

Phasendiagramm des Wassers

Phasendiagramm des Wassers (nicht maßstabsgetreu). *p* ist der Druck, unter dem die jeweilige Phase steht, *T* die Temperatur

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

Bernhard Mayer (LMU München)

8. Die Luftfeuchtigkeit

03.05.201

03 / 721

Sättigungsdampfdruck: Physikalischer Hintergrund

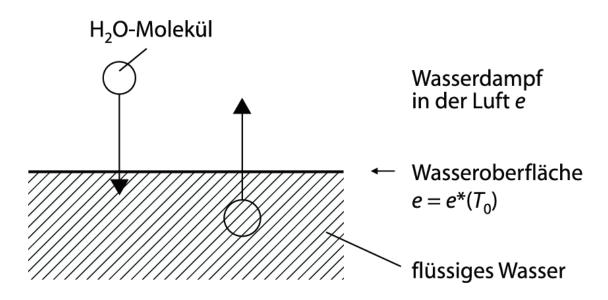


Bild 8.2. Zum Sättigungsdampfdruck über einer Wasseroberfläche

Sättigungsdampfdruck: Wasser

Tabelle 8.1. Sättigungsdampfdruck e_W^* über einer ebenen Oberfläche reinen Wassers in hPa in Abhängigkeit von der Temperatur \mathcal{G} in °C

ϑ in °C	0	1	2	3	4	5	6	7	8	9
20	23,37	24,86	26,43	28,08	29,83	31,67	33,61	35,65	37,80	40,05
10	12,27	13,12	14,02	14,97	15,98	17,04	18,17	19,37	20,63	21,96
+0	6,11	6,57	7,06	7,58	8,13	8,72	9,35	10,01	10,72	11,47
-0	6,11	5,68	5,28	4,90	4,54	4,22	3,91	3,62	3,35	3,10
-10	2,86	2,64	2,44	2,25	2,08	1,91	1,76	1,62	1,49	1,37

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

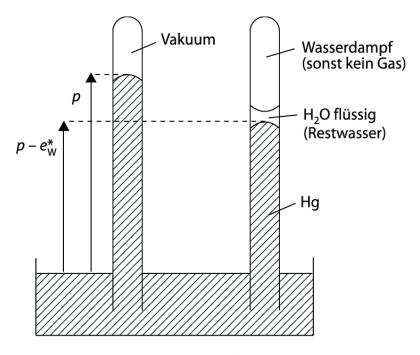
Bernhard Mayer (LMU München)

8. Die Luftfeuchtigkeit

03.05.2011

205 / 721

Sättigungsdampfdruck: Wasser und Eis


Tabelle 8.2. Sättigungsdampfdruck e_W^* über einer ebenen Oberfläche reinen Wassers und über Eis

ϑ in °C	e _W in hPa	e _E * in hPa
100	1013,2	
90	701,1	
80	473,7	
70	311,7	
60	199,3	
50	123,4	
40	73,78	
30	42,43	
20	23,37	
10	12,27	
0	6,108	6,107
-5	4,215	4,015
-10	2,863	2,597
-15	1,912	1,652
-20	1,254	1,032
-25	0,807	0,632
-30	0,509	0,380
-35	0,314	0,223
-40	0,189	0,128
-45	0,111	0,072
-50	0,064	0,039

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

4□▶ 4周▶ 4 = ト 4 = ト ■ 900

Messung des Sättigungsdampfdrucks

Bild 8.3. Versuchsanordnung zur Messung des Sättigungsdampfdruckes mit Hilfe von zwei Torricelli-Rohren

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

Bernhard Mayer (LMU München)

8. Die Luftfeuchtigkeit

03.05.201

207 / 721

Die Sättigungsdampfdruckskurve

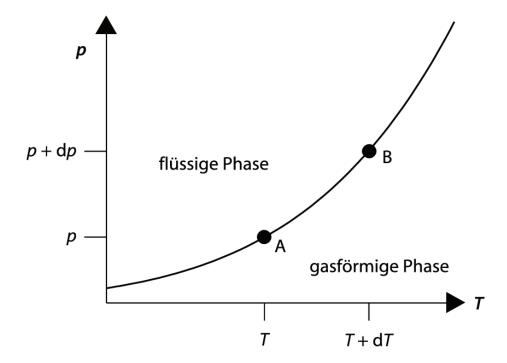


Bild 8.4. Zur Ableitung der Clausius-Clapeyron-Gleichung

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

Die Magnus-Formel

$$e_{w}^{*}=6.1078$$
hPa $\cdot\exp\left(rac{17.1\cdotartheta}{235K+artheta}
ight)$

