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Why ensemble Kalman filter

I The Kalman filter is difficult to implement in realistic systems
because of:

I computational costs,
I the nonlinearity of dynamics and
I poorly characterized error sources.

I The ensemble Kalamn filter (EnKF) (Evensen 1994) uses
ensembles (a sample) to calculate the uncertainty of the
background and analysis error covariance.

I Ensembles are propagated with full nonlinear numerical
model. This can be done over long time period, and results in
flow dependent covariances.



Pros of ensemble Kalman filter

I Cross correlations are represented naturally

I Covariances are flow dependent

I Computationally algorithm is not expensive



Cons of ensemble Kalman filter

I Only small number of ensembles can be evolved due to
complexity of the dynamical systems;

I Due to the small ensemble numbers covariances are not
representing correctly uncertainty, in particular long-distance
correlations.

I The analysis increment is restricted to the r dimensional
subspace.



Outline localization

I What is localization?
I Two basic approaches for localization:

I Covariance localization or direct forecast error localization
(used in Houtekamer and Mitchell (1998, 2001))

I Domain localization (used in Haugen and Evensen 2002;
Brusdal et al. 2003; Ott et al. 2004; Hunt et al. 2007; Miyoshi
and Yamane 2007)

I Effects of localization on each of the steps of ensemble
Kalman filter algorithm

I Simple 1D experiment

I Localization and Balance

I Conclusion
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What is localization?

“Covariance localiza2on” 

20 

Es2mates of covariances from a small ensemble will be noisy, 
with signal‐to‐noise small especially when covariance is small 

Estimates of the covariance from small ensemble size will be
noisy, especially signal to noise ratio is large when covariances
are small (from Hamill and Whitaker 2009).



Covariance localization

Covariance localization: The ensemble derived forecast error
covariance matrix is Schur multiplied with a stationary a priori
chosen correlation matrix that is compactly supported.

Let C be a matrix of rank M that is used for the Schur product.

C ◦ Bb
k

Let ◦ denotes the element-wise product (Schur product) where

[C ◦ Bb
k ]ij = [C]ij [B

b
k ]ij



Covariance localization

Schur product theorem:

If A, B are positive semi-definite matrices, then A ◦ B is also
positive semi-definite. If A, B are positive definite matrices, then
A ◦ B is also positive definite.

min(diag(Bb
k))λmin(C) ≤ λmin(Bb

k ◦ C) ≤ λmax(Bb
k ◦ C) ≤

max(diag(Bb
k))λmax(C)

Let C be a matrix of rank M that is used for the Schur product.
Let vj represent eigenvectors of matrix C multiplied with the
square root of the corresponding eigenvalue.

C =
M∑

j=1

vjv
T
j .
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Covariance localization increases the rank of ensemble
derived covariances

For any vectors a,b, c and d:

(a ◦ c)(b ◦ d)T = (abT ) ◦ (cdT ).

The localized error covariance Bb
k ◦ C can be represented as
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This representation implies that instead of using ensemble
members wf ,i for the calculation of the analysis error covariance,
we can use the ensemble ui ,j , and the same formulas as in original
algorithms apply.

I This procedure increases the cost of the algorithm for
calculating the analysis error covariance matrix since now
Wb

k = [u1,1 . . .ur ,M ].

I The increase in cost depends on the rank of the chosen
localization matrix C.

I We are choosing C and therefore we can choose C with any
rank M.

I This way we would still propagate only r ensemble members
with the numerical model (the expensive part of the
algorithm.)

I However for the calculation of the analysis error covariance
matrix Ba

k with rank higher then r will be used.
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I We have increased the subspace space where the solution is
searched for.

I Matrices Wb
k is of size n ×Mr .
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Step 2

In resampling step we can not produce an ensemble with size r if
we use the analysis error covariance calculated from
Wb

k = [u1,1 . . .ur ,M ].

wa,i
k = wa

k +
√

r − 1[Wb
kTkU]i

One approach to limit the ensemble to r ensemble members that
we can propagate to time k + 1 around the newly calculated
analysis:

I use instead Wb
k = 1√

r−1
[wb,1

k −wb
k . . .w

b,r
k −wb

k ]



Example

The state vector w to be estimated will be taken as a realization of
normally distributed random function w(y) ∼ N (0,W (y1, y2)) on
the circle of radius D/2π, where the covariance W (y1, y2) is either

W (y1, y2) = (1 +
|y1 − y2|

L
)e
−|y1−y2|

L , (1)

or

W (y1, y2) = e−
|y1−y2|

L . (2)

Here, |y1 − y2| represents the chord length between the points y1

and y2 on the circle of radius D/2π.

