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An effort is made to reconcile the classical theories of tropical cyclone
intensification by Shapiro and Willoughby and Schubert and Hack and the
various prognostic (or WISHE-) theories of Emanuel. As a start, it proves
necessary to extend the classical theories to account for explicit latent heat
release in slantwise ascending air. While such an effort uncovers enroute a range
of old modelling issues concerning the representation of deep convection in a
balance framework, the analysis provides a new perspective of these issues. The
bottom line is that the two theories cannot be reconciled.
The behaviour of the model with explicit latent heat release is illustrated by a
particular calculation starting with an axisymmetric vortex in a conditionally-
unstable atmosphere. As soon as condensation occurs aloft, the moist Eliassen
equation for the overturning circulation becomes hyperbolic in the convectively-
unstable region and the model cannot be advanced forwards beyond this time
unless the Eliassen equation is suitably regularized to remove these hyperbolic
regions. However, regularization suppresses buoyant convection, leaving no
mechanism to reverse the frictionally-induced outflow in the lower troposphere
required to concentrate absolute angular momentum there. For this reason, the
initial vortex spins down, even following the formation of elevated cloud with
the accompanying latent heat release.
The fact that the flow configuration in the moist version of the classical theories
is similar to that in the WISHE-theories raises several fundamental questions
concerning the physics of vortex spin up in the WISHE-theories, calling into
question the integrity of these theories, themselves.
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1. Introduction
Building on the seminal studies of the thermally or
frictionally controlled meridional circulation in a circular
vortex and of frontal circulations by Eliassen (1951,
1962), Willoughby (1979), Shapiro and Willoughby (1982),

Schubert and Hack (1982), Schubert and Hack (1983) and
Schubert and Alworth (1982) developed similar theories
for the diagnosis and evolution of the balanced tangential
and overturning circulation of a tropical cyclone. The
underlying premise of the theories, supported by a scale
analysis of the governing equations, is that the cyclone
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remains in hydrostatic and gradient wind balance as it
evolves. With this assumption, one obtains a linear second-
order partial differential equation for the streamfunction
of the overturning circulation, forced by prescribed heat
and momentum sources that, without such a circulation,
would act immediately to destroy balance. When this
equation is globally elliptic, one obtains a well posed
formulation for the balanced evolution of an intensifying
vortex. These classical theories highlighted the role of the
overturning circulation in promoting tropical cyclone spin
up by converging absolute angular momentum surfaces in
the lower troposphere. In the diagnostic formulations of
Shapiro and Willoughby (1982) and Schubert and Hack
(1982), vortex spin up was inferred from the tangential wind
or potential temperature tendencies brought about by the
overturning circulation.

More recently, inspired by the foregoing studies, Smith
et al. (2018) constructed a prognostic balance model to
further explore how a tropical cyclone in such a model
evolves in time. Using diabatic heating rates suggested
by numerical model simulations of intensifying tropical
cyclones, it was shown that, on a time scale of half a day,
the partial differential equation for the streamfunction of
the overturning circulation, now referred to as the Eliassen
equation*, develops regions in which it becomes hyperbolic.
Thereafter, the model solution can be continued only if
the coefficients of the Eliassen equations are “suitably”
modified to keep the equation globally elliptic. We refer to
such modification as a regularization procedure following
Möller and Shapiro (2002) and note that any such procedure
is intrinsically ad hoc.

Typically, regularization allows the solution to be
continued for a further 12-24 hours before a catastrophic
breakdown ensues. This breakdown appears to be coupled
with the rapid onset of centrifugal (inertial) instability as
the region requiring regularization becomes comparatively
large. Smith et al. showed that such instability is not
eliminated by regularization. Various issues associated with
the regularization procedure, itself, were investigated by
Wang and Smith (2019), Montgomery and Persing (2020)
and Wang and Smith (2021).

The solutions of the prognostic balance balance model
remain smooth and usable, even beyond the time at which
the Eliassen equation has to be regularized, up to perhaps an
hour before the ultimate breakdown of the solution occurs.
For this reason, the prognostic balance model was chosen
by Smith and Wang (2018) to highlight the separate roles
of diabatic heating and boundary layer friction within a
balance framework.

From a scientific viewpoint, one important limitation of
the foregoing prognostic balance model is the specification
of the distribution of diabatic heating rate, which
circumvents the need for considering explicit moisture and
sources of moisture. For greater realism, the distribution
and magnitude of the heating should be determined as
part of the solution and the supply of moisture from
the ocean should be included also. A possible way to
accomplish this was outlined by Montgomery and Smith
(2022), a study that sought to relate the widely accepted
wind-induced surface heat exchange (WISHE) paradigm
for tropical cyclone intensification (Emanuel 1995, 1997,
2012) to the classical balance formulation envisaged by

∗Sometimes referred to also as the Sawyer-Eliassen equation.

Shapiro and Willoughby and by Schubert and collaborators.
Like the classical theories, the WISHE-theories invoke
hydrostatic and gradient wind balance also, but incorporate
a fundamentally different representation of moist processes
and they take explicit account of the surface moisture
source.

The Montgomery and Smith (2022) formulation of the
moist problem was generalized by Smith and Montgomery
(2023) (see Section 16.1) to account for the possibility of
moist slantwise ascent, allowing for a closer comparison
with the Emanuel formulations that purport to underpin the
WISHE feedback mechanism. The generalization suggested
two possibilities for balanced vortex evolution in the moist
problem, but Smith and Montgomery stopped short of
solving the moist problem, itself.

The first possibility above is that the Eliassen equation in
regions of latent heat release remains elliptic with a small,
but positive effective static stability. The second possibility
is that the equation becomes parabolic or hyperbolic in such
regions. In the former case, it was demonstrated that the
inflow in the frictional boundary layer would force outflow
throughout the troposphere above this layer so that the
tangential wind in the moist region would inevitably spin
down. In the latter case, it was argued that the inclusion
of explicit latent heat release was incompatible with the
assumption of local hydrostatic balance. Therefore, to retain
the integrity of a balance formulation, convective instability
would have to be removed by implementing some cumulus
parameterization scheme. Indeed, it was proposed that only
by incorporating such a parameterization scheme would it
be possible in a balance framework to reverse the outflow
induced by boundary layer friction to inflow in the lower
troposphere to produce vortex spin up there.