Tabelle 8.3. Vergleich der nach den Formeln von Goff und Gratch, Magnus und Murray berechneten Sättigungsdampfdruckes e^{*}_W (in hPa) über einer ebenen Oberfläche reinen Wassers

Berechnung nach	ϑ in °C							
	-10	0	10	20	30	40		
Goff und Gratch	2,8627	6,1078	12,272	23,373	42,430	73,777		
Magnus	2,8564	6,1078	12,275	23,353	42,327	73,467		
Murray	2,8571	6,1078	12,279	23,381	42,426	73,747		

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

Tabelle 8.5.Beispiel zur Berechnung der relativen Feuchte

	ϑ in °C	e _W in hPa	e in hPa	fin %	
Außenluft	-10,0	2,86	2,86	100	
Innenluft	+20,0	23,37	2,86	12	

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

Bernhard Mayer (LMU München)

8. Die Luftfeuchtigkeit

03.05.201

209 / 721

Globaler Wasserkreislauf

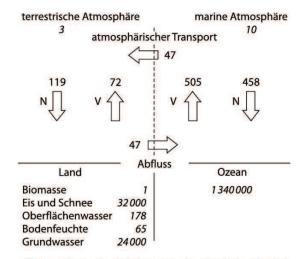
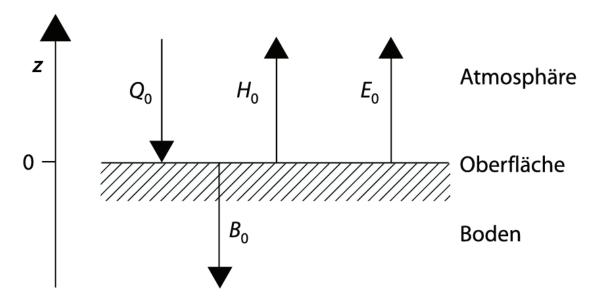



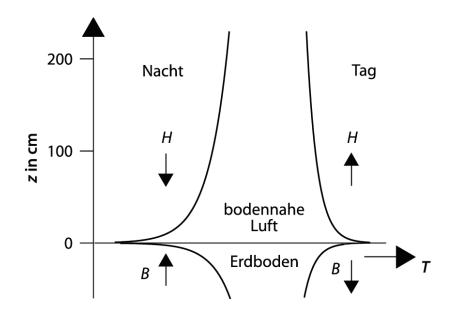
Bild 8.5. Schema des globalen Wasserkreislaufes (große Pfeile mit Zahlen; diese sind Werte von Wasserdampf- bzw. Wasser-Flüssen in 10^{15} kg a⁻¹; V = Verdunstung, N = Niederschlag) und der globalen Wasservorräte (kursiv gesetzte Zahlen; diese sind Werte von Wasserdampf- bzw. Wasser-Massen in 10^{15} kg, z. B. in der terrestrischen Atmosphäre, in den Ozeanen, in den Biomassen auf den Landoberflächen usf.). Beachte, dass mit der Dichte des flüssigen Wassers von 1 kg ℓ^{-1} = 10^3 kg m⁻³ die Entsprechung 10^{15} kg $\stackrel{\circ}{=}$ 10^{12} m³ = 1000 km³ gilt. Daten nach S. Dyck und G. Peschke (1995)

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

Energiebilanz der Erdoberfläche

Bild 8.6. Die Energieflussdichten an einer Oberfläche. Die *Pfeile* zeigen, in welche Richtung diese positiv gerechnet werden

Copyright. Springer. Heimut Kraus, Die Atmosphare der E


Bernhard Mayer (LMU München)

