

Assimilation of visible and near-infrared SEVIRI observations in KENDA/COSMO

Leonhard Scheck^{1,2}, Tobias Necker^{1,2}, Pascal Frerebeau², Bernhard Mayer², Martin Weissmann^{1,2}

1) Hans-Ertl-Center for Weather Research, Data Assimilation Branch 2) Ludwig-Maximilians-Universität, Munich

40

MOTIVATION

- Satellites dominate number of assimilated observations and have contributed strongly to improvements in NWP
- Visible and near-infrared obs.: • information on cloud properties
- Number of observations used per day (millions) CONV + AMV 35 TOTAL 30 #obs./day assimilated 25 at FCMWF 20 15 10 5 0 1998¹1999¹2000¹200[.] 2003 2004 2005'2006'2007'2008 2009 2010
- Not used operationally, mainly • because no fast forward operator exists (scattering complicates radiative transfer)
- Goals: Development of fast VIS/NIR forward operator, Direct assimilation of radiances (cloud information) in convective scale ensemble DA system
- Instrument: SEVIRI on Meteosat second generation • 600nm, 800nm, 1600nm images every 15min, 2-5km res.

9

A fast forward operator for SEVIRI

COSMO (Consortium for Small-scale Modeling) **model:** nonhydrostatic limited-area NWP model convection-permitting, grid length 2.8km

Parallax correction (1st order 3D effect)

Kostka et al. "Observation Operator for Visible and Near-Infrared Satellite Reflectances", 2014, J. Atmos. Oceanic Technol., 31, 1216–1233

Hans-Ertel-Centre for Weather Research DATA ASSIMLATION BRANCH

OPERATOR RESULTS

Observation vs. Model:

Realistic structures. Significant differences, mainly due to discrepancy between forecast and reality

1D vs. 3D:

Agreement quite good for 06-15 UTC (RMS Error < 5% with parallax correction)

Computational effort:

MYSTIC: O(CPU-days) DISORT: O(CPU-hours)

→ too much for operational DA...

A fast replacement for DISORT: PASTAT (PhD thesis Pascal Frerebeau)

Strategy: - Describe atmosphere and sun/sat geometry by a few parameters

- Compute look-up tables with DISORT for all parameter combinations
- Computing reflectance = calculate parameters from model output, interpolate in look-up tables

Parameters: satellite angles, SZA, albedo, water & ice optical depths, eff. radii for water and ice particles.

Reflectance varies more strongly and nonlinearly with satellite angles than with the other parameters

Idea: Instead of tabulating reflectance Directly for many satellite angles, use Fourier series & Taylor expansion of the reflectance and tabulate only a few coefficients

reflectance(azimuthal angle) and fit with 4 Fourier terms

Hans DA1

A fast replacement for DI

Strategy: - Describe atmosphere

- Compute look-up tabl
- Computing reflectance interpolate in look-up tables

Parameters: satellite angles, SZA, albedo, water & ice optical depths, eff. radii for water and ice particles.

Reflectance varies more strongly and nonlinearly with satellite angles than with the other parameters

Idea: Instead of tabulating reflectance Directly for many satellite angles, use Fourier series & Taylor expansion of the reflectance and tabulate only a few coefficients

rainbow scattering angle near 180°) tr a a ro

A fast replacement for DI

Strategy: - Describe atmosphere

- Compute look-up tabl
- Computing reflectance interpolate in look-up tables

Hans

DA

reflectance

0.0

90

Parameters: satellite angles, SZA, albedo, water & ice optical depths, eff. radii for water and ice particles.

Reflectance varies more strongly and nonlinearly with satellite angles than with the other parameters

Idea: Instead of tabulating reflectance Directly for many satellite angles, use Fourier series & Taylor expansion of the reflectance and tabulate only a few coefficients

rainbow glory (scattering angle near 180°) a reflectance(azimuthal/angle) and fit with 15 Fourier terms 1.0 0.8 0.6 0.4 0.2

180

 ϕ' [°]

270

Generation of coefficient tables:

- **1. Run DISORT** for idealised problems described by μ , Φ ',**p**
 - $\rightarrow \quad I_{\text{DISORT}}(\mu, \Phi', p)$ for all μ, Φ', p combinations
- 2. Perform least squares fit for each p minimize

 $\boldsymbol{\Sigma}_{i}\boldsymbol{\Sigma}_{j}\mid\boldsymbol{I}_{\text{toa}}(\boldsymbol{\mu}_{i},\boldsymbol{\Phi}_{j}^{\,\prime},\boldsymbol{p})-\boldsymbol{I}_{\text{DISORT}}(\boldsymbol{\mu}_{i},\boldsymbol{\Phi}_{j}^{\,\prime},\boldsymbol{p})\mid^{2}$

 \rightarrow coefficients $I_k(\mathbf{p}), c_{k,l}(\mathbf{p})$

DWD HErZ meeting 2014/11/7

Fit quality

Sort table points in scattering angle bins, compute RMSE wrt DISORT for 600nm channel

Glory and rainbows cause local Maxima at ~140°, 180°

For scattering angles < 170°: RMSE < 1%

6 parameters \mathbf{p} do not describe atmosphere fully \rightarrow additional errors

→ tests with realistic atmospheric states necessary...