In Section 16.7.1 of the book, Smith and Montgomery
arrived at conflicting conclusions regarding into which of
the former cases the WISHE-theories fit, noting that “At
the time of writing, the consequences of these conflicting
conclusions concerning Emanuel’s later intensification
theories remain to be understood”. They went on to say that
that: “ ... we are led to tentatively conclude that they (i.e.,
the WISHE-theories) are incompatible with the classical
balance theory of Eliassen”.

One purpose of the present paper is to demonstrate
that the balance model with explicit latent heat release
falls strictly in the second case discussed above. Another
purpose is to apply the understanding gained from the
analyses of this model to sharpen our understanding of
the relationship between the classical balance theories of
tropical cyclone intensification and the WISHE-theories.
One notable difference between the two theories is the
different vertical structure of the secondary overturning
circulation, the reasons for which remain obscure.

2. The prognostic balance equations
Classical axisymmetric balance theory is based on the
tendency equations for tangential velocity component, v,
and some thermodynamical quantity such as the potential
temperature, θ, or its inverse together with a constraint
equation for thermal wind balance and one for mass
continuity in the quasi-static approximation that neglects
acoustic waves. In a cylindrical coordinate system (r, z)
on an f -plane, Smith et al. (2018) wrote the foregoing
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equations in the form

∂v

∂t
= −u∂v

∂r
− w

∂v

∂z
− uv

r
− fu− V̇ , (1)

∂χ

∂t
+ u
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∂r
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∂χ
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= −χ2θ̇, (2)

∂
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∂
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lnχ = − ξ
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∂z
, (3)

∂ρru

∂r
+
∂ρrw

∂z
= 0, (4)

where u and w are the radial and vertical velocity
components, t is the time, f is the Coriolis parameter
(assumed constant), ρ is the density, V̇ is the tangential
momentum sink associated with the near-surface frictional
stress, χ = 1/θ is the inverse of potential temperature,
θ̇ = dθ/dt is the material derivative of the dry potential
temperature (i.e., the diabatic heating rate), C = v2/r + fv
is the sum of centrifugal and Coriolis forces per unit mass,
ξ = f + 2v/r is twice the local absolute angular velocity
and g is the effective gravitational acceleration. Here, the
steady form of the continuity equation (Eq. (4)) is chosen as
appropriate for a slowly-evolving balance flow which does
not excite acoustic waves.

The transverse velocity components u andw are obtained
in terms of a streamfunction for the transverse overturning
circulation, ψ, to ensure that the quasi-static form of the
continuity equation is identically satisfied, i.e.,

u = − 1

ρr

∂ψ

∂z
, w =

1

ρr

∂ψ

∂r
. (5)

2.1. The Eliassen equation
The Eliassen equation for ψ is obtained by differentiating
the thermal wind equation (Eq. (3)) with respect to time and
eliminating the time derivatives of v and χ using Eqs. (1)
and (2). After some algebra, one obtains
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(6)

where γ = χ/ρr, N2 = −(g/χ)∂χ/∂z represents the
static stability,B = (1/χ)(∂(χC)/∂z) represents the baro-
clinicity, I2g = ξζa + (C/χ)∂χ/∂r represents the gener-
alized inertial (centrifugal) stability, ζa = ζ + f is the
absolute vorticity and ζ = (1/r)∂(rv)/∂r is the vertical
component of relative vorticity.

The Eliassen equation, Eq. (6), is a linear second-order
partial differential equation with the discriminant, D, given
by

D = 4γ2
(
I2gN

2 −B2
)
, (7)

and it is elliptic if D > 0.
In essence, the Eliassen equation determines the

streamfunction required to keep the tangential circulation
in thermal wind balance at every location in the presence
of heating and friction that would otherwise act to move it
away from balance.

2.2. The moist Eliassen equation
In cloudy regions, condensation of water vapour or
evaporation of liquid water occurs at a rate proportional to
the material rate-of-change, d/dt, of saturation mixing ratio,
r∗v . The largest contribution to this quantity arises from
vertical motions in the cloud, although if the cloud is tilted,
radial motions may make a non-negligible contribution.
In turn, the material rate-of-change of latent heating or
cooling is Q̇ = −Lvdr

∗
v/dt, where Lv is the latent heat of

vaporization. Finally, the diabatic heating rate, θ̇, may be
approximated by†

θ̇ =
Q̇

cpπ
≈ − Lv

cpπ

(
u
∂r∗v
∂r

+ w
∂r∗v
∂z

)
, (8)

where, cp is the specific heat of dry air at constant pressure
and π is the Exner function defined by π = (p/p∗∗)

κ, p is
the pressure, p∗∗ is a reference pressure of 1000 mb, κ =
R/cp, and R is the specific gas constant for dry air. Here,
for simplicity, the additional heating or cooling associated
with ice freezing or sublimation are not considered.

Then using the streamfunction ψ with u and w obtained
from Eq. (5), Eq. (8) gives,
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2
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The modified Eliassen equation for moist slantwise
ascent or descent in cloudy air is obtained by substituting
for θ̇ from Eq. (9) into Eq. (6). After a little algebra one
obtains,

∂

∂r

[
γ

{(
N2+

gLv

cpdT

∂r∗v
∂z

)
∂ψ

∂r
−
(
B +

gLv

cpdT

∂r∗v
∂r

)
∂ψ

∂z

}]
+

∂

∂z

[
γ

{(
I2g − CLv

cpdT

∂r∗v
∂r

)
∂ψ

∂z
−
(
B − CLv

cpdT

∂r∗v
∂z

)
∂ψ

∂r

}]
=

∂

∂z

(
χξV̇

)
,

(10)

where T is the air temperature.
The generalized discriminant of the moist Eliassen

equation, Dm, is given by

Dm =4γ2
(
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− 4γ2

{
B +

Lv

2cpT

(
g
∂r∗v
∂r

− C
∂r∗v
∂z

)}2

.

(11)

Of course, both Eq. (10) and Eq. (11) reduce to Eq. (6) and
Eq. (7), respectively, if there is no condensation, equivalent
to setting Lv = 0 in Eq. (9).

Compared to the Eliassen equation (6), the modified
Eliassen equation only has one forcing term on the right

†The retention of the local time derivative term adds a time derivative
“forcing” term to the right hand side of the corresponding Eliassen
equation. This forcing term corresponds to a higher order term in the
balance formulation, which would be typically neglected for slowly
evolving vortices (see e.g., Smith and Montgomery (2023), Section 5.13.5).
A scale analysis and our own a posteriori calculations confirm that this
term is subdominant in comparison to the radial and vertical advection of
r∗v .
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hand side, the one associated with tangential friction in the
vortex boundary layer. As noted in Montgomery and Smith
(2022), when the friction vanishes the only solution is a
zero streamfunction provided the generalized discriminant
is positive.