8. Die Luftfeuchtigkeit

03.05.201

211 / 721

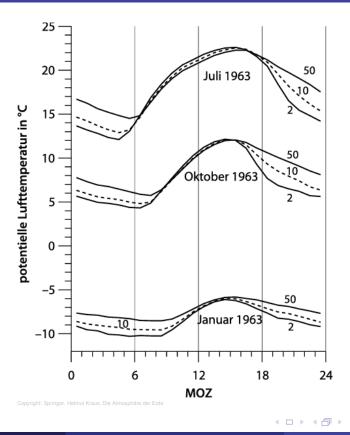
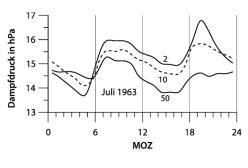

Lufttemperatur in Bodennähe

Bild 8.7. Schematischer vertikaler Verlauf der Lufttemperatur und der Bodentemperatur nahe der Erdoberfläche. Die *Pfeile* zeigen die Richtungen der Energieflussdichten *H* und *B* an

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erd

Beispiel 1: Tagesgang der Lufttemperatur


Bernhard Mayer (LMU München)

Die Luftfeuchtigkei

03.05.2011

13 / 721

Beispiel 1: Tagesgang von Dampfdruck und Feuchte

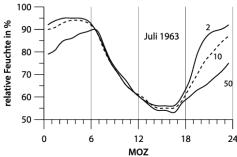
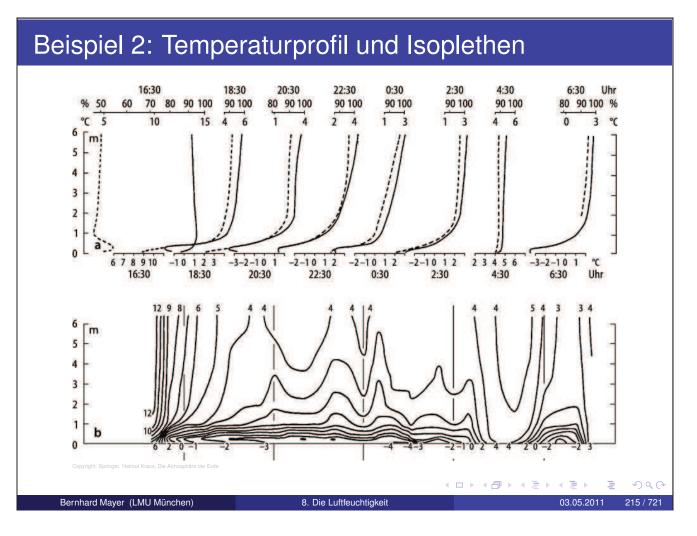



Bild 8.8. Monats-Stundenmittel der potentiellen Lufttemperatur, des Dampfdruckes und der relativen Feuchte für verschiedene Monate in den Höhen 2, 10 und 50 m über der Erdoberfläche, gemessen an der meteorologischen Station beim Forschungsreaktor in Garching bei München

pyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

Schema des Psychrometers

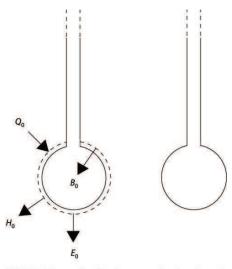


Bild 8.10. Schema eines Psychrometers, bestehend aus ei-Bild 8.10. Schema eines Psychrometers, bestehend aus einem trockenen Thermometer (rechts, mit diesem wird die Lufttemperatur $T_{\rm L}$ gemessen) und einem feuchten Thermometer (links, mit diesem wird die Feuchttemperatur $T_{\rm F}$ gemessen). Der aus einem saugfähigen Gewebe bestehende feuchte, den Temperatur-Sensor (hier die Thermometer-Kugel) eng umschließende Strumpf ist gestrichelt angedeutet. Die Energieflussdichten (die Pfelle zeigen, in welche Richtung diese positiv gerechnet werden) sind am feuchten Thermometer eingezeichnet, weil aus dessen Energiebilanz die Psychrometer-Formel abgeleitet wird

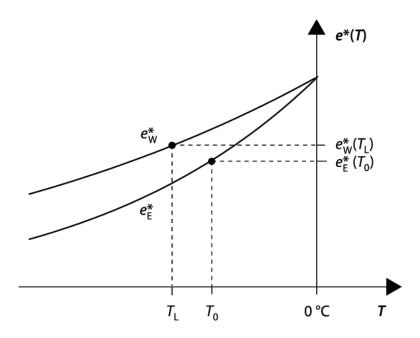
900

Bernhard Mayer (LMU München)