The observations are given as a vector of values of the realization
at all grid points contaminated by normally distributed random
noise with standard deviation of 0.05, the observations from two
subdomains were removed.



Example W (y1, y2) = (1 + |y1−y2|
L )e

−|y1−y2|
L

Upper Left: True covariance (black) and approximate C covariance (blue). Upper Right: True state (black) and
analysis (red) after one assimilation step with approximate B covariance. Lower Left: True state (black) and analysis
(red) after one assimilation step with ensemble covariance from 30 ensemble members. Lower Right: True state
(black) and analysis (red) after one assimilation step with localized ensemble covariance.



Example nonsmooth field W (y1, y2) = e−
|y1−y2|

L

Upper Left: True covariance (black) and approximate B covariance (blue).
Upper Right: True state (black) and analysis (red) after one assimilation step with approximate B covariance.
Lower Left: True state (black) and analysis (red) after one assimilation step with ensemble covariance from 30
ensemble members.
Lower Right: True state (black) and analysis (red) after one assimilation step with localized ensemble covariance.



Covariance localization

I Distant correlation are removed

I Positive definite correlation matrix is introduced that increases
the rank of forecast error covariance and this way

I increases the space where the solution can be searched for

I usually correlation function C is chosen full rank, positive
definite, isotropic matrix, compactly supported. Usually 5th
order polynomial correlation function (Gaspari and Cohn
1999).



Domain localization

Domain localization: Disjoint domains in the physical space are
considered as domains on which the analysis is performed.
Therefore, for each subdomain an analysis step is performed
independently using observations not necessarily belonging only to
that subdomain. Results of the local analysis steps are pasted
together and then the global forecast step is performed.

h h

h

hh

h

h

h

h

u,v

u,v

u,v

u,v

hhh
u,v u,v

u,v u,v



Basic properties:

I The localized error covariance is calculated using

Bf ,loc
k =

r ,L∑
i ,j=1

ui ,ju
T
i ,j (3)

where ui ,j = 1√
r
[wf ,i (tk)−wb

k ] ◦ 1Dj with j = 1, . . . , L and L

is the number of subdomains. Here 1Dj is a vector whose
elements are 1 if the corresponding point belongs to the
domain Dj .



Domain localization

I C positive semidefinite, has block structure and is the sum of
rank one matrices 1Dj1

T
Dj . The rank of matrix C corresponds

to the number of subdomains.

I In case that rank(C)rank(Bf
k) < n, the matrix C ◦ Bf

k is
singular.

I In domain localization methods, the rank is not increased
locally on each subdomain. Accordingly, it is possible to
resample exactly on that subdomain in contrast to direct
forecast error localization.

I Because the assimilations are performed independently in each
local region, the smoothness of the analysis fields is of more
concern in domain localization methods than with direct
forecast error localization. In particular, two neighboring
subdomains might produce strongly different analysis
estimates when the assimilated observations have gaps,
because distinct sets of observations are used for the analyses.



Ensemble based Kalman filters apply the observation operator
directly on each ensemble member before localization is applied.
The localization is usually performed on the matrices HkB

b
k and

HkB
b
kHk

T

HkB
b
k =

1

r

r+1∑
i=1

[Hk(xf ,i (tk))−Hk(xb
k)][xf ,i (tk)− xb

k ]T

HkB
b
kHk

T =
1

r

r+1∑
i=1

[Hk(xf ,i (tk))−Hk(xb
k)][Hk(xf ,i (tk))−Hk(xb

k)]T .

Once these matrices are calculated, they are Schur multiplied with
the matrices HkC and HkCHk

T , respectively.



For the domain localization methods, different analysis
results can be obtained depending on the treatment of the
observations.

If all the observations in the full domain are used for the analysis in
each disjoint subdomain, the algorithm without localization is
recovered. This follows from

1

r

r+1∑
i=1

L∑
j=1

[Hk(xf ,i (tk))−Hk(xb
k)][xf ,i (tk) ◦ 1Dj

− xb
k ◦ 1Dj

]T =

1

r

r+1∑
i=1

[Hk(xf ,i (tk))−Hk(xb
k)][xf ,i (tk)− xb

k ]T = HkB
b
k .

