

SEVIRI cloud product assimilation in KENDA: Current status

Annika Schomburg, Christoph Schraff, Roland Potthast

- Short repetition of assimilation concept
- Full domain experiments
 - Experimental setup: 3 different settings
 - Results
 - Conclusion/Outlook

EWeLiNE

Variables assimilated

From one observation of **cloud top height several variables** are extracted and used to weight the ensemble members in the LETKF (observation y_i and model equivalent $H(x_i)$)

EUMETSAT

annika.schomburg@dwd.de

Find cloud top height model equivalent

- If using a fixed threshold to define cloud top, one might penalize close members
- Therefore: find model layer optimally fitting the observed cloud top height:

$$d = \min_{k} \sqrt{(f(\rho_{k}) - f(\rho_{o}))^{2} + \frac{1}{\Delta h_{\max}} (h_{k} - h_{o})^{2}}$$

p: Relative humidity

h: height

- Search for the minimum in a vertical range (e.g. +/-2500m of the observed cloud top)
- If above a layer exceeds the cloud coverage of the chosen layer or exceeds 70%, then chose the top of that layer

Example for 40 single profiles

red: observed cloud top green: model equiv. cloud top

Wetter und Klima aus einer Hand

Æ EUMETSAT

Model equivalents for cloudy column

Model equivalents for cloud-free column

Assimilated variables: Cloud cover

EUMETSAT

COSMO cloud cover where observations "cloudfree"

Horizontal localization: adaptive

Now: full domain experiments

- 3 Experiments:
 - Assimilate every 5th grid point 1.

Before: Single observation experiments. Objective:

Objective: Understand in detail what the filter does with this special

- 2. Assimilate every 3rd grid point
- 3. Control: no assimilation (realized by increasing the observation errors by a factor 1000.)

FG

12000

10000

8000

6000

Height [m]

Relative humidity

Observed cloud to

Cloud cover

3 lines on one colour indicate mean and mean +/- spread

Height [m]

observation type

14000

12000

10000

8000

6000

Stable high pressure situation 13 Nov 2011, 21:00 UTC - 14 Nov 12:00 UTC

annika.schomburg@dwd.de

Low cloud cover "false alarms" at end of experiments

Deutscher Wetterdienst

[octa]

Medium cloud cover "false alarms" at end of experiments

Deutscher Wetterdienst Wetter und Klima aus einer Hand

[octa]

High cloud cover "false alarms" at end of experiments

[octa]

annika.schomburg@dwd.de

High cloud cover change

9:00 UTC

15

Statistics: Mean absolute increment

Deutscher Wetterdienst Wetter und Klima aus einer Hand

16

RMSE and Bias

RMSE and Bias for different cloud levels

Deutscher Wetterdienst Wetter und Klima aus einer Hand

EUMETSAT

§ 18

Brier scores

$$BS = \frac{1}{N} \sum_{n=1}^{N} (H(x_n) - y_n)^2$$

Spread vs RMSE for assimilated variables

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

- Analysis shows improved cloud characteristics compared to first guess
- Assimilate every 3rd instead of every 5th grid point leads to larger increments
- Considerable improvements of cloud characteristics compared to a control experiment without any assimilation

- Run forecast
- Verification to other data: How does the cloud assimilation affect other model variables?
 - Conventional
 - IR-SEVIRI-Radiances
 - Solar surface net radiation
- Simulate convective case
- Combination with conventional observations

Deutscher Wetterdienst

Aim: improve photovoltaic (and wind) power predictions

- To this end assimilate either
 - NWCSAF SEVIRI cloud products
 - Solar surface radiation (CMSAF SEVIRI satellite product)
 - Top of atmosphere radiation (CMSAF SEVIRI satellite product)
 - Photovoltaic power production

