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The cost function



 
Given: background forecast wb and observation f



 
Goal is to find an analysis wa, that best matches both, taking into account 
their (squared) errors  and R



 
Least squares estimate – minimize cost function

2 2( ) ( )( )
bw w f wJ w
B R
 

 



The analysis


 
J has minimum where 



 
So analysis wa is solution of a linear equation:



 
Solution is error-weighted average



 
This is Best Linear Unbiased Estimator (BLUE) if the errors in wb and f are 
Gaussian distributed, with mean 0 and variance B and R, resp.
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Observation operators



 
Problem: f does not match w

Wrong location (in between grid points)

Wrong quantity (e.g. radiance)



 
No problem: use forward model to estimate what observations should look, 
given the model state



 
H(w) are simulated observations that can be compared with f



 
Cost function is now:



 
To minimize, need derivatives of H
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The (new) analysis


 
Approximate by Taylor series



 
If we keep only the first derivative, grad(J) = 0 is again a linear equation for wa



 
Solution is still a weighted average, but can also be written:



 
Background forecast is adjusted in proportion to the disagreement with 
observations
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Math aside: Gaussian



 
Assume f drawn from a Gaussian distribution



 
B is the background error variance



 
E[…] is expectation, i.e. average over many trials
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Math aside: Multivariate Gaussian



 
For a vector of observations f



 
R is now a covariance matrix
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Math aside: A 2D Gaussian function



 
2d Gaussian has errors in each 
variable



 
Here errors in x and y have a 
strong positive correlation



The 3DVAR cost function



 
Given: background forecast wb and observations f



 
Goal is to find an analysis wa, that best matches both, taking into account 
their error covariances B and R



 
Least squares estimate – minimize cost function



 
But, to find grad(J) = 0, need to take derivatives of H(wb)
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Math aside 2: Taylor series and Jacobian matrix



 
1 dimensional Taylor series:



 
2 dimensional version:
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Math aside 2: Taylor series and Jacobian matrix



 
Multi-dimensional Taylor series:



 
H is the matrix of first derivatives 
(Jacobian)
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Incremental 3DVAR



 
If background forecast is good, i.e. wa close to wb, can approximate H by 
linear function H(w) = H(wb ) + H(w - wb )



 
Rewrite cost function in terms of analysis increments w = w – wb

and observation increments (innovations)f = f – H(wb )
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The 3DVAR analysis


 
J has minimum where 



 
So analysis wa is solution of a system of linear equations:



 
DONE!



 
…but



 
Dimension of w is n ~ 107, so B has of order 1014 elements – 100 TB



 
Call your numerical analyst, HPC vendor, and think hard about simplifying



 
Iterative methods, Pre-conditioning, Outer loop?? 
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Time of observations



 
In 3DVAR, all observations are assumed to be at the same time



 
Actually collected over a short time window, e.g. plus/minus 1 hour



Observation error covariance matrix R



 
3 sources of error

 Instrument error

Representativity error (e.g. observation is a point value, but model 
predicts a grid-box average)

Forward model error



 
Mostly uncorrelated



 
Where does it come from? – observation expert (works in DA group)



Example of representativity error



 
Lidar humidity
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