If, on the other hand, we restrict observations to the local analysis
subdomains the covariance matrix is given by (3).



Why is domain localization used?

I As for OI, one of the major advantages of using domain
localization is computational. The updates on the smaller
domains can be done independently, and therefore in parallel.

I In certain algorithms this is more natural way of localizing.
Examples of such methods are the ensemble transform
Kalman filter ETKF and the singular evolutive interpolated
Kalman filter SEIK.



Why is domain localization used?

I In these algorithms, the forecast error covariance matrix is
never explicitly calculated. Therefore, direct forecast
localization as in Houtekamer and Mitchell (1998, 2001) is
not immediately possible.

I In these methods an ensemble resampling is used that ensures
that the ensemble statistics represent exactly the analysis
state and error covariance matrix.

I Ways of including full rank, positive definite and isotropic
matrix in domain localized algorithms were developed. Two
methods will be presented Method SD+Loc and Method
SD+ObsLoc introduced by Hunt et al. 2007.



Method SD+Loc

Let 1Dmj be a vector that has a value of 1 if the observation
belongs to the domain Dm otherwise has a value of 0, and let
Dj ⊆ Dmj .

1

r

r+1∑
i=1

L∑
j=1

[Hkx
f ,i (tk) ◦ 1Dmj −Hkx

b
k ◦ 1Dmj ][x

f ,i (tk) ◦ 1Dj − xb
k ◦ 1Dj ]

T

=
L∑

j=1

(1Dmj1
T
Dj) ◦HkB

b
k

where matrix
∑L

j=1 1Dmj1
T
Dj has entries of zeros and ones since the

domains Dj are disjoint.

Method (SD+Loc): An modification to this algorithm is to use for
each subdomain (1Dmj1

T
Dj) ◦HkB

b
k ◦HkC and

1Dmj1
T
Dmj ◦HkB

b
kHk

T ◦HkCHk
T .

Resampling done on subdomains with local Ba
k .



Observational error localization: Method (SD+ObLoc)

The observation localization method modifies the observational
error covariance matrix R.

Let us consider a single observation example, in observation error
localization method, the observation error σ2

obs is modified to
σ2

obs/weightd where weightd can be calculated using any of the
correlation functions.

Resampling step includes modification of R.



Example domain localization cont.

Upper Left: True covariance (black) and approximate B covariance (blue). Upper Right: True state (black) and
analysis (red) after one assimilation step with domain localized covariance. Lower Left: True state (black) and
analysis (red) after one assimilation step with domain localized with overlapping observations. Lower Right: True
state (black) and analysis (red) after one assimilation step with localized ensemble covariance with overlapping
observations and B.
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Upper Left: True covariance (black) and approximate B covariance (blue). Upper Right: True state (black) and
analysis (red) after one assimilation step with domain localized covariance. Lower Left: True state (black) and
analysis (red) after one assimilation step with domain localized with overlapping observations. Lower Right: True
state (black) and analysis (red) after one assimilation step with localized ensemble covariance with overlapping
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Model Lorenz40

I dXidt = (Xi+1 − Xi−2)Xi−1 − Xi + F

I Lorenz40 model is governed by 40 coupled ordinary differential
equations in domain with cyclic boundary conditions.

I The state vector dimension is 40.

I The observations are given as a vector of values contaminated
by uncorrelated normally distributed random noise with
standard deviation of 1.

I The observations are assimilated at every time step.

I After a spin-up period of 1000 time steps, assimilation is
performed for another 50 000 time steps.

I A 10-member ensemble is used.



Domain Localization Methods

Method (SD+):Let 1Dmj be a vector that has a value of 1 if the
observation belongs to the domain Dm otherwise has a value of 0,
and let Dj ⊆ Dmj . where matrix

∑L
j=1 1Dmj1

T
Dj . Use for each

subdomain (1Dmj1
T
Dj) ◦HkB

b
k and 1Dmj1

T
Dmj ◦HkB

b
kHk

T .

Method (SD+Loc): Use for each subdomain
(1Dmj1

T
Dj) ◦HkB

b
k ◦HkC and 1Dmj1

T
Dmj ◦HkB

b
kHk

T ◦HkCHk
T .

Method (SD+ObsLoc): Its implementation requires for each
observation a weight that depends on the distance of the
observation from the analysis location (Penduff et al. 2002; Hunt
et al. 2007; Nerger and Gregg 2007).

