

LUDWIG-**MAXIMILIANS-**UNIVERSITÄT MÜNCHEN

Hans-Ertel-Centre for Weather Research DATA ASSIMLATION BRANCH

ASSIMILATION OF VISIBLE AND NEAR-INFRARED SATELLITE REFLECTANCE IN KENDA/COSMO

Martin Weissmann^{1,2}, Leonhard Scheck^{1,2}, Tobias Necker^{1,2}, Pascal Frerebeau², Bernhard Mayer², Olaf Stiller³

- 1) Hans-Ertel-Centre for Weather Research, Data Assimilation Branch, LMU München, Germany
- 2) Meteorologisches Institut, LMU München, Germany
- 3) Deutscher Wetterdienst, Offenbach, Germany

INTRODUCTION

Visible / near-infrared satellite observations:

- could provide important information about cloud properties
- are not used in operational data assimilation systems - main problem: lack of suitable fast forward operators

Goals of this project:

- Development of fast VIS/NIR forward operator
- Improved representation of clouds by direct assimilation of visible and near-infrared SEVIRI reflectances in KENDA/COSMO.

SEVIRI

1600nm

Main instrument on Meteosat Second Generation (MSG) Geostationary orbit, longitude 0.0° (MSG2)

Resolution 2-5km in Europe New image every 15min (5min in rapid scan mode)

Visible / near-infrared channel properties:

600nm albedos differ strongly, clouds are bright 800nm

→ distinguish between ground, clouds, cloud shadows sensitive to water phase and particle sizes

OPERATOR

BASIC DESIGN

Parallax correction (first order 3D effect):

Reference: Kostka et al. "Observation Operator for Visible and Near-Infrared Satellite Reflectances", JTAC, submitted

RESULTS: SEVIRI vs. 3D vs. 1D 12UTC 15UTC 18UTC

Radiative transfer solvers comp. effort for RMSE reflectance COSMO-DE scene O(CPU days) MYSTIC (3D monte carlo) reference **DISORT** (1D discrete ordinate method) < 6% O(CPU hours) NEW: PASTAT (1D look-up table based) < 1 CPU minute < 10%

PASTAT: fit function for radiance, coefficients from look-up tables

sat angles sun angles
$$I_{\text{toa}}(\mu, \phi, \mu_0, \phi_0, \mathbf{p}) = \sum_{k=0}^{3} \mu^k I_k(\mathbf{p}) \left[1 + (1 - \mu) \sum_{l=1}^{4} c_{k,l}(\mathbf{p}) \cos\left(l(\phi - \phi_0)\right) \right]$$

20 coefficients, 6 parameters p (albedo, water & ice optical depths, max. eff. scatt. radius for water & ice particles, solar zenith angle) → 20 six-dim. tables (computed by least-squares fit to DISORT) Results: Extremely fast, only small errors, compared to DISORT

Obs. vs. Model: Realistic structures, differences in location of clouds (discrepancy btw. model and reality). 1D vs. 3D: Agreement good for 6-15 UTC (RMSE<6%), worse for larger sun zenith angles (→ cloud shadows)

SYSTEMATIC DIFFERENCES BETWEEN OBSERVATIONS AND MODEL

The fast forward operator is used to quantify systematic differences between SEVIRI observations and operational COSMO-DE forecasts (master thesis Tobias Necker).

Goal: Identification of model and operator deficiencies

Contingency table: Cloudy v.s. cloud-free

Contingency table		observation		
for June 10 – 28, 2012, only at 12UTC			cloudy	cloud-free
model	cloudy	а	hit 76.9%	b false alarm 9.1%
	cloud-free	С	miss 4.7%	d correct negative 9.2%

Probability of detection 94% a/(a+c)Frequency bias (a+b)/(a+c)+5.3% False alarm ratio b/(a+b)10.6% **Reflectance histograms:** "False alarm clouds" for 0.5 < r < 0.8probably mainly related to high and transparent clouds in COSMO

Impact of radiative transfer method and microphysics assumptions: Improved RT, higher subgrid water content and subsampling (calling RT twice for cloudy and clear part of column) improve shape of reflectance histogram:

ASSIMILATION

0.25

DATA ASSIMILATION EXPERIMENTS

KENDA setup for **SEVIRI** assimilation experiments:

- LETKF assimilation
- 40 ensemble members
- assimilation interval: 1h or 3h
- 20 member ECMWF EPS boundary conditions
- (+12h time-lagged versions → 40 BCs) - Spin-up phase: several cycles with conventional observations
- First experiments: Assimilation of 600nm SEVIRI observations, observation error assumed to be 20%, no vertical localization, horiz. localization radius 100km, superobbing over 9km radius

Preliminary results:

- Ensemble mean is drawn towards SEVIRI observations:
- More structure and less clouds than first guess,
- lower RMSE and bias in reflectance
- conventional observations: not able to reduce reflectance error
- 1h instead of 3h assimilation interval: RMSE and bias reduced - Operator improvements in radiative transfer and microphysics assumptions: further reduction in RMSE and bias,
- RMSE of first guess runs increases slower

FIRST GUESS

reflectance RMSE and bias

Evolution of the reflectance RMSE and bias of the ensemble mean for different assimilation experiments started at 18 June 2012, 12UTC. Left: Runs with SEVIRI and/or conventional observation and an assimilation interval of 3 hours. Right: Runs with original and improved RT and microphysics settings and an assimilation interval of 1 hours.

OUTLOOK

OPERATOR

SYSTEMATIC

DIFFERENCES

- Optimization and evaluation of PASTAT - More 3D effects (e.g. cloud shadows)

will be modelled in HD(CP)2-O3

- Further characterization of "false alarm clouds"
- Variation of model and operator parameters
- → separation of their error contributions
- DATA - Verification with other observations
 - Assessment of forecast impact, single observation studies
 - Sensitivity experiments (obs. error, localization, obs. freq., ensemble size, assim. interval)

 - Detection and exclusion of problematic cases from assimilation (e.g. cloud shadows)
- Linearity improvements (double penalty problem): Smoothing? Warping? - Assimilation of several wavelengths and complementary observations (radar, GPS)