Comparison with DISORT for a COSMO/SEVIRI scene in June

Data: 3-hourly operational COSMO-DE forecasts for June 15-20, 2012

Success rate R₅:

Number of pixels with relative reflectance error of less than 5% percent (compared to DISORT) / total number of pixels

> 95% of the pixels have less than 5% error between 6 UTC and 15 UCT for the 600nm and 800nm channels.
RMSE in reflectance is about 1%.

- 18 UTC worse: large solar zenith angle
- 1600nm: Absorption becomes important, strong dependence on vertical profile of particle radius – problematic...

Accuracy for other months

Experiment: Compare PASTAT to DISORT at 600nm for atmospheric state from operational forecast for June 15, 2012, 12 UTC + sun position from other months

April to September: Basically same accuracy as for June Scattering angle >170° in March and October \rightarrow Glory problems, enhanced RMSE (could still be useful for DA)

Further problems in winter: Large SZA, snow

Using two moments in the Operator

Two-moment scheme: Information about number density \rightarrow more realistic profiles for particle radii (important for NIR)? Improved LWC and IWC distributions?

Parameterization for effective radius of water droplets (Bugliaro et al. 2011, Martin et al. 1994):

$$r_{\rm eff} = \left(0.75 \cdot \left(\frac{\rm LWC}{\pi \cdot k \cdot N \cdot \rho}\right)\right)^{1/3}$$

Using information from second moment \rightarrow more small particles \rightarrow higher reflectances (which are already too high)

Impact of modified LWC: weak (see talk by Tobias Necker)

Further Development in HD(CP)²-O3

Online Version for ICON:

- based on MESSy interface (P.Jöckel, DLR)
- massively parallel machines → strong restrictions for inter-column communication
 → in first step only 1D without parallax correction
- strong restrictions regarding memory use: table is too big...
 - \rightarrow compute only parameters **p** online (3d \rightarrow 2d data reduction), perform interpolation in postprocessing step

Offline version for PALM, UCLA-LES:

- regular grid facilitates implementation of more 3D effects (e.g. cloud shadows)
- will allow us to investigate methods to reduce communication

Assimilation of conventional and/or SEVIRI observations in COSMO/KENDA

Assimilation of conventional and/or SEVIRI observations in COSMO/KENDA

- Assimilation of SEVIRI observations:
 - \rightarrow lower reflectance RMSE and bias

Assimilation of conventional and/or SEVIRI observations in COSMO/KENDA

- Assimilation of SEVIRI observations:
 → lower reflectance RMSE and bias
- Conventional observations cannot reduce reflectance error, but lead together with SEVIRI to reduced bias
- Forecast (dashed line) started from assimilation experiment with SEVIRI and conventional observations: RMSE and bias remain smaller than in the analysis ensemble with only conventional observations

Assimilation of conventional and/or SEVIRI observations in COSMO/KENDA

- Assimilation of SEVIRI observations:
 → lower reflectance RMSE and bias
- Conventional observations cannot reduce reflectance error, but lead together with SEVIRI to reduced bias
- Forecast (dashed line) started from assimilation experiment with SEVIRI and conventional observations: RMSE and bias remain smaller than in the analysis ensemble with only conventional observations

DWD HErZ meeting 2014/11/7

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

First assimilation results

conventional obs.

Impact on moisture

specific humidity on model level 33

SEVIRI 600nm

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Comparison with operational analysis

Solid: 1h FC RMSE Ensemble Mean wrt. COSMO-DE analysis Dashed: 1h FC Ensemble Spread

Next step: Verification with observations

SUMMARY

- We developed a forward operator for VIS/NIR satellite images:
 - sufficiently fast for use in operational data assimilation system
 - sufficiently accurate (with some limitations)
- First assimilation experiments with KENDA LETKF:
 - RMS reflectance error is significantly reduced
 - prediction of cloudy / cloud-free situations strongly improved

OUTLOOK

- **Operator refinements** (3D effects in HD(CP)2, glory, NIR)
- Systematic errors in model clouds (see talk T.Necker)
- Optimization of assimilation settings (ensemble size, localization, ...)
- Assessment of forecast impact of SEVIRI observations