2.3. Determination of cloudy regions, the
moisture equation
The fact that the moist Eliassen equation (10) for cloudy
air reduces to the more conventional form, Eq. (6), with
θ̇ = 0 outside of cloud means that it can be solved globally,
simply by setting Lv = 0 in regions outside of cloud. To
determine whether air in a particular location is cloudy or
not requires simply a knowledge of the local water vapour
mixing ratio, rv in relation to the saturation mixing ratio at
that point, which is a function only of the local pressure
and temperature, or equivalently pressure and χ. Simply,
non-cloudy regions are where rv < r∗v and regions of cloud
are where rv = r∗v . Clearly we need to know the spatial
distribution of rv at any time, so that in a prognostic system,
we require to know the initial distribution of rv and to have
a prognostic equation for rv . The prognostic equation may
be written as

∂rv
∂t

= −u∂rv
∂r

− w
∂rv
∂z

+ Ṙv, (12)

where Ṙv is the source of water vapour expressed in terms
of mixing ratio (see below).

2.4. The solution method
The solution method is similar to that described by Smith
et al. (2018) and involves the following steps.

1 Given the initial spatial distribution of v, say vo(r, z)
in some domain (0 ≤ r ≤ R, 0 ≤ z ≤ Z), and a
far-field thermodynamic sounding for pressure as
a function of height, p(R, z), calculate the initial
distribution of χ, say χo(r, z), from Eq. (3) using the
method described by Smith (2006). As a by product
of this solution, one obtains the initial pressure
distribution po(r, z) because the characteristics of the
first-order partial differential equation (3) are just the
isobars.

2 Knowledge of po(r, z) and χo(r, z) enables the initial
distribution of r∗v , say r∗vo(r, z), to be determined
and given the initial spatial distribution of rv , say
rvo(r, z), one can determine which, if any, regions of
the domain are cloudy. If at any points, rv > r∗vo, we
set rv = r∗vo.

3 Knowledge of the cloudy and cloud-free regions
enables the modified Eliassen equation (10) to be
solved for the initial streamfunction, say ψo(r, z), as
long as the equation is globally elliptic, i.e., Dm > 0
everywhere. See below if this is not the case.

4 Now, the velocity components of the overturning
circulation at the initial time, say uo(r, z) and
wo(r, z), can be obtained from Eqs. (5).

5 At this stage, all quantities are available at the initial
time so that the prognostic equations (1) and (12) may
be used to determine the quantities at some small
future time, t = ∆t, by approximating, for example
by v(r, z,∆t) by v(r, z, 0) + (∂v/∂t)t=0∆t.

6 With the knowledge of v and rv at time ∆t, steps [1]
to [5] may be repeated successively to advance the
solution to any desired time, t = n∆t where n is an
integer, the proviso being that at each time step, Dm

remains everywhere positive.

Figure 1. Presssure, temperature and dewpoint temperature as a function
of height in the Dunion moist tropical sounding for the Atlantic Hurricane
season. Solid red and blue curves depict the actual Dunion sounding, while
the thinner yellow curves show the piecewise linear approximation to this
sounding.

In the foregoing model it should be noted that Eq. (2)
is used only to derive Eq. (10) and not used to predict χ.
In principle, an alternative would be to predict χ using Eq.
(2) and to diagnose v from the balance condition (3), but
because Eq. (3) is quadratic in v, a real solution may not
exist everywhere.

If regions develop in which Dm ≤ 0, Eq. (10) is
solvable diagnostically as an elliptic equation only if the
coefficients are regularized in these regions. As noted in
the Introduction, strategies for regularization, which are
necessarily ad hoc, and the consequences of regularization
concerning the integrity of the solutions, are explored by
Wang and Smith (2019), Montgomery and Persing (2020)
and Wang and Smith (2021).

2.5. The formulation for Ṙv

The remaining task for implementing the solution is the
formulation for Ṙv in Eq. (12). One possibility would be
to express Ṙv as a vertical diffusion term and implement a
surface boundary condition on rv to allow surface moisture
fluxes to elevate rv in the region where surface wind speeds
are high. A less sophisticated method, adequate for the
present purposes, is to simply take Ṙv = 0. This choice
is justified (i) because the ambient sounding used (see
below) has adequate convective available potential energy
and minimal convective inhibition for convection to be
initiated, at least in principle, (ii) because the integrity
of the solution becomes increasingly questionable after
condensation occurs aloft, breaking down on a time-scale
of an hour after this occurrence, and (iii) because, as shown
in Section 4.2 below, even if included, surface moisture
fluxes would be rapidly shut down by a near surface layer
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of saturated air that forms in the solution. In any case, our
main focus is on the behaviour of the balance model after
condensation occurs and latent heat is released.

3. A specific calculation
The calculation described here uses a domain sizeR = 1000
km in radius and Z = 20 km in height with a radial grid
spacing of 5 km and a vertical grid spacing of 200 m. The
Coriolis parameter, f , corresponds with a latitude of 20oN.
The calculation begins with an initial warm-cored vortex
with tangential wind profile given by the formula

v(r) = Vmaxs exp[−(1− sb)/b] cos(bz), (13)

where s = r/RVmax, r is the radius, b = 1
2π/Z, z is

the height, Vmax is the maximum tangential velocity and
RVmax is the radius of this maximum. At the initial time,
Vmax = 40 m s−1 and RVmax = 60 km. The large initial
velocity was chosen to initiate cloud formation within a
short period of time and with the expectation that the vortex
would decay with time. Calculations for weaker initial
vortices are discussed also.

The initial thermodynamic sounding at the outer
side boundary, r = R is based on a piecewise linear
approximation of the temperature and dewpoint temperature
of the Dunion mean tropical sounding for the Atlantic
hurricane season (Dunion 2011). The corresponding
pressure distribution is calculated using the hydrostatic
equation using the surface pressure of the actual sounding,
1015.3 mb. Figure 1 shows the linear approximation to the
sounding compared with the actual sounding.