8. Die Luftfeuchtigkeit

03.05.2011

Psychrometer



Schleuderpsychrometer

Psychrometer unterhalb des Gefrierpunkts

Bild 8.11. Dampfspannungskurven bei Temperaturen unter 0 °C. e_W^{\star} ist der Sättigungsdampfdruck über unterkühltem Wasser, e_E^{\star} über Eis

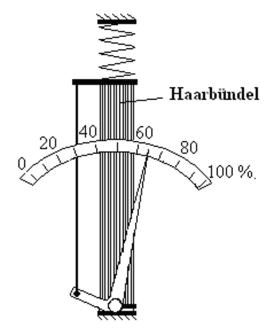
opyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

Psychrometer unterhalb des Gefrierpunkts

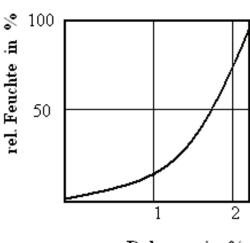
Tabelle 8.7. Die Feuchttemperatur eines Psychrometers T_0 kann bei einer Lufttemperatur T_L unter 0 °C um $T_0 - T_L$ höher sein als die Lufttemperatur, wenn die Luft in Bezug auf Wasser gesättigt ist

T _L in °C	$T_0 - T_L$ in °C			
-20,00	0,33			
-18,00	0,35			
-15,00	0,36			
-12,00	0,35			
-8,00	0,30			
-4,00	0,18			
0,00	0,00			

Bernhard Mayer (LMU München)


8. Die Luftfeuchtigkeit

03.05.201


221 / 721

Haarhygrometer

Haarhygrometer

Dehnung des Haares

Dehnung in %

Radiosonde: Feuchtemessung

HUMIDITY SENSOR Туре

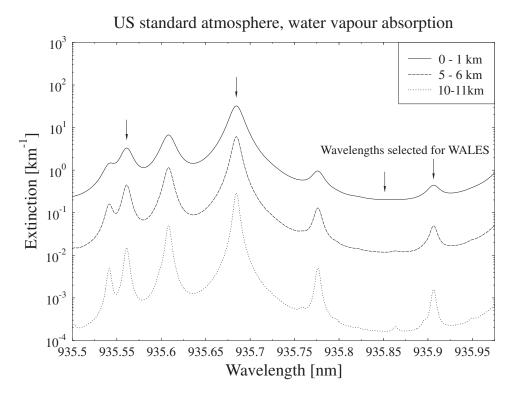
Measurement range Response time 6 m/s, 1000 hPa, +20 °C 6 m/s, 1000 hPa,-40 °C