Method (GLocEn): An ensemble square root filter as in Whitaker
and Hamill 2002 is applied. Covariance localization is applied.
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L40 results: σobs = 1

RMS error for different covariance localization techniques.



L40 results: σobs = 0.1

RMS error for different covariance localization techniques.



Goal: To study the filtering behavior when different correlation
functions for the weighting of observations are applied.

Correlation function used for
localization.



RMS errors

RMS error for different covariance localisation techniques.



Spectral properties of the errors

Logarithm of the spectral difference between analysis and
the data (left) and forecast and the data (right) depending on
spherical harmonic degree.

εoi
` =

∑
m

(
T o

`m − T i
`m

)2



The Weddell gyre flow

In-situ temperature at 800 m depth. Composite from the ARGO
data (1999 to 2010) (upper left). Model only (upper right). As
result of assimilation of geodetic DOT filtered up to 241 km
and UNIT (lower left) and 5TH lower right.



The Weddell gyre flow

In-situ temperature at 800 m depth. Composite from the ARGO
data (1999 to 2010) (upper left). As result of assimilation of
geodetic DOT filtered up to 241 km EXP (upper right) and
EXP300 (lower left) and of geodetic DOT filtered up to 121 km
lower right.



Domain localization conclusion

I The domain localization technique has been investigated here
and compared to direct forecast error localization on simple
example and L40 model.

I It was shown that domain localization is equivalent to direct
forecast error localization with a Schur product matrix that
has a block structure and is not isotropic.

I The rank of the matrix corresponding to the domain
localization depends on the number of subdomains that are
used in the assimilation. This matrix is positive semidefinite.

I Inclusion of positive definate matrix either through method
SD+Loc or SD+ObsLoc is beneficial for domain localization
methods.



Localization and balance

Assume we have two variables h and v defined at the model grid
points, i.e. h and v :

Pb
k ≡

[
cov(h,h) cov(h, v)
cov(v,h) cov(v, v)

]
Let us assume that we want to apply direct forecast error
localization with diagonal matrix then

Pb
k ◦ I ≡


cov(h1, h1) 0 · · · 0

0
. . .

. . .
. . .

0 0 cov(hn, hn) 0

0
. . .

. . . 0
0 0 0 · · · 0 cov(vn, vn)





Example 2: How good are our unobserved variables?

∂h

∂t
+ c

∂h

∂x
= 0

u(x , t) =
∂h

∂x
h(x , 0) = sin(x)

Solution is given by ht(x , t) = sin(x − ct), ut(x , t) = cos(x − ct).

I We observe only h as in Example 1.

I Our wk = [
h
u

]

I Field u should be corrected through the background error
covariance!
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I Diagonal covariance matrix does not correct u since u is not
observed.

I Field u was corrected through the ensemble background error
covariance using the cross correlations between variables u
and h as given by model dynamics!

I Once we localize the covariances we will loose the cross
correlations specified by the model.



Example 2: How good are our unobserved variables?
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I In the field which is observed we can fit the data better by
localizing.

I RMS error calculations against data that is assimilated. In this
case: RMS = 0.0083 for localized Bb

k , RMS = 0.0132 for 5
ensemble members.



Localization and Balance

I By applying localization we destroy correlation given by
numerical model between two fields.

I In Greybush et al. MWR 2011 methods (SD+ObsLoc) and

direct forecast error localization with exp −d(i ,j)2

2L2 were
compared in order to investigate the effects on geostrophic
balance

I It was shown that the observational error localization preserves
better balance then the direct covariance error localization.



Other ways of localization

I Kepert (2009) analysed the impact of localisation on an
analytical covariance model that contained certain exact
balances and showed that the Schur-product localisation had
severe impact on those balances.

I it was shown that applying localization to geopotential,
streamfunction and velocity potential produces better
balanced forecast fields than localization applied on
geopotential and zonal and meridional velocities.

I This was shown using identical-twin experiments with a global
spectral shallow-water model and no separate initialization
step.



Conclusion

I Localization is necessary for application of ensemble Kalman
filter algorithms for large scale probelms.

I Several localization techniques are in use.

I Localization removes spurious long range correlations, but it
also introduces an ad hoc procedure that requires tuning in
ensemble Kalman filter methods.

I Localization is topic of active research especially concerning
the effect of localization on balance.

I Proper ways of performing multivariate localization are still
not fully understood.

I Proper localization scales depend on the properties of
dynamical system and observations.