The formulation of frictional stress is similar to that
employed in Montgomery and Smith (2022). In the
formulation, the effects of surface friction are represented
by a body force per unit mass in the tangential direction
corresponding with the surface frictional stress distributed
through a layer with depthH . The body force has the spatial
form

V̇ (r, z) =
Cd

H
v2s

(
1− z

H1

)2

(0 ≤ z ≤ H1), (14)

where Cd is the surface drag coefficient (assumed here to
be a constant equal to 2× 10−3) and vs = vs(r, 0, t) is the
tangential wind component at the surface at time t. The
constants H and H1 are 500 m and 2000 m, respectively,
and are chosen so that the inflow occurs within a surface-
based layer about 1 km in depth as is observed.

The prognostic element of the calculation represented
by Eqs. (1) and (12) uses a time step of 1 minute. For
simplicity, the initial water vapour mixing ratio distribution
is taken to be the same at all radii, equal to that at the side
boundary.

4. Results
Figure 2a shows a time series of the maximum tangential
wind component, Vmax, the location of which becomes
slightly elevated as time proceeds. Despite the need to
regularize the Eliassen equation from 62 minutes onwards,
the decay rate of Vmax is approximately linear for the
duration of the calculation, which extends to 146 minutes.

This decay occurs even in the presence of cloud formation
and latent heat release as the flow evolves and it was
anticipated in the analysis outlined by (Montgomery and
Smith 2022, their Figure 4 and subsection 2.4.2). The
significance of this result is addressed below, as is the nature
of the solution breakdown.

The steady decrease in Vmax is accompanied, of course,
by a progressive decline in the strength of the frictionally-
driven overturning circulation as evidenced by the decline
in Umax and Umin shown in Fig. 2b. Before regularization
is required, the rate-of-decline of these two quantities is
approximately linear, but it levels off after this time and
there is a period of increase after about 80 minutes in which
Umax develops fluctuations while increasing slightly in a
time mean. The fluctuations in Umax are associated with
small scale features in the fields, probably consequences of
regularization, that lead ultimately to solution breakdown
(see Subsection 4.4).

Figures 3 and 4 show radius-height cross sections of
various fields below an altitude of 5 km at selected times.
The left panels of Fig. 3 show the tangential and radial
velocity components as well as contours of absolute angular
momentum, M = rv + 1

2fr
2 at the initial time, at 60

minutes, just two minutes before regularization of the moist
Eliassen equation is required, and at 90 minutes, 56 minutes
before the solution breaks down and prior to most fields
losing their relatively smooth character. The right panels
of Fig. 3 show the vertical velocity component at the same
times.

4.1. Kinematic fields
The principal features of the velocity fields in Fig. 3 are
similar to those described in the friction-only simulation
in Section 4d of Smith et al. (2018) and Section 2.3.1
of Montgomery and Smith (2022). At the initial instant,
there is a shallow layer of inflow below about 1 km in
altitude and a deeper layer of outflow above. The maximum
inflow occurs at the surface at a radius of about 200
km and the maximum outflow occurs at about the same
radius and an altitude just below 2 km, although outflow
extends throughout the entire troposphere (not shown). By
construction, the maximum tangential velocity component
occurs at the surface at this time. In the part of the
calculation domain shown, there is mostly ascent, with
subsidence into the boundary layer evident at low levels
beyond a radius of 275 km. The depth of this subsidence
layer increases with radius. Significantly, the maximum
ascent occurs between about 1 and 2 km in altitude, below
the level of maximum outflow and near to the radius of
maximum tangential velocity. This is, of course, where one
would expect cloud to form first.

The foregoing features persist as the flow evolves, the
main difference being the progressive elevation in the
location of Vmax as the tangential wind is reduced near the
surface by the tangential frictional force and the progressive
weakening of the overturning circulation. As illustrated by
the left panels in Fig. 3, the decay of the vortex circulation
is associated with the outward movement of theM -surfaces
above the frictional inflow layer, altitudes at which the
quantity M is materially conserved (see e.g., Smith and
Montgomery 2023, Section 6.1).

The localized regions surrounding the location of
maximum outflow in Fig. 3e and maximum vertical velocity

Copyright © 2024 Royal Meteorological Society Q. J. R. Meteorol. Soc. 1: 1–12 (2024)
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6 R. K. Smith, M. T. Montgomery and S. Wang

Figure 2. Time evolution of (a) Vmax (t), (b) Umax (t) (red), Umin(t) (blue), for the moist balanced vortex. The vertical dashed line indicates the first
time at which the discriminant in the Eliassen equation first becomes negative.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Radial-height cross sections of (a,c,e) contours of tangential velocity, v, and radial velocity u (shaded), and (b,d,f) contours of vertical velocity,
w (shaded) and M -surfaces at (a,b) the initial time, (c,d) 60 minutes and (e,f) at 90 minutes. Only the inner and lower part of the calculation domain
are shown. Contour intervals: for v, 10 m s−1; for u, thick contours 2 m s−1 for positive values and 4 m s−1 for negative values, thin contours 0.5 m
s−1 for |u| ≤ 1.5 m s−1; for w 2 cm s−1; for M 1× 106 m2 s−1. Solid contours for positive values, dashed contours for negative values. The yellow
symbols in (a), (c) and (e) indicate the locations of maximum v, (⊕), maximum u, (×) and minimum u, (2).

in Fig. 3f at 90 minutes are signs of some kind of local
breakdown of the solution. We surmise that these are a
consequence of regularizing the Eliassen equation and are
most likely unphysical.

4.2. Formation of cloud and convective
instability
The left panels of Fig. 4 show radius-height cross sections
of the relative humidity field (RH) and the right panels
show cross sections of potential temperature, θ, and the
discriminant of the moist Eliassen equation, Dm, at the

same times as in Fig. 3. For reference, all panels show the
M -surfaces, again as in Fig. 3.

At the initial time, the flow is everywhere unsaturated.
In a shallow layer near the surface, the relative humidity
increases slightly with decreasing radius. This increase is
related to cooler temperatures associated with the lower
pressure in the vortex inner core‡. Above this layer, the
relative humidity decreases with decreasing radius on

‡Note that the initial vortex profile used here is approximately barotropic
near the surface and the barotropic vortex is cold cored (see e.g., Smith and
Montgomery 2023, Section 5.3).
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Prepared using qjrms4.cls



Moist Eliassen Equation 7

(a) (b)

(c) (d)

(e) (f)

Figure 4. Radial-height cross sections of M -surfaces superimposed on (a,c,e) contours of relative humidity, RH (shaded), and (b,d,f) contours of
potential temperature, θ, and Eliassen equation discriminant, Dm (shaded) at (a,b) the initial time, (c,d) 60 minutes and (e,f) at 90 minutes. Contour
intervals: for RH , 5%; for M , 1× 106 m2 s−1 starting from the left at 1 of these units; for θ, 10 K. Since values of Dm vary radially by several orders
of magnitude, a logarithmic scale has been used, beginning with a value 1× 10−27 kg−2 m4 s−4 K−2. In multiples of this base value, the contours
shown are from right to left: 1, 10, 20, 100, 200, 1000, 2000, 104.

account of the warm core aloft, which is evident in the
lowering of the isentropes near the axis as seen in Fig. 4b.