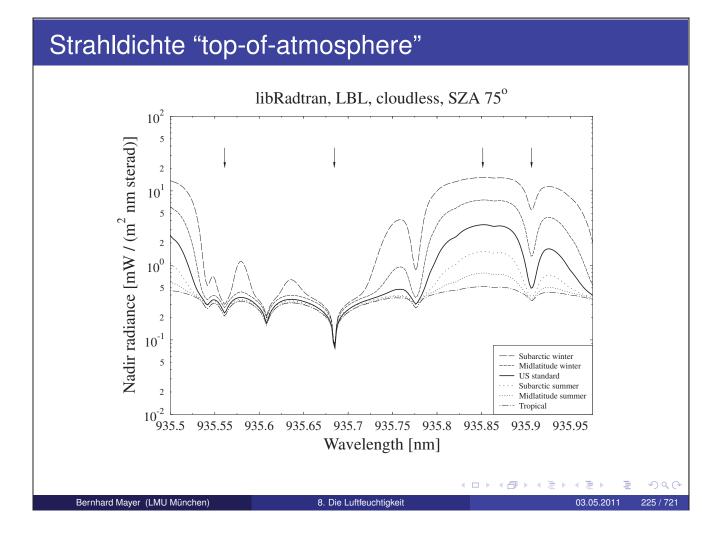
Resolution Accuracy

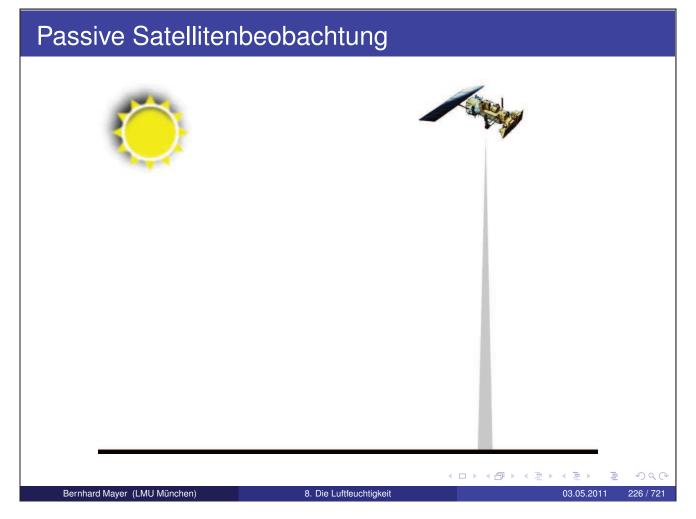
Total uncertainty in sounding $\!\!\!\!\!\!^*$ Repeatability in calibration ** Reproducibility in sounding *** thin-film capacitor, heated

