with respective components ε1 and ε2 being two random variables.
It means that the orthogonality of [εo]i and [Hεb]i is only true from a statistical point
of view. With this definition of the scalar product, the angle between two random error
vectors is also directly linked with the correlation of the errors; a zero angle and a
right angle respectively correspond to perfect correlation and decorrelation and an angle
between 0 and π/2 to an intermediate correlation.

It is a classical result that the analysis error Hεa is also orthogonal to the innovation
vector do

b, again from a statistical point of view. Since Fig. 1 corresponds to a projection
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Figure 1. Geometrical representation of the analysis projected onto a particular eigenvector vi of matrix HK.

onto a particular eigenvector vi , it follows that [H(xb)iH(xa)i] = [da
b]i = λi[do

b]i and
then H(xa)i is on the line defined by the point H(xb)i and the vector [do

b]i . The vector
[Hεa]i is thus orthogonal to [do

b]i in H(xa)i .
Hence, the application of the Pythagoras theorem to this triangle implies that

‖[do
b]i‖2 = ‖[Hεb]i‖2 + ‖[εo]i‖2, where the norm ‖ ‖ is associated with the previous

scalar product. This relation corresponds to the first classical diagnostic on innovation
covariances.

From the application of Euclid’s theorems in a right triangle, the three additional
relations can be written:

〈[da
b]i , [do

b]i〉 = ‖[Hεb]i‖2,

〈[do
a]i , [do

b]i〉 = ‖[εo]i‖2,

〈[da
b]i , [do

b]i〉 = ‖[Hεa]i‖2,

corresponding to the diagnostics of background, observation and analysis-error vari-
ances, respectively.

In the case where background and observation-error covariances are homogeneous,
and the data density is uniform, the eigenvectors of matrix HK are the spectral har-
monics (Fourier on the plane, spherical harmonics on the sphere). Then, Fig. 1 shows a
projection onto a particular spectral component. This case will be further developed in
section 7.

4. APPLICATION OF THE DIAGNOSTICS TO ARPEGE 4D-VAR ANALYSES

The diagnostics shown in section 2 potentially provide information on the full
covariances of observation, background and analysis errors in observation space.
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Figure 2. Vertical profiles of diagnosed square roots of background (solid) and observation (dotted) error
variances for radiosonde wind observations in the northern hemisphere, compared with profiles for corresponding
background (dash-dotted) and observation errors (dashed). All values are in m s−1. The numbers of observations

used to compute statistics are shown on the right.

One first application of these diagnostics is to diagnose observation and background-
error variances. Thus for any subset of observations i with pi observations, it is possible
simply to compute the quantities

(
˜

σ b
i )2 = (da

b)
T
i (do

b)i/pi =
pi

∑

j=1

(ya
j − yb

j )(y
o
j − yb

j )/pi

(˜σ o
i )2 = (do

a)
T
i (do

b)i/pi =
pi

∑

j=1

(yo
j − ya

j )(y
o
j − yb

j )/pi,

where yo
j is the value of observation j and yb

j , ya
j respectively their background and

analysis counterparts. The quantities (
˜

σ b
i )2 and (˜σ o

i )2 are the diagnosed values of
background and observation errors that can be different from the specified values in
the analysis. They correspond to the use of relations (2) and (3) respectively, but for
mean diagonal elements of those matrices only. These computations are nearly cost-free
and can be performed, a posteriori, using one or several analyses.

Such computations have been performed on analyses produced by the French
operational ARPEGE† 4D-Var assimilation. This 4D-Var assimilation is based on an
incremental formulation (Courtier et al. 1994) and shares many aspects with the 4D-Var
analysis of the European Centre for Medium-range Weather Forecasts (Rabier et al.
2000). Figure 2 shows an example of diagnosed background and observation variances
for wind observations given by radiosondes in the northern hemisphere. These statistics
have been computed after ten 4D-Var analyses. They show that both background and
observation errors seem to be overestimated in the analysis. This is consistent for
observation errors with what has been found by Chapnik et al. (2006) using a different
diagnostic. On the other hand, similar diagnosed profiles have been retrieved for the

† Action de Recherche Petite Echelle Grande Echelle.
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TABLE 1. TRUE AND TUNED VALUES OF σo AND σb AFTER
FIXED-POINT ITERATIONS

Iteration
True Initial
value value 1 2 3 4 5

σo 2 1 1.73 1.89 1.95 1.97 1.98
σb 1 2 1.41 1.19 1.10 1.07 1.03

southern hemisphere (not shown), thus giving some confidence in those diagnostics.
The same kind of diagnostics have been produced for all observations taken into account
in the ARPEGE 4D-Var. Results (not presented here) confirm the overestimation of
background and observation error for most of the observations.