As time proceeds, the tangential velocity is reduced near
the surface due to surface friction, whereupon the positive
increase in the tangential velocity with height in conjunction
with the thermal wind balance constraint leads to strong
cooling near the surface. The cooling is reflected in the
formation of a strong surface-based stable layer in the
pattern of isentropes in Fig. 4b. This feature is not realistic,
of course, but rather an unrealistic thermodynamic feature
of the balance boundary approximation. A consequence of
the cooling is the formation of a surface-based layer of
saturated air, essentially a layer of fog, in the inner core of
the vortex (Fig. 4b). Saturation occurs first at 18 minutes at
the surface and at an altitude of 200 m at radii between 10
and 55 km. As time proceeds, the saturated layer expands
in radius, but does not become thicker (not shown). This
“foggy layer” precedes the formation of cloud in the region
of strongest ascent aloft, but its occurrence is not connected
with instability in the sense that it is not accompanied by a
negative discriminant of the moist Eliassen equation.

Saturation leading to an elevated cloud above the foggy
layer begins at 62 minutes and leads immediately to
convective instability such that the coefficient multiplying
the derivative ∂2ψ/∂r2 in the moist Eliassen equation
becomes negative. As a result, the discriminant of the
equation becomes negative in this region. In order to
continue the solution beyond this time as an elliptic

problem, it is necessary to regularize the Eliassen equation
by modifying one or more of the coefficients of the
highest-order derivatives in regions where Dm < 0 to
render Dm small, but positive. Any such procedure is
necessarily ad hoc and its success has to be judged with
caution. Regularization may be reasonable if the region(s)
of negative Dm are comparatively small in area, but
may be problematic when the area becomes appreciable.
By “reasonable” we mean that the solution outside the
regularized region looks reasonable subjectively. As noted
above, the various issues accompanying regularization are
explored by Wang and Smith (2019), Montgomery and
Persing (2020) and Wang and Smith (2021).

In the present problem, it is the moist stability term,
N2 + gLv∂r

∗
v/∂z/(cpT ), which in a linear approximation

is proportional to ∂θ∗e/∂z, that first leads to a region of
negative Dm when cloud forms aloft. At 90 minutes, for
example, the region of negative Dm is indicated in yellow
in Fig. 4f and this region coincides approximately with
the elevated region of saturated air shown in Fig. 4e.
The regularization procedure adopted here is to replace
the negative values of N2 + gLv∂r

∗
v/∂z/(cpT ) by small

positive values sufficient to make Dm small and positive
in the convectively unstable region.

While the foregoing procedure allows the solution to
be continued for more than an hour after the shallow
cloud has formed, it is clearly masking the physics of the
problem. In reality, the cloudy air becomes convectively
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unstable and buoyant, but regularization removes such
instability. If the buoyancy were to be realized, one would
expect an entraining buoyant updraught to form with the
possibility that entrainment on the radially-outward part
of the (axisymmetric) cloud would be sufficient to reverse
the low-level outflow associated with near-surface friction
to produce inflow above the friction layer leading to
vortex spin up. This would be the classical vortex spin up
mechanism at work (see e.g., Smith and Montgomery 2023,
Section 8.2).

As discussed in Montgomery and Smith (2022),
regularization of the Eliassen equation so that it is globally
elliptic has the consequence of preventing such inflow
from occurring so that the vortex continues to spin down.
Montgomery and Smith argued that vortex spin up in a
hydrostatic model could be achieved only if deep convection
were parameterized in a way that allows it to entrain air
at larger radii above the boundary layer at a rate sufficient
to produce inflow there. This argument is supported by the
present findings using a balance model with explicit latent
heat release.

4.3. Weaker initial vortices
We carried out two additional calculations with weaker
initial vortices, one with Vmax = 20 m s−1 and the
other with Vmax = 10 m s−1. The configuration of these
calculations was otherwise exactly the same, except that the
time step for integration was extended to 5 minutes. The
results are briefly as follows. Again, both vortices decay
and the weaker the initial vortex, the longer is the time
it takes for an elevated cloud to form, and the weaker is
the overturning circulation at the time when cloud forms.
Again, a shallow layer of fog forms in the inner core region
before an elevated cloud forms. For the initial vortex with
Vmax = 20 m s−1, an elevated cloud forms after about
3 1
2 hours and is confined below 3 km altitude until the

calculation breaks down after about 9 1
2 hours. For the initial

vortex with Vmax = 10 m s−1, a feeble elevated cloud
forms after about 20 1

2 hours and never extends above 1.8 km
altitude. In this case, the calculation does not break down
during a 48 hour integration.

4.4. Solution breakdown
It is outside the scope of this study to explore the reasons
for a complete breakdown of the solution for the evolving
vortex at some time beyond that where regularization of
the solution is required to advance the solution forwards.
In fact, because the integrity of the solution in the region
of regularization cannot be guaranteed, studies of the final
breakdown would be of questionable value. Suffice it to say
that the breakdown is different to that reported in Smith
et al. (2018), where it appeared to be associated with a
form of inertial instability that was not entirely suppressed
by regularization. In that case, a negative radial gradient
of absolute angular momentum remained in the prognostic
equation for the tangential velocity. In the present case,
the breakdown follows the development of convective
instability, which is fully removed by regularization.

4.5. Summary of the main findings so far
The solutions presented herein highlight additional deficien-
cies of a strict balance model when extended to include
explicit moist processes. Deficiencies of the dry model are
discussed in Smith and Montgomery (2023), Section 8.4.5.

(1) The development of a strong vertical gradient of
tangential wind near the surface on account of friction
is accompanied by near-surface cooling, which leads
to a shallow layer of fog. The cooling is an artefact
of assuming thermal wind balance in the boundary
layer. In turn, fog formation would serve to quickly
suppress surface moisture fluxes from the ocean
if these fluxes were included in the formulation.
However, condensation in the foggy layer does not
lead to convective instability.