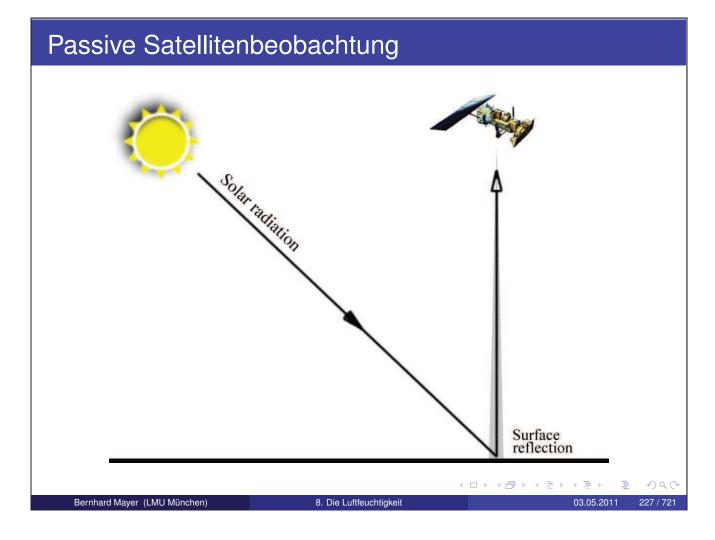
twin sensor 0 ... 100 %RH

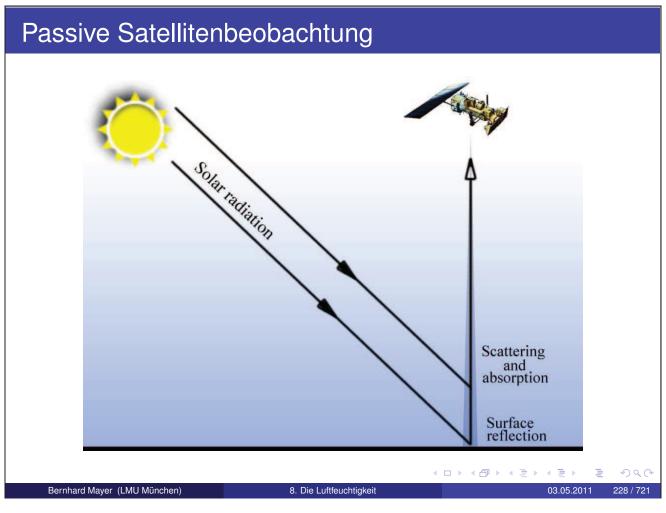
> < 0.5 s < 20 s1 %RH

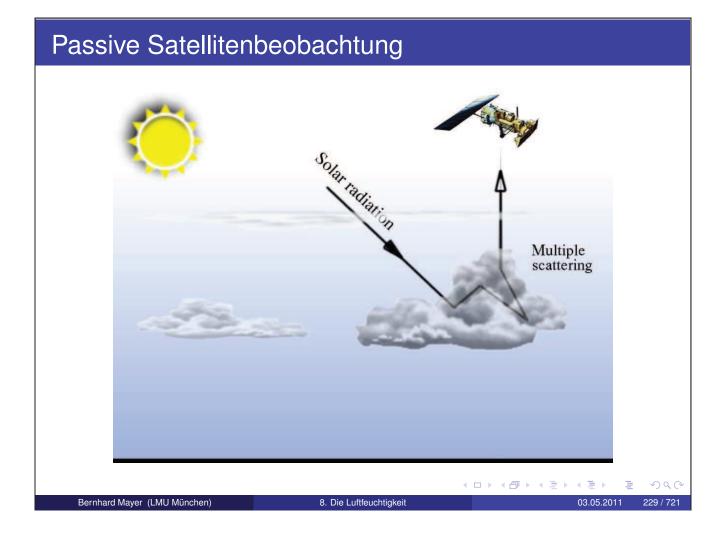

5 %RH

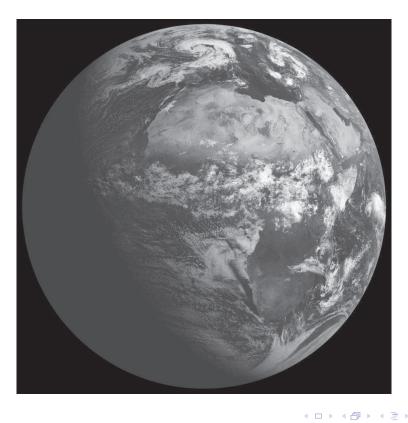

2 %RH 2 %RH


Bernhard Mayer (LMU München)


8. Die Luftfeuchtigkeit

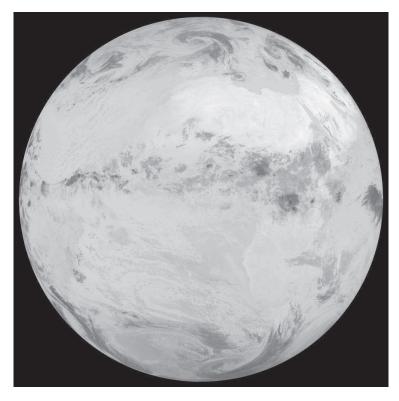

Absorption durch Wasserdampf in der Atmosphäre





MSG, June 23, 2004, Full Disk, Composite

MSG, June 23, 2004, Full Disk, ch. 1 $(0.6\mu m)$


Bernhard Mayer (LMU München)

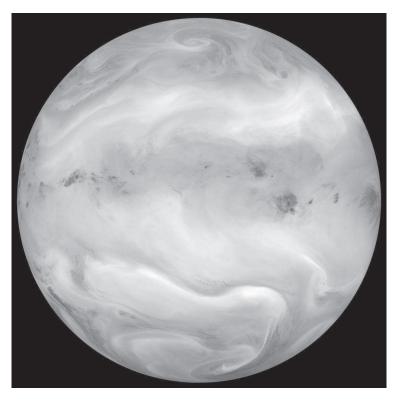
8. Die Luftfeuchtigkei

02.05.2011

31 / 721

MSG, June 23, 2004, Full Disk, ch. 9 (10.8 μ m)

◆□▶ ◆□▶ ◆■▶ ◆■ ◆ 9 9 0


Bernhard Mayer (LMU München)

8. Die Luftfeuchtigkeit

03.05.2011

232 / 721

MSG, June 23, 2004, Full Disk, ch. 5 (6.2 μ m)

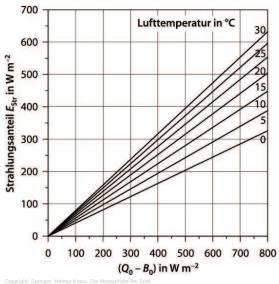
◆□▶ ◆□▶ ◆三▶ ◆三 ◆ ○○○

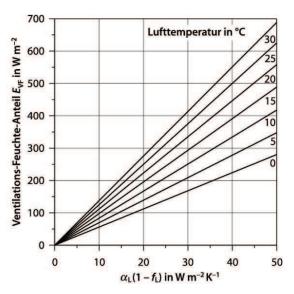
Bernhard Mayer (LMU München)

