• Convection-permitting COSMO-DE limited-area forecast model ($\Delta_h \approx 2.8$ km) operational since April 2007

 \rightarrow convection-scale dynamics are partially resolved, sub-grid scale (shallow) convection effects on resolved scales parameterised

 \Rightarrow Improve forecast of convective precipitation and extreme events in general

 COSMO-DE-EPS with 20 ensemble members pre-operational since December 2010. Perturbations of initial conditions (ICs) and lateral boundary conditions (BCs), plus physical parameterisations (PHs).

 \Rightarrow (IC + BC) \times PH = 4 \times 5 = 20

*

	entr_sc	q_crit	rlam_heat	rlam_heat	tur_len + lhn_coef
GFS (NCEP)	m1	m2	m3	m4	m5
GME (DWD)	m6	m7	m8	m9	m10
IFS (ECMWF)	m11	m12	m13	m14	m15
GSM (JMA)	m16	m17	m18	m19	m20

Previous investigation based on experimental COSMO-DE-EPS forecasts:

• Gebhardt et al., Atmos. Res. 2011 investigated 12-members ensemble by BC, PH, and combined BC+PH perturbations over period of 15 days in August 2007.

 \rightarrow Probabilistic precipitation forecasts superior to deterministic forecasts

 \rightarrow Impact of perturbations on ensemble dispersion is dominated by PH in the first hours, and by BC afterwards

 \rightarrow Combined BC+PH perturbations give best forecast quality in general

 \Rightarrow What is the influence of the additional IC perturbations in the current pre-operational COSMO-DE-EPS forecasts ?

Investigation of COSMO-DE-EPS

- Investigate BC+PH (BP) versus IC+BC+PH (IBP) perturbations in 20-member COSMO-DE ensemble
 - \rightarrow IBP: pre-operational COSMO-DE-EPS
 - \rightarrow BP: "Experiment 8247" is currently run at DWD under supervision of C. Gebhardt
- 3-month period from May to July 2011
- Forecasts for 21 h lead time started 8 times per day (00,03,06,09,12,15,18,21 UTC)
- Verification of total precipitation based on DWD's high-resolution radar network
- Python codes for ensemble verification
 - ightarrow Deterministic quality measures: frequency bias index, equitable threat score, false alarm ratio,
 - → Probabilistic quality measure: Brier score
 - \rightarrow Measures for ensemble dispersion: correspondence ratio, normalised variance difference

- Check quality of all individual ensemble members
- Consider discrete variable (yes/no) for exceeding a threshold (e.g. precipitation, wind speed)
- Frequency Bias Index (FBI)

$$\mathsf{FBI} = rac{hits + false \ alarms}{hits + misses}$$

 \rightarrow How does the forecast frequency of "yes" events compare to the observed frequency of "yes" events?

• Quality of probabilistic forecast using the Brier Score

$$\mathsf{BS} = \frac{1}{N} \sum_{i=1}^{N} (p_i - o_i)^2 \in [0, 1]$$

- \rightarrow What is the magnitude of the probability forecast errors?
- \rightarrow Perfect score 0

⇒ Compare different EPS configurations by means of the Brier Skill Score

$$\mathsf{BSS} = 1 - \frac{\mathsf{BS}}{\mathsf{BS}_{\mathit{ref}}} \ \in [-\infty, 1]$$

 \rightarrow What is the relative skill of one EPS configuration (IBP) over another (reference) EPS configuration (BP), in terms of predicting whether or not a threshold is exceeded ?

 \rightarrow Perfect score 1

Brier Skill Score

• Correspondence Ratio (Stensrud and Wandishin 2000; Gebhardt et al. 2011)

$$\mathsf{CR} = \frac{\mathsf{N}(\mathsf{GP}_{\mathsf{all}})}{\mathsf{N}(\mathsf{GP}_{\geq 1})}$$

 \rightarrow Measure of the ensemble spread

 \rightarrow Lower CR values indicate a larger spread

 \Rightarrow Compare different EPS configurations by means of Correspondence Ratio Gain

$$\mathsf{CRG} = 1 - \frac{\mathsf{CR}}{\mathsf{CR}_{ref}} \in [-\infty, 1]$$

 \rightarrow Measure of the spatial gain in spread of one EPS configuration (IBP) over another (reference) EPS configuration (BP)

 \rightarrow Perfect score 1

Correspondence Ratio Gain

• Normalised variance difference (Clark et al. 2009; Gebhardt et al. 2011)

$$\mathsf{NVD} = \frac{\mathsf{var}(\mathsf{IBP}) - \mathsf{var}(\mathsf{BP})}{\mathsf{var}(\mathsf{IBP}) + \mathsf{var}(\mathsf{BP})}$$

 \rightarrow Measure of the ensemble spread, which is not threshold-dependent

 \rightarrow A value of NVD = 0 indicates IBP and BP have same impact on spread, a value of NVD > 0 means that IBP has larger impact and vice versa.

Normalised variance difference

$$NVD = \frac{var(IBP) - var(BP)}{var(IBP) + var(BP)}$$

- Include more forecast initialisation times (possibly 00,03,06,09,12,15,18,21 UTC)
- Consider entire period (May-July) when data is complete
- Additional verification measures
- $\bullet\,$ Investigate possible regime dependence using the concept of the convective time scale τ_c

 \rightarrow Different impact of the IC perturbations under weak and strong large-scale forcing ?

Regime-dependent correspondence ratio gain

Forecast initialisations 00, 06, 12,18 UTC for May 2011; precipitation threshold 1 mm/h:

 $CRG^{X} = 1 - \frac{CR_{IBP}^{X}}{CR_{BP}^{X}}$ $X \in (strong, weak)$

Forecast initialisation 12 UTC:

parameter	perturbed value	default value
entr_sc	0.002 m^{-1}	0.0003 m^{-1}
q₋crit	1.6	4.0
rlam_heat	0.1	1.0
rlam_heat	10.0	1.0
tur_len	150 m	500 m

entr_sc: Mean entrainment rate for shallow convection

q_crit: Critical value for normalized oversaturation

rlam_heat: Scaling factor for the thickness of the laminar boundary layer for heat rlam_heat: Scaling factor for the thickness of the laminar boundary layer for heat tur.len: Maximal (asymptotic) turbulent mixing length scale