(2) As soon as condensation occurs aloft, the coefficient
multiplying the term ∂2ψ/∂r2 in the moist Eliassen
equation becomes negative and regularization is
immediately required. This coefficient is proportional
to the moist vertical stability of the elevated cloudy
region, i.e., the cloud that forms is convectively
unstable.

(3) The need to regularize the solution, to advance it
beyond the stage at which convective instability
occurs, removes such instability. Thus, regularization
prevents the generation of local unbalanced buoyancy
associated with convective instability, whereupon
cloud formation in the moist model is passive and
confined to shallow regions where the boundary
layer forcing of ascent is strongest. There appears
to be no way that deep clouds could form in
the moist model unless, possibly, the atmosphere
is nearly saturated through a deep layer initially.
In a calculation starting from an initially saturated
atmosphere, the solution suffers breakdown after
the first time step. In that case, the moist Eliassen
equation is globally hyperbolic at the initial time.
It follows that a moist balance model for tropical
cyclone intensification intrinsically requires deep
convection to be parameterized to avoid the foregoing
problem.

In retrospect, the second and third findings are essentially
a rediscovery of the intrinsic moist convective instability of
the tropical atmosphere (Bjerknes 1938, Lilly 1960), but in
the context of an evolving vortex in the moist prognostic
balance model.

The most important finding is that regularization of the
moist Eliassen equation to make it globally elliptic, thereby
allowing the solution to be advanced forwards in time,
removes any convective instability. This removal has the
unintentional effect of preventing the model clouds from
generating inflow above the boundary layer. As a result, the
vortex in the prognostic balance model with explicit latent
heat release spins down.

Failure of the moist balance model to simulate an
intensifying vortex might be interpreted as a negative result
of our study, but it does provide an appropriate context for
trying to reconcile the classical theories of tropical cyclone
intensification and the WISHE-theories.
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5. Implications for the WISHE theo-
ries
Like the prognostic balance model described in Section 2,
the Emanuel (1995, 1997, 2012) models that are purported
to underpin the WISHE intensification theory assume
both hydrostatic balance and gradient wind balance of
the tangential velocity, v. However, the WISHE-theories
incorporate a different representation of moist processes
and, importantly, they represent the surface moisture source
explicitly.

5.1. Congruence assumption
Although there are differences in detail, all the WISHE-
theories are based on the premise that, above the frictional
boundary layer, there is congruence of the surfaces of
absolute angular momentum, M , and those of saturation
moist entropy, or equivalently the saturation equivalent
potential temperature, θ∗e , globally and at all times. Notably,
the only prediction equation in these theories is for the moist
entropy, or equivalently θe. If near-surface values of θe
increase in the inner-core region on account of an increase in
the surface enthalpy fluxes, then, the M -surfaces would be
slaved to move inwards above and at the top of the boundary
by the congruence assumption.

Significantly, the flow configuration of the WISHE-
theories is almost identical to that in the moist balance
formulation of Section 2, in which, without an explicit
parameterization of deep convection, the vortex spins down
on account of radial outflow induced by boundary layer
friction. What then enables the vortex to spin up in the
WISHE-theories? Clearly, the spin up of the tangential
flow above the boundary layer can occur only by the
vertical advection of M on account of the negative vertical
gradient of M there. However, this argument does not
explain physically how the maximum tangential wind,
Vmax, amplifies with time. Since the vertical gradient of
M must be positive in the (balanced) frictional boundary
(or zero if the boundary layer is assumed to be vertically
well mixed at leading order), Vmax must occur at the top
of the boundary layer and the only way it can increase is
if the M -surfaces move inwards at this level. Further, since
M is assumed to be materially conserved at the top of the
boundary layer as well as above it, there must be inflow at
the top of the boundary layer to move M -surfaces inwards.

With the assumption of outflow just above the boundary
layer, the inflow at the top of the boundary layer implies
the existence of a sheet of azimuthal vorticity at this level.
The question then is: what physical mechanism gives rise
to the inflow at the top of the boundary layer in such a
vortex sheet? It would seem that the inflow has to be a
result of the assumed congruence between the M - and
saturation moist entropy surfaces at the boundary layer
top, but is this mechanism physically realistic? An analysis
of azimuthally-averaged fields from a three-dimensional
simulation of tropical cyclone intensification does not
support the congruence assumption during much of the
intensification stage. Only as the mature stage is reached
(based on a levelling off of the maximum wind speed) is
the assumption approximately valid and only then in the
eyewall and outflow region (Smith and Montgomery 2023,
Section 12.5). Indeed, we would argue that a more robust
approach in any model for spin-up would be to determine

the tangential velocity by solving the tangential momentum
equation, or equivalently the prognostic equation for M ,
rather than using this equation to infer the radial motion
in conjunction with the congruence assumption, as in the
WISHE-theories (e.g., Peng et al. 2018 Eqs. (A13) and
(A14))§.

As shown in the Appendix 1, the assumed congruence
between the M - and saturation moist entropy surfaces is
equivalent to assuming that the moist saturated potential
vorticity, P ∗

m, defined as

P ∗
m =

(ω + f) · ∇θ∗e
ρ

, (15)

is identically zero. It is shown in Appendix 2 that, unlike in
the dry case, where the dry PV defined by

P =
(ω + f) · ∇θ

ρ
(16)

is functionally proportional to the discriminant D given by
Eq. (7), P ∗

m is not functionally proportional to Dm given
by Eq. (11). In other words, in the dry case, zero PV
coincides with zero D, but in saturated air, zero P ∗

m implies
that Dm is negative, i.e., in saturated air, the moist Eliassen
equation is hyperbolic¶. Thus, the assumed congruence in
the moist problem implies that it cannot be interpreted in
a similar balance framework as in the classical theories. In
the latter theories, the Eliassen equation for the overturning
circulation is elliptic.

Since the WISHE-theories make the same balance
and congruence assumptions as above and since they
have a similar flow configuration with outflow above the
boundary layer, it would appear that these are irreconcilable
with the classical theories also. A further reason for
the incompatibility between the WISHE-theories and the
classical theories is discussed in Subsection 5.3 below.