5. TUNING OF ERROR VARIANCES

Since background and observation errors are expected to be incorrectly specified
in an operational analysis, a method can be envisaged to tune them. The rationale of
such a tuning procedure is to find the values of the σ b

i and σ o
i , for the different subsets

i of observations such that those values fulfil the relations (σ b
i )2 = (da

b)
T
i (do

b)i/pi and
(σ o

i )2 = (do
a)

T
i (do

b)i/pi. This is a nonlinear problem since the (da
b)i and (do

a)i depend
themselves on the σ b

i and σ o
i values. However the form of those nonlinear equations

suggests the use of an iterative fixed-point method to solve this tuning problem.
This iterative procedure is similar to the procedure proposed by Desroziers and

Ivanov (2001) to solve the same kind of problem but with a different optimality criterion.
A preliminary test of the previous tuning algorithm has been made in a toy problem

given by a spectral analysis on a circular domain (say on an earth meridian) and also
used by Desroziers and Ivanov (2001). The length of the domain is set to 40 000 km and
the truncation to 200 corresponding to n = 401 spectral coefficients. The background-
error covariance matrix B is built in spectral space from a Gaussian structure function
in physical space. Assuming homogeneity on the domain makes the B matrix diagonal,
so that the diagonal of B is given by the Fourier transform of the Gaussian correlation
in physical space. Here the length-scale of the Gaussian correlation is set to 300 km.
The analysis problem is solved with p = 401 observations and a diagonal observation-
error covariance matrix R, assuming that error observations are uncorrelated. Observa-
tions have the same nature as the state variable x. Thus the observation operator H only
involves interpolation of x at observation locations. Both background and observations
are simulated in agreement with the corresponding B and R covariance matrices with
homogeneous values σ b = 1 and σ o = 2.

Table 1 shows that, starting from erroneous values σ b = 2 and σ o = 1, the fixed-
point iterative algorithm allows us to recover a good approximation of the true values
with only a few iterations.

6. DIAGNOSIS OF OBSERVATION ERROR CROSS-COVARIANCES

The diagnostic E[do
a(d

o
b)

T] = R on observation errors, introduced in section 2, can
potentially provide some information on cross-correlations between two different sets
of observations, for instance observations issued from different channels of the same
satellite instrument. The capability of such a diagnostic to recover observation error
cross-correlations is investigated here with the same previous analysis toy problem but
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TABLE 2. TRUE, INITIAL AND DIAGNOSED VALUES OF OBSERVATION ERROR
CROSS-COVARIANCES FOR THREE SIMULATED OBSERVATION SETS

1 2 3

Set True Init. Diag. True Init. Diag. True Init. Diag.

1 1.00 1.00 1.00 1.00 0.00 1.01 0.10 0.00 0.10
2 4.00 1.00 3.73 −0.20 0.00 −0.18
3 0.25 1.00 0.25

with the addition of a vertical dimension. The analysis domain is now a periodic vertical
plane with three levels with 5 km separation. All parameters are the same as previously,
and the additional vertical length-scale of background errors is set to 3 km. At each
horizontal observation location, a set of three simulated observations yo

1 , yo
2 and yo

3 are
defined as simple combinations of the state variable at the three levels:

yo
1 = 0.75x1 + 0.25x2, yo

2 = 0.10x1 + 0.80x2 + 0.10x3, yo
3 = 0.30x2 + 0.70x3,

where x1, x2 and x3 are the state variable values at the three levels. This is done to mimic,
in a rough way, satellite observations integrated within the vertical. These observations
are simulated with correlated observation errors as given in Table 2.

The diagnosed values of observation error cross-covariances (Table 2) show that
such a simple diagnostic is able to recover most of the information on observation-error
covariances starting from a mis-specified representation of those covariances (with no
cross-correlations and homogeneous error variance).

7. A SPECTRAL INTERPRETATION OF THE DIAGNOSED COVARIANCES

(a) The adjustment equations of the spectral variances
The diagnosed covariance matrices in Eqs. (2) and (3) may be seen as some adjusted

covariance estimates, noted H˜BHT and ˜R respectively:

E[da
b(d

o
b)

T] = H˜BHT = HBHT(HBHT + R)−1(HB∗HT + R∗)
E[do

a(d
o
b )T] = ˜R = R(HBHT + R)−1(HB∗HT + R∗),

where B∗, R∗ are the true covariance matrices.
Following Hollingsworth (1987) and Daley (1991, pp. 125–128), one may consider

for example the 1D or 2D case where the background and observation-error covariances
are homogeneous, and the data density is uniform.

In this case, the different covariance matrices have common eigenvectors, which
are the spectral modes: HBHT = S�bST, R = S�oST, where S is an orthogonal matrix
whose columns are the common eigenvectors of HBHT and R, and �b, �o are diagonal
matrices which contain the corresponding eigenvalues. The eigenvectors are the spectral
harmonics (Fourier on the plane, spherical harmonics on the sphere), and S is the inverse
spectral transform. Moreover, the eigenvalues correspond to the variances of the spectral
components.

Similar equations hold for the diagnosed and true covariance matrices respectively.
The equation of the diagnosed background-error covariance matrix can thus be written
as follows:

S˜�bST = S�bST(S�bST + S�oST)−1(S�b∗ST + S�o∗ST)

= S�bSTST−1
(�b + �o)−1S−1S(�b∗ + �o∗)ST

= S�b(�b + �o)−1(�b∗ + �o∗)ST.
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The same kind of relations can be written for the diagnosed observation-error covariance
matrix. This provides the final eigenvalue relations:

˜�b = �b(�b + �o)−1(�b∗ + �o∗)
˜�o = �o(�b + �o)−1(�b∗ + �o∗),

where {�b∗, �o∗}, {�b, �o} and {˜�b, ˜�o} respectively stand for the eigenvalues of
the true, specified and diagnosed covariance matrices for background and observation
errors.

