Fine and Coarse Data Assimilation and Forecasts of Thunderstorms in an Idealized Testbed (Masterarbeit, finished)

Heiner Lange

Hans Ertel Zentrum für Datenassimilation Meteorologisches Institut München

24.06.2013

< ロ > < 同 > < 三 > < 三 >

Outline

1 Fine vs. Coarse Assimilation

2 Experimental Setup

- Nature Run and Synthetic Observations
- Ensemble
- LETKF-Setup
- 3 Results
 - Cycled Assimilation
 - Ensemble Forecasts

Fine vs. Coarse Assimilation

Obstacles:

- Atmospheric predictability limited by error growth
- Forecasts tainted by model error

Question:

Is a forecast (*a*) from a fine analysis better than (*b*) from a coarse analysis?

Forecast window: 3 hours

Expected behavior:

イロト イヨト イヨト イヨト

Fine vs. Coarse Assimilation

single cells of an elongated squall line

Analysis R8 single cells taken from best fitting member(s)

Analysis R32 coarse fit from coarsely fitting member(s)

イロト イヨト イヨト イヨト

Fine vs. Coarse Assimilation

Fine Scheme (R8)

High-Res Observations

Coarse Scheme (R32)

Coarse SuperObservations

イロン 不同 とくほど 不同 とう

臣

Fine vs. Coarse Assimilation

t = 14:00, z_{synthobs} = 11500.0 m

Heiner Lange

Fine vs. Coarse Assimilation

0.0

0.0

0.5 1.0 1.5

Longitude (deg)

t = 14:00, z_{synthobs} = 11500.0 m

Heiner Lange

0.0

0.0

12

2.0 2.5

Longitude (deg)

0.5 1.0 1.5 2.0 2.5

-10.0

< ∃⇒

Fine vs. Coarse Assimilation

Fine Scheme (R8)

High-Res Observations

Coarse Scheme (R32)

Coarse SuperObservations

イロン 不同 とくほど 不同 とう

臣

Fine vs. Coarse Assimilation

Fine Scheme (R8)

- I High-Res Observations
- **2** Small Localization Radius

Coarse Scheme (R32)

- Coarse SuperObservations
- 2 Large Localization Radius

イロト イヨト イヨト イヨト

Fine vs. Coarse Assimilation

э

Fine vs. Coarse Assimilation

Fine Scheme (R8)

- I High-Res Observations
- **2** Small Localization Radius

Coarse Scheme (R32)

- Coarse SuperObservations
- 2 Large Localization Radius

イロト イヨト イヨト イヨト

Fine vs. Coarse Assimilation

Fine Scheme (R8)

- I High-Res Observations
- 2 Small Localization Radius
- **3** Small **R**-entries σ_o^2

Coarse Scheme (R32)

- Coarse SuperObservations
- 2 Large Localization Radius

イロン 不同 とくほど 不同 とう

3 Large **R**-entries σ_{SO}^2

Fine vs. Coarse Assimilation

< ∃⇒

э

Fine vs. Coarse Assimilation

Fine Scheme (R8)

- I High-Res Observations
- 2 Small Localization Radius
- **3** Small **R**-entries σ_o^2

Coarse Scheme (R32)

- Coarse SuperObservations
- 2 Large Localization Radius

イロン 不同 とくほど 不同 とう

3 Large **R**-entries σ_{SO}^2

Fine vs. Coarse Assimilation

Fine Scheme (R8)

- I High-Res Observations
- 2 Small Localization Radius
- **3** Small **R**-entries σ_o^2
- Short forecast interval

Coarse Scheme (R32)

- Coarse SuperObservations
- 2 Large Localization Radius
- **3** Large **R**-entries σ_{SO}^2
- 4 Longer forecast interval

Fine vs. Coarse Assimilation

Fine Scheme (R8)

- High-Res Observations
- 2 Small Localization Radius
- **3** Small **R**-entries σ_o^2
- Short forecast interval

Analysis properties:

- Ensemble collapse onto observed clouds
- No spurious clouds
- Small error and variance

Coarse Scheme (R32)

- Coarse SuperObservations
- 2 Large Localization Radius
- **3** Large **R**-entries σ_{SO}^2
- Ionger forecast interval

Analysis properties:

- Position of clouds roughly coincident with observations
- Spurious clouds possible
- Larger error and variance

・ロト ・回ト ・ヨト ・ヨト

3

Nature Run

COSMO setup Domain: $198 \times 198 \times 50$ gridpoints periodic lateral boundaries conditions Resolution: 2 km horizontally Initial state: Horizontally homogenous sounding random T and W whitenoise in the boundary layer Sounding: CAPE = 2200 J/KGSteering wind from $\approx 225^{\circ}$ Forecast time: Start at 06:00, runs for 24 h Model physics: Full COSMO physics with active radiation scheme