§In contrast to the deductions made above concerning the amplification of
Vmax at the top of the boundary layer, and the requirement of inflow in
a sheet at this level, Peng et al. assume that the radial flow is zero there
(see their Fig. 10b). If this were the case, there would be no mechanism
to increase the radial pressure gradient at the boundary-layer top and
therefore, on the basis of boundary layer dynamics, through the depth
of boundary layer as well. Then, there would be no way to increase the
boundary layer inflow and therefore, no way to amplify Vmax!
¶It may be worth noting that this conclusion is different to that for
moist Eady problem of baroclinic instability in a slab-symmetric, semi-
geostrophic framework worked out by Emanuel et al. (1987). These
authors derive a relationship between the diabatic heating rate and the
dry and moist saturation potential vorticities, indicating that the slantwise,
moist neutrally-stable state coincides exactly with the condition that
the moist saturated potential vorticity is zero. While we have verified
that such a condition is valid also for neutral slantwise stability of the
moist Eliassen problem studied here, we note that Emanuel et al. make
several approximations in their derivation: besides approximate cross-
front geostrophic balance and hydrostatic balance, other assumptions
include (i) the use of geostrophic (pseudo-) height, (ii) the approximation
that the vertical velocity in pressure coordinates is proportional to the
vertical velocity in the assumed height coordinate, (iii) the assumption
that density is a constant, and (iv) that the “r” parameter is spatially and
temporally constant. In contrast, besides the hydrostatic and gradient wind
balance approximations, in the moist Eliassen model we make only the
approximation that the local tendency of saturation mixing ratio is small
compared with the advective tendencies when calculating the latent heat
release. Moreover, it should be noted that the condition for slantwise
neutral moist stability need not be identical to the discriminant condition
for ellipticity in the moist balance model. The former is a condition
for the stability of axisymmetric rings displaced from their equilibrium
configuration. The latter is a condition for the Eliassen equation governing
the secondary circulation of a slowly evolving vortex to remain elliptic.
We know of no principal of physics that requires these conditions to be the
same.
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5.2. Ventilation issues
Insights from the moist balance formulation of Section
2 raise questions also about the configuration of the
WISHE-theories, in which congruent M - and θ∗e -surfaces
emanate from the inner-core boundary layer and rise to
the upper-troposphere at all stages of vortex evolution.
In reality, the vertical extent of convection depends on
a number of factors, in particular, the effective buoyancy
in the convection (Smith and Montgomery 2022), but in
the balance theories under discussion, there is no local
unbalanced buoyancy by definition. With this perspective,
it is unclear how the foregoing configuration could become
established, starting from an initially weak vortex in an
unsaturated atmosphere as in Section 2. Moreover, as
demonstrated in Smith et al. (2021), it cannot be assumed
a priori that all air exiting the boundary layer can be
ventilated by buoyant deep convection. We note that this
ventilation issue is not a feature of the classical theories
(Smith and Wang 2018). We note also that the classical
theories do predict inflow throughout the lower troposphere
as is found in observations and in analyses of three-
dimensional model simulations of intensifying tropical
cyclones (Smith and Montgomery 2023, Chapters 1 and 11).

5.3. A fundamental question
The attempt to reconcile the WISHE-theories and the clas-
sical theories highlights an important question concerning
the assumed flow configuration in the WISHE-theories. The
implied diabatic heating rate in these theories associated
with ascent along saturation moist adiabats has presumably
a spatial distribution similar to that assumed in the classical
theories with a maximum heating rate in the middle tropo-
sphere. In the classical theories, the spatial gradients of this
heating rate distribution induce inflow below the heating
rate maximum, which is well above the boundary layer. The
question is, why does this heating distribution not induce a
similar inflow in the WISHE-theories?

6. Conclusions
We have sought to reconcile the classical axisymmetric
balance theories of tropical cyclone intensification by
Shapiro and Willoughby and Schubert and Hack with
the various WISHE-models of Emanuel. Since a scale
analysis suggests that axisymmetric balance models provide
a zero order foundation for understanding tropical cyclone
behavior, it would seem important to know how these two
theories relate and which, if either, of these theories is
most useful for providing understanding? This endeavour
necessitated an extension of the classical theories to account
for explicit latent heat release in slantwise ascending air.
The extension uncovered enroute a range of old modelling
issues concerning the representation of deep convection in a
balance framework and reaffirmed the need to parameterize
buoyant deep convection in order to obtain a theory for
intensifying storms.

The behaviour of the extended moist model with explicit
latent heat release is illustrated by a particular calculation
starting with an axisymmetric vortex in a conditionally-
unstable atmosphere. In this calculation, the flow becomes
convectively unstable as soon as condensation occurs aloft
and the moist Eliassen equation for the balanced secondary

circulation becomes hyperbolic in the convectively-unstable
region. The solution can be extended beyond this time
by regularizing the moist Eliassen equation to remove
the hyperbolic region, but regularization removes any
convective instability. Moreover, the regularized solution
becomes noisy after some time and for strong initial vortices
eventually breaks down. The suppression of convective
instability removes any mechanism to produce inflow in
the lower troposphere in the presence of the frictionally-
induced outflow there. Such inflow would be required to
draw absolute angular momentum surfaces inwards above
the boundary layer to enable vortex spin up. As a result,
the initial vortex progressively decays, even following the
formation of elevated cloud with the accompanying latent
heat release.

We showed that in the extended moist model, the
development of a strong vertical gradient of tangential wind
near the surface on account of friction is accompanied by
strong near-surface cooling, which leads to a shallow layer
of fog. The cooling is an artefact of assuming strict thermal
wind balance in the boundary layer. The formation of fog
would turn off surface moisture fluxes from the ocean had
these fluxes been included in the formulation. We showed
that, because of the strong cooling, the condensation in the
foggy layer does not lead to convective instability.

Since the flow configuration of the extended prognostic
model is similar to that in the WISHE-theories, the model
and its solution behaviour provide a suitable framework in
which to attempt a reconcilliation of the classical theories
and the WISHE-theories. In particular, the comparison of
the two theories poses a fundamental question: how does the
maximum tangential wind, Vmax, in the WISHE-theories
amplify when the flow above the boundary layer is assumed
to be everywhere outwards? We traced the reason for this
amplification to a core assumption of the WISHE-theories
that the surfaces of saturation moist entropy and absolute
angular momentum are everywhere congruent above and
at the top of the boundary layer, implying that the moist
saturation potential vorticity is identically zero. With moist
entropy as the prognostic variable in these theories, the
absolute angular momentum surfaces are dragged inwards
as a result of being slaved to the moist entropy surfaces by
the congruence assumption.

