
Appendix B

Poisson Equation

Poisson’s equation is the second-order, elliptic, partial differential equation

∂2h

∂2x
+
∂2h

∂2y
= −F (x, y). (B.1)

Figure B.1: Equilibrium displacement of a stretched membrane over a square
under the force distribution F (x, y).

Consider the solution in the square region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
subject to the (Dirichlet) boundary condition h = 0 on the boundary of the
square. The equation with this boundary condition solves the problem of the
equilibrium displacement of a stretched membrane over the square boundary
when subjected to a force distribution per unit area proportional to F (x, y)
in a direction normal to the (x, y) plane. Of course, the boundary condition
specifies zero displacement along the square boundary and the equation itself
holds for small displacements of the membrane. The membrane analogy is
useful as it allows us to use our intuition on how such a membrane would
deform under a given force distribution (e.g., maximum displacement where
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the force is a maximum) to anticipate the form of solution without having
to solve the equation (Fig. B.1).

As a specific example, suppose there is a point force at the centre (1
2
, 1

2
)

of the unit square represented by delta-functions,

F (x, y) = δ(x− 1
2
)δ(y − 1

2
). (B.2)

We expect the solution to be symmetric about the diagonals of the square
as shown in Fig. (B.2).

Figure B.2: Isopleths of membrane displacement subject to a point force at
the centre point (1

2
, 1

2
), giving rise to unit displacement at that point.

In fact, the isopleths of membrane displacement are determined analyti-
cally by the Green’s function for the centre point, i.e.

2
∞∑
1

sinh (nπx) sinh (nπ/2) sin (nπy) sin (nπ/2)

nπ sinh nπ
0 ≤ x ≤ 1

2

h(x, y) = (B.3)

2

∞∑
1

sinh (nπ/2) sinh (nπ(1 − x)) sin (nπy) sin (nπ/2)

nπ sinh nπ
0 ≤ x ≤ 1

see Friedman, (1956; p. 262, Eq. 12.19), although Fig. B.2 was obtained
by solving (B.1) numerically subject to an approximation to (B.2). Note
especially that, although the force acts at a point, the response is distributed
over the region. Now consider the response of the rectangular membrane
0 ≤ x ≤ 3, 0 ≤ y ≤ 1 due to a point force at the intersection of the diagonals
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(3
2
, 1

2
). The isopleths of membrane displacement, again normalized so that

the maximum diaplacement is unity, are shown in Fig. B.3. Note that in

Figure B.3:

this case, the scales of response are set by the smallest rectangle length, in
this case 1

2
.

Suppose, that we wish to infer the response of a membrane with nonuni-
form extension properties, as described for example by the equation

N2∂
2h

∂x2
+ f 2∂

2h

∂z2
= −F (x, z), (B.4)

in the rectangular region 0 ≤ x ≤ L, 0 ≤ z ≤ H , again with F (x, z) given
by a point force proportional to δ(x − 1

2
L)δ(z − 1

2
H). We consider the case

H << L and assume that N and f are constants. The equation may be
transformed to one with unit coefficients by dividing both sides by N2 and
making the substitution z = (f/N)Z, whereupon

∂2h

∂x2
+
∂2h

∂Z2
= − 1

N2
δ
[
x− 1

2
L
]
δ
[
Z − 1

2
LR
]
, (B.5)

where LR = HN/f . The equation is valid for the region 0 ≤ x ≤ L, 0 ≤
Z ≤ LR. In the case L > LR, as exemplified in Fig. B.3, the response scale
is the same, LR, in both the x and Z directions. The latter corresponds with
scale H for z. This last result is important in geophysical applications, for
in a strably-stratified rotating fluid characterized by constant Brunt-Väisälä
frequency N and constant Coriolis parameter f , we encounter equations of
the type (B.4) for the streamfunction ψ(x, z), usually in configurations where
the aspect ratio of the flow domain, say H/L, is small. Typically, in the
atmosphere, f/N ∼ 10−2. According to the foregoing results, provided L >
LR, then the horizontal length scale of the response is LR = HN/f , which
is just the Rossby radius of deformation. Since H is typically 10 km, the
criterion L > LR requires that L > 1000 km. If L < LR, the horizontal scale
of response will be set by L and the vertical scale of response is then Lf/N ,
sometimes referred to as the Rossby depth scale. The former situation, which

159



is usually the case for geophysical flows, is illustrated in Fig. B.4 by numerical
solutions of (B.4) in the region where L = 2000 km, H = 10 km, for four
different values of LR. Again a localized “force” F (x, y) is applied at the point
(1

2
L, 1

2
H) and the isopleths of “membrane displacement” are normalized so

that the maximum displacement is unity. In all cases, L > LR, but note
how the horizontal scale of response decreases as LR decreases. If other
boundary conditions are imposed along all or part of the domain boundary,
the foregoing ideas may have to be revised.

Figure B.4:
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