(b) Two visions of the adjustment equations
A first insight into the previous relations is to note that the true innovation variance

spectrum �b∗ + �o∗ is multiplied by two filtering ratios

Fb = �b

�b + �o
, Fo = �o

�b + �o

to provide the respective (adjusted) variance spectra of εb and εo:

˜�b = �b

�b + �o
(�b∗ + �o∗), ˜�o = �o

�b + �o
(�b∗ + �o∗).

These two filters are represented in Fig. 3(a) for the example evoked in section 5.
Due to the shape of the two kinds of error correlation, Fb and Fo are respectively
low-pass and high-pass filters. Figures 3(c) and (d) illustrate that applying Fb, Fo to
(�b∗ + �o∗) allows us to extract its large-scale and small-scale components respec-
tively. They correspond to the (estimated) contributions of the background and observa-
tion errors, respectively. These provide some adjusted variance spectra, which are closer
to the true spectra than the specified ones. This is also consistent with the fact that the
equations indicate, in particular, that if the analysis is optimal, then these two filtering
steps will provide the two exact error variance spectra.

Another complementary insight is to notice that the adjustments amount to scaling
each specified information error spectral variance by the ratio between the exact and
specified innovation variances:

˜�b = �b �b∗ + �o∗

�b + �o
, ˜�o = �o �b∗ + �o∗

�b + �o
.

The perfect adjustment ratios would instead be (�b∗/�b) and (�o∗/�o) respectively.
However, as illustrated in Fig. 3(b), the innovation misfit ratio N = (�b∗ + �o∗)/
(�b + �o) is close to (�b∗/�b) at the large scales (i.e. where the background errors
have their largest amplitudes), and it is close to (�o∗/�o) over a wide range of
small scales (i.e. where the observation errors predominate). In other words, the close
links between N and (�b∗/�b) or (�o∗/�o), as a function of scale, indicate that the
adjustments are done in a relevant scale-dependent way.

The two visions are consistent, in the sense that they both indicate that the adjust-
ments are particularly relevant when the background errors and the observation errors
tend to predominate in different scales. This is summarized by the fact that

�b∗ + �o∗

�b + �o
� �b∗

�b
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Figure 3. Spectral interpretation of diagnosed covariances: (a) filtering functions, (b) misfit ratios, (c) back-
ground error, and (d) observation error. See text for definitions.

in the large scales if both �b∗ � �o∗ and �b � �o and

�b∗ + �o∗

�b + �o
� �o∗

�o

in the small scales if both �b∗ 	 �o∗ and �b 	 �o.
The adjusted standard deviations that were presented in section 5 are simply the

square root of the sum of the different (adjusted) spectral variances. The relevance of
the standard deviation adjustments is therefore consistent with the adjustments of the
spectral variances.

From the previous discussion, it also appears that the adjustment of background
and observation-error variances is only relevant if those errors have different structures.
Hence, the application of such an adjustment will not work in the case where the two
spectra (either �b∗ and �o∗ or �b and �o) are proportional.

However, if the background and observation-error spectra are sufficiently different
(both in the exact and specified statistics), the adjustment will be able to modify the
variances in a correct way even if the correlations are not perfectly specified.

8. CONCLUSION

On the basis of linear estimation theory, simple consistency diagnostics should be
fulfilled in an optimal analysis. These diagnostics can potentially provide information
on imperfectly known observation and background-error statistics. Another advantage
of these diagnostics is that they are nearly cost-free and can be applied to any analysis
scheme.
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The application of the computation of the diagnostics to analyses issued from the
operational French 4D-Var system shows likely diagnosed values for observation and
background errors. Even if the values of background errors cannot be directly used
in a model-space assimilation scheme, the study of these errors can be quite useful
to understand the relative impact in the analysis of observations that are not directly
related to the state variables. This is particularly the case for satellite data, for which
the diagnosed errors can also be compared to randomized estimates of HBHT, where
B is the specified covariance background-error matrix in the analysis, as proposed by
Andersson et al. (2000). Since the observation operator H includes the model integration
in a 4D-Var scheme, the proposed diagnostic can be similarly used to diagnose the
implicit evolution of background errors in 4D-Var.

Furthermore, it has been shown that it is possible to adapt the values specified in an
analysis scheme by an iterative method. This can be useful to adapt observation errors
but also background errors in observation space that are classically used in first-guess
quality control of observations.

The use of such consistency diagnostics also seems to be a promising way to tackle
the problem of the estimation of correlation between observation errors.

Another domain of interest is the use of the diagnostic of estimation error in
observation space, which will have to be investigated in the future.

Nevertheless, such diagnostics also have to be understood from theoretical and
practical points of view. In particular it has been shown that a spectral vision can
be helpful in this perspective, by highlighting the role of scale separation between
background and observation errors.
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