A related question addressed is the location of Vmax. We
argued that Vmax must occur at the top of the boundary
layer, at which level there must be inflow, and that the
spin up above the boundary layer top must occur through
the vertical advection of absolute angular momentum as
the radial flow there is outwards. As saturated air parcels
ascend above the boundary layer in the WISHE-theories,
while conserving their moist entropy, the accompanying
diabatic heating rate must have a similar spatial distribution
to that assumed in the classical theories. This fact leads to
fundamental questions: why would this heating distribution
not produce inflow above the boundary layer in the
WISHE-theories as in the classical theories? And why
is the diabatically-induced inflow restricted to a sheet of
azimuthal vorticity at the boundary layer top? We noted
that, in an azimuthal average of observations and three-
dimensional models, there is inflow throughout much of
the lower troposphere during the intensification phase. Such
inflow is a feature also of the classical spin up theory.

While an intensification of the tangential velocity at the
top of the boundary layer in the WISHE-models will lead
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through elementary boundary layer dynamics to increased
inflow in the boundary layer, we pointed out that there is
no reason to suppose that all the inflowing air could be
ventilated to the upper troposphere by the implied heating
rate distribution. We noted that the classical intensification
theories do not make the assumption that the flow rising
out of the boundary layer is automatically ventilated to the
upper troposphere.

At the core of the classical axisymmetric balance theories
is a second-order partial differential equation for the
streamfunction of the overturning circulation, the so-called
Eliassen equation, which is elliptic provided that the product
of the absolute vertical rotation rate and the dry potential
vorticity is globally positive. An important new finding
of our analysis is that, unlike in the dry problem, the
discriminant of the corresponding moist Eliassen equation
is not functionally proportional to the saturation potential
vorticity. Moreover, we showed that if the surfaces of
saturation moist entropy and absolute angular momentum
are congruent, as in the WISHE-theories, the discriminant
of the moist Eliassen equation is negative, in which case,
the equation is hyperbolic. For this reason alone, it was
argued that it is not possible to reconcile the classical
intensification theories and the WISHE-theories. It was
argued also that, from a physical perspective, the spatial
distribution of diabatic heating rate in the WISHE theories
would be such as to induce inflow in the lower troposphere
above the boundary layer in the classical theories instead
of outflow there as postulated in the WISHE-theories,
themselves.

In summary, our attempt to carry out a reconciliation
of the classical intensification theories and the WISHE-
theories has uncovered a range of questions about the
WISHE-theories, themselves, that we are unable to answer,
but which call into question the integrity of these
theories. In particular, we noted evidence showing that the
global congruence assumption of the WISHE-theories is
not a feature of azimuthally-averaged fields from three-
dimensional tropical cyclone simulations, nor, to our
knowledge, is it supported by observations.
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7. Appendix 1: Saturation moist PV
The saturation moist potential vorticity (moist PV) is
defined by Eq. (15). For a symmetric vortex with tangential
wind speed distribution v(r, z),

ω + f = −∂v
∂z

i+ (ζ + f)k = −1

r

∂M

∂z
i+

1

r

∂M

∂r
k,

and
∇θ∗e =

∂θ∗e
∂r

i+
∂θ∗e
∂z

k,

so that

P ∗
m =

1

rρ

(
−∂M
∂z

∂θ∗e
∂r

+
∂M

∂r

∂θ∗e
∂z

)
=

1

rρ
j · ∇θ∗e ∧∇M.

(17)
In the above formulae for ω + f and ∇θ∗e , i and k
denote unit vectors in the radial and vertical directions,
respectively. It follows that zero moist PV is a situation that
is equivalent to the congruence of the M -surfaces and θ∗e -
surfaces.
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8. Appendix 2: Relation between P ∗
m

and Dm

Note that the formula for P ∗
m (17) does not depend on any

approximation for θ∗e . Alternatively, we could write

P ∗
m =

θ∗e
rρ

j · ∇ ln θ∗e ∧∇M. (18)

Since, typically, ∇ ln θ∗e is directed downwards and ∇M is
directed outwards, P ∗

m is mostly negative. Now

ln θ∗e = ln θ + Lvr
∗
v/(cpT ) = − lnχ+ Lvr

∗
v/(cpT )

and, treating Lv/(cpT ) as a constant to a first approxima-
tion, we can write

1

θ∗e
∇θ∗e = − 1

χ
∇χ+

Lv

cpT
∇r∗v .

so that

P ∗
m =

θ∗e
ρ

[
−∂v
∂z

(
− 1

χ

∂χ

∂r
+

Lv

cpT

∂r∗v
∂r

)
+

(ζ + f)

(
− 1

χ

∂χ

∂z
+

Lv

cpT

∂r∗v
∂z

)]
. (19)

Upon multiplying P ∗
m by gρξ/θ∗e yields with a little algebra

gρξ

θ∗e
P ∗
m =

(
I2g − CLv

cpT

∂r∗v
∂r

)(
N2 +

gLv

cpT

∂r∗v
∂z

)
−(

B − CLv

cpT

∂r∗v
∂z

)(
B +

gLv

cpT

∂r∗v
∂r

)
, (20)

where I2g , N2, B2 and γ are defined in Subsection 2.1.
Subtracting the formula (20) from formula (11) divided by
4γ2 gives

Dm

4γ2
− gρξ

θ∗e
P ∗
m =

(
B − CLv

cpT

∂r∗v
∂z

)(
B +

gLv

cpT

∂r∗v
∂r

)
−{

B +
Lv

2cpT

(
g
∂r∗v
∂r

− C
∂r∗v
∂z

)}2

,

(21)

which, after a little more algebra reduces to

Dm

4γ2
− gρξ

θ∗e
P ∗
m = −1

4

(
Lv

cpT

)2 (
g
∂r∗v
∂r

+ C
∂r∗v
∂z

)2

.

(22)

Finally, using the fact that r∗v = r∗v(p, T ) and recalling that
g∂p/∂r + C∂p/∂z = 0, in essence because the isobars are
the characteristics of Eq. (3), it can be shown that

Dm = 4gγ2

ρξP ∗
m

θ∗e
− g

4

(
Lv

cpT

)2 (
∂r∗v
∂T

)2

p

(
∂T

∂r

)2

p︸ ︷︷ ︸
>0

 .
(23)

It follows from this expression that, if the M - and θ∗e -
surfaces are congruent, then Dm < 0, i.e., the moist
Eliassen equation (10) is hyperbolic. Further details
of the foregoing derivation may be obtained from
https://www.meteo.physik.uni-muenchen.
de/˜roger/M42B_derivations.
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