

Impact of ensemble perturbations provided by convective-scale ensemble data assimilation in the COSMO-DE model

Florian Harnisch¹, Christian Keil²

¹Hans-Ertel-Centre for Weather Research, Data Assimilation, LMU München, Germany ²Meteorologisches Institut, LMU München, Germany

Special thanks to Hendrik Reich & Andreas Rhodin, DWD

How to initialize convective-scale EPS?

- Well-known methods for the synoptic global scales, but not clear how to use best for high-resolution limited area models
 - \rightarrow Downscaling of driving EPS

COSMO-DE-EPS

 $\Lambda x = 2.8 \text{ km}$

- No parametrization of deep convection
- 20 ensemble member
- 21 hours forecast length
- Initialized every 3 hours
- Operational since May 2012

 \rightarrow downscaled perturbations of 4 global models + 5 model physics parametrization perturbations $\rightarrow 20$ members

\rightarrow Ensemble data assimilation at convective-scale

KENDA-COSMO

<u>K</u>ilometer-Scale <u>En</u>semble <u>D</u>ata <u>A</u>ssimilation (**KENDA**) \rightarrow <u>L</u>okal <u>Ensemble Transform Kalman Filter (LETKF) (Hunt el al. 2007)</u>

→ ensemble of high-resolution initial conditions to directly initialise ensemble forecasts

KENDA-COSMO: Inflation

 <u>LETKF</u>: background error covariance matrix P^b is estimated from ensemble forecasts x^b

Problem: not all sources of forecast error are sampled in Pb

- \rightarrow sampling errors due to limited ensemble size & model error
- \rightarrow estimate of P^b will systematically underestimate variances

Solution: Inflation of estimate of Pb to enhance the variance

(1) multiplicative covariance inflation (adaptive / fixed)(2) relaxation-to-prior-perturbations / relaxation-to-prior-spread

$$\mathbf{X}_k^a \leftarrow (1 - \alpha) \mathbf{X}_k^a + \alpha \mathbf{X}_k^b$$

(Zhang et al. 2004)

(Whitaker and Hamill, 2012)

 $\mathbf{X}_{k}^{a} \leftarrow \mathbf{X}_{k}^{a} \left(\alpha \frac{\sigma^{o} - \sigma^{a}}{\sigma^{a}} + 1 \right)$

Setup of experiments

(1) <u>15 UTC 10 June - 00 UTC 12 June 2012</u>: \rightarrow 21-h fc at 00 UTC 11 / 12 June

(2) 06 UTC 18 June – 12 UTC 19 June 2012: \rightarrow 21-h fc at 12 UTC 18 June

KENDA: - 3-hourly LETKF data assimilation of conventional data

- 3-hourly analysis ensemble with 20 ensemble members
- 20 member ECMWF EPS lateral boundary conditions (16 km)
- No physics parametrization perturbations (PPP)
- Multiplicative adaptive covariance inflation

KENDAppp: including 10 physics parametrization perturbations (PPP)

<u>KENDArtpp</u>: relaxation-to-prior-perturbation inflation ($\alpha = 0.75$)

<u>KENDArtps</u>: relaxation-to-prior-spread inflation (α = 0.95)

KENDArtps40: 40 ensemble members / relaxation-to-prior-spread

Power spectrum of ensemble perturbations

Horizontal wind, model level 30 (~3.1 km), average period (1)

- Variance at small scales (<100 km) is reduced OPER
- Most of the missing variance at small scales developes within 1-2 hours

Power spectrum of ensemble perturbations

Horizontal wind, model level 40 (~0.8 km), average period (1)

- Variance at small scales (<100 km) is reduced OPER
- Most of the missing variance at small scales developes within 1-2 hours
- Vertical filter: dampening at lower levels exists for more than 3 hours

KENDA covariance inflation, 12 UTC 11 June 2012

Radar derived precipitation (mm/h)

Observation used in the LETKF data assimilation

ISDA 2014, Feb 24 – 28, Munich

KENDA relaxation-to-prior-pert, 12 UTC 11 June 2012

ISDA 2014, Feb 24 – 28, Munich

Departure statistics for KENDA experiment

 Accuracy of the analysis ensemble mean (solid) compared to the firstguess (+3 h) ensemble mean (dashed)

→ relaxation method inflation ensemble = better accuracy

Departure statistics for KENDA experiment

 Accuracy of the analysis ensemble mean (solid) compared to the firstguess (+3 h) ensemble mean (dashed)

```
→ larger ensemble = better accuracy
```


Ensemble rank histogram

0.2 **KENDA KENDAppp** 0.15 0.15 frequency +3 h forecasts of 10 m wind speed 0.1 0.1 0.05 0.05 3 13 15 17 19 21 11 2 13 15 17 19 21 0.2 0.2 **KENDArtps OPER** 0.15 0.15 Verified against frequency 0.1 0.1 **COSMO-DE** analysis (similar results 0.05 0.05 against observations) 3 5 11 13 15 17 19 21 9 3 5 9 11 13 15 17 19 21

rank

rank

12

ISDA 2014, Feb 24 – 28, Munich

Ensemble dispersion

Normalized variance difference (NVD):

var(eps 1) - var(eps 2) var(eps1) + var(eps 2)

BSS: 3-h ensemble forecasts of precipitation

- Brier Skill Score = [resolution reliability] / uncertainty
- Hard to beat COSMO-DE-EPS on up to 3-h hours: LHN in analysis
- Impact of model physics perturbations, inflation method and ensemble size

21-h ensemble forecasts of precipitation

Forecast of 1-h precipitation averaged over Germany, 00 UTC 11 June 2012

BSS: 21-h ensemble forecasts of precipitation

- Brier Skill Score = [resolution reliability] / uncertainty
- Accounting for model errors with **PPP** shows positive impact
- Large impact of *inflation* procedure

Summary

- Current Initial conditions (ICs) in COSMO-DE-EPS based on downscaling
- KENDA: km-scale ensemble data assimilation by means of an LETKF for the COSMO model
 - \rightarrow <u>Consistent</u> ICs for ensemble forecasts
 - \rightarrow ICPs are present at <u>all scales</u> / <u>all levels</u> from the beginning
 - \rightarrow Represent the approximated probability density function (PDF) around the high-resolution deterministic / ensemble mean analysis
- Necessary to use *inflation methods* to account for unrepresented error sources: relaxation-to-prior-pert / -spread lead to good results
- Physic parameter perturbations can only partially account for model error (→ stochastic boundary layer scheme)