8. Die Luftfeuchtigkei

03.05.2011

233 / 721


Koeffizienten in der Verdunstungsformel


Tabelle 8.8. Werte von $\zeta/(\zeta+A)$ und $e_L^*/(\zeta+A)$, die als Koeffizienten in der Verdunstungsformel (12) auftreten. Außerdem wird das Bowen-Verhältnis H_0/E_0 angegeben, das sich bei Wasserdampfsättigung der Luft (also bei $f_L=100\%$) zu A/ζ ergibt. Die Psychrometerkonstante $A=A_W=(pc_p)/(0,622L_W)=0,646\ hPa\ K^{-1}$ gilt für den Luftdruck von 1000 hPa (s. dazu Abschn. 8.4.1)

$artheta_{L}$ in $^{\circ}C$	e <u>*</u> in hPa	$\zeta = (de^*/dT)_L$ in hPa K ⁻¹	$\zeta + A$ in hPa K ⁻¹	ζ/(ζ+A) -	$e_L^*/(\zeta+A)$ in K	$(H_0/E_0)_{\text{Sätt}} = A/\zeta$
0	6,11	0,44	1,09	0,41	5,60	1,45
5	8,72	0,61	1,25	0,48	6,95	1,06
10	12,27	0,82	1,47	0,56	8,35	0,78
15	17,04	1,10	1,74	0,63	9,77	0,59
20	23,37	1,45	2,09	0,69	11,16	0,45
25	31,67	1,89	2,53	0,74	12,50	0,34
30	42,43	2,44	3,08	0,79	13,77	0,27

Copyright: Springer. Helmut Kraus, Die Atmosphäre der Erde

Potentielle Verdunstung 1/2

Bernhard Mayer (LMU München)

8. Die Luftfeuchtigkeit

03.05.2011

235 / 721

Potentielle Verdunstung 2/2

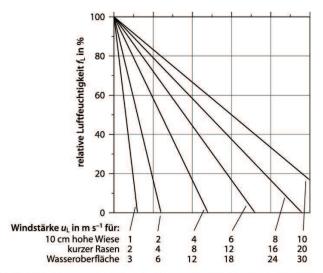


Bild 8.12. Diagramm zur Ermittlung der potentiellen Verdunstung $E_{\rm op}=E_{\rm Str}+E_{\rm VF}$ aus dem Strahlungsanteil $E_{\rm Str}$ und dem Ventilations-Feuchte-Anteil $E_{\rm VF}$ unter Verwendung der in den Spalten 5 und 6 von Tabelle 8.8 errechneten Koeffizienten. In das Teildiagramm rechts unten geht man mit der relativen Luftfeuchtigkeit $f_{\rm L}$ (Ordinate) und der Windstärke $u_{\rm L}$ (Scharparameter) ein. Beachte die unterschiedlichen Werte der Windstärke bei den drei unterschiedlichen Arten der Oberflächenbeschaffenheit (d. h. Bodenrauhigkeit). Man kann dann an der oberen Abszisse (diese ist identisch mit der unteren Abszisse des Diagramms oben rechts) $\alpha_{\rm L}(1-f_{\rm L})$ ablesen. Zum Beispiel ist bei $f_{\rm L}=40$ % und $u_{\rm L}=8$ m s $^{-1}$ über kurzem Rasen $\alpha_{\rm L}(1-f_{\rm L})=14$ W m $^{-2}$ K $^{-1}$. Aus dem Teildiagramm oben rechts ergibt sich mit diesem Wert von $\alpha_{\rm L}(1-f_{\rm L})$ und der Lufttemperatur (Scharparameter) direkt $E_{\rm Str}$ (Scharparameter) direkt $E_{\rm Str}$ gewinnen. Beachte, dass der Betrag von $Q_{\rm 0}$ häufig viel größer als der von $B_{\rm 0}$ ist und dass dann die Kenntnis der Strahlungsbilanz genügt, um $E_{\rm Str}$ abzuschätzen

Copyright: Springer. Helmut Kraus, Die Atmosphäre der En