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1 LIMITED PREDICTABILITY

due to nonlinear error growth in time t:

Is an ensemble forecast (a) from a fine analysis
more precise than (b) from a coarse analysis?

2 ANALYSIS SCHEMES

Nature Run:
convective system consisting of
multiple convective cells

a) Fine Analysis L8:
linear combination of forecast
members whose single convective
cells fit the observations locally

b) Coarse Ana. L32SOCG20:
linear combination of forecast
members whose larger scale con-
vective systems fit the observa-
tions roughly, on a coarser scale

3 CONVECTIVE SETUP

Nature Run and Ensemble (COSMO):

• 400 x 400 km, ∆x = 2 km
periodic lateral BC

• Random storm positions,
triggered by noise and radiative forcing

• CAPE = 2200 J/kg

• storm lifetimes ≥ 6 hours

Simulated Doppler-Radar Observations:

• U -wind, masked to Reflectivity

• Reflectivity, no-Reflectivity

4 LETKF-SETUP

DWD implementation [2] in KENDA
(Kilometer-scale ENsemble Data Assimilation)

• 50 Ensemble Members

• Localization of obs. error cov. matrix R

• Analysis grid on model resolution, option-
ally coarsened analysis grid with interpo-
lation of analysis weights afterwards

• Hydrostatic relaxation of increments

5 LENGTH SCALES OF THE ANALYSIS SCHEMES

Localization Radius rLoc,h

Observation Resolution ∆xobs

Analysis Grid Resolution ∆xana

Assimilation Interval ∆tass

Covariance Localization L8, L32
SuperObservation SO
CoarseGrid (Analysis) CG
Cycling Interval Minutes (5), 20

rLoc,h ∆xobs ∆xana ∆tass
Experiment: (km) (km) (km) (min)

L8 8 2 2 5
L8SO 8 8 2 5
L8SOCG 8 8 8 5
L8SOCG20 8 8 8 20

L32 32 2 2 5
L32SO 32 8 2 5
L32SOCG 32 8 8 5
L32SOCG20 32 8 8 20

6 ANALYSIS AND FORECAST ENSEMBLE PRECISION

L32SOCG20 allows errors on small scales:
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Figure 1: Nature Run and Analysis Ensemble
Means of L8 and L32SOCG20 after 3 hrs of cycled
LETKF assimilation (last analysis)

L8 spreads rapidly due to dynamical imbalances:
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Figure 2: Nature Run and Forecast Ensemble
Means of L8 and L32SOCG20 after 3 hrs of free
ensemble forecast (initialized from last analysis)

7 ANALYSIS AND FORECAST RMSE

High resolution analysis L8 gives major improvement in the analysis of W since the field is dominated
by fine-scale updraft structures, but the advantage in precision is lost within 1-3 hrs of forecast:
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8 ANALYSIS DISTRIBUTIONS

Strongly non-Gaussian rain-distribution of
coarse analysis approximates climatology:
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Ensemble distribution where Reflnature = 25±0.5 dBZ
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9 CONCLUSIONS

For convective forecasts beyond 3 hrs, the
highest possible analysis precision might not
be necessary or helpful due to

• limited intrinsic and practical predictability

• dynamical imbalances due to rigorous filter
convergence, causing spurious convection
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