イロト イヨト イヨト イヨト

Nature Run and Synthetic Observations Ensemble LETKF-Setup

Nature-Run: Time series

Heiner Lange

Nature Run and Synthetic Observations Ensemble LETKF-Setup

Nature-Run: Time series

Heiner Lange

Nature Run and Synthetic Observations Ensemble LETKF-Setup

Synthetic Doppler Radar Observations

Doppler radar observations:

- **1** Reflectivity ($> 5 \, dBZ$)
- No-Reflectivity (where *refl* < 5 dBZ)
- **3** U-wind (where refl > 5 dBZ)

Coarse SuperObservations for R32:

Nature Run and Synthetic Obs:

イロト イヨト イヨト イヨト

Nature Run and Synthetic Observations Ensemble LETKF-Setup

Nature Run vs. Ensemble

Heiner Lange Fine vs. Coarse Storm Assimilation

LETKF Setup

Idealized LETKF

Localization: 8 / 32 km horizontally (R8/R32), 3-5 km vertically

ObsRes: 2 / 8 km horizontally (R8/R32), 1 km vertically

Coarse Grid: Factor 1 / 4 (R8/R32)

Interval: 5 / 20 minutes (R8/R32)

- Inflation: **R**-inflation with factor 4 / 16 (R8/R32)
 - inflation factor $\rho = 1.05$

Timesetup:

- 06:00 14:00 Model spinup
- 14:00 17:00 Assimilation cycling
- 17:00 20:00 Ensemble forecasts

イロン イヨン イヨン イヨン

Fine vs. Coarse Assimilation Experimental Setup Results Cycled Assimilation Ensemble Forecasts

Assimilation Results: Nature vs. Analysis Ensemble Means

Heiner Lange

Fine vs. Coarse Assimilation Experimental Setup Results Cycled Assimilation Ensemble Forecasts

Assimilation Results: Nature vs. Analysis Ensemble Means

Heiner Lange

Cycled Assimilation

Assimilation Results: Nature vs. Analysis Ensemble Means

Heiner Lange

Cycled Assimilation Ensemble Forecasts

Assimilation Results: Nature vs. Analysis Ensemble Means

Heiner Lange

Cycled Assimilation Ensemble Forecasts

Analysis Members R8

Heiner Lange Fine vs. Coarse Storm Assimilation

Cycled Assimilation Ensemble Forecasts

Analysis Members R32

Heiner Lange Fine vs. Coarse

Cycled Assimilation Ensemble Forecasts

Analysis Ensemble Distributions

Distribution of Analysis Ensembles (R8/32) around Nature Run (Realization 01) at 17 UTC

イロト イポト イヨト イヨト

Cycled Assimilation Ensemble Forecasts

RMSE-Statistics: U, W, T, Reflectivity

Heiner Lange Fine vs. Coarse Storm Assimilation

Heiner Lange

DAS-DIS Displacement Score

Displacement of forecast field with respect to observations, measured by the amplitude of the morphing vector field:

Summary

Methods:

- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

Image: A match the second s

→

Summary

Methods:

- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

Fine vs. coarse scheme:

- Fine scheme produces better analyses than coarse scheme
- Coarse scheme gives equally good 3-h forecasts
- Coarse scheme needs *much less* computational power

< ロ > < 同 > < 三 > < 三 >

Summary

Methods:

- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

Fine vs. coarse scheme:

- Fine scheme produces better analyses than coarse scheme
- Coarse scheme gives equally good 3-h forecasts
- Coarse scheme needs much less computational power

Problems:

- Too much convection in coarse analyses
- Bad temperature-analyses for both schemes

Conclusions

For operational forecasts:

- 1 hour forecast: Fine scheme advantageous
- 3 hour forecast: Coarse scheme probably sufficient

For operational models:

- Enhanced mesoscale predictability due to
 - Orography
 - Synoptic forcing
 - \rightarrow better forecasts, independent of fine/coarse initial storm state
- Advantages of coarse scheme:
 - Model-inherent convection, also if sounding forecast is wrong
 - Spurious convection possibly helpful for late detections

Image: A math a math

Outlook

Masterarbeit

publication in preparation for MWR (Lange & Craig)

PhD project

Assimilation of MODE-S aircraft winds in COSMO-MUC-KENDA

Basic research on LETKF in convective regimes:

- Constraints to LETKF-analyses, e.g. positivity and conservation of mass (with Tijana)
- Localization and dynamical stability concerns
 - introduction of spurious gravity waves through analyses
 - spectral analysis of increments
 - stability constraints on analysis possible? filtering?

イロト イヨト イヨト イヨト

Bias through humidity bounds

Setting negative values of analysed mixing ratios ("Qx") to zero is physically necessary, but introduces a wet bias:

