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Abstract:
Two methods for solving the Eliassen equation for the corresponding balanced secondary circulation of a numerically-simulated, high-
resolution tropical cyclone vortex are compared. In idealized calculations for a symmetrically stable vortex, both methods (successive
over-relaxation and multi-grid) converge and the solutions are broadly similar. In more typical cases, where the vortex has regions of
inertial or symmetric instability, it is necessary to coarsen the data from the numerical simulation to determine the balanced secondary
circulation. A convergent solution can be obtained with the multi-grid method for a finer grid spacing than with the SOR method.
However, the multi-grid method fails to converge when the vertical grid spacing is similar to that of the numerical simulation. Results
using both methods confirm the inability of the balance formulation in capturing the strong inflow and resulting tangential wind spin
up in the frictional boundary layer during a period of rapid intensification.
Typical tropical cyclone simulations show an inflow layer just beneath the upper-level outflow layer and the corresponding balanced
secondary circulation may show such an inflow layer also. However, caution is called for in attributing this inflow layer to a balanced
flow response driven by the distribution of diabatic heating and tangential momentum forcing. Our study suggests that it is likely an
artifact of the ad hoc regularization procedure that is necessary to keep the Eliassen equation globally elliptic in regions of inertial
and/or symmetric instability.
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1 Introduction

For a slowly evolving tropical cyclone vortex in which
flow asymmetries are not a dominant factor, a well known
approximate description of the slow evolution is furnished
by the Eliassen balance vortex model (Willoughby 1979;
Shapiro and Willoughby 1982, Schubert and Hack 1982,
Smith et al. 2018 and refs.). In this reduced model, the trop-
ical cyclone vortex is represented to leading order by the
primary (tangential) circulation the cyclone centre. Super-
posed on the primary circulation is a secondary (overturn-
ing) circulation, which is typically inwards in the lower
troposphere and outwards in the upper troposphere. The
secondary circulation is driven primarily by the aggregate
of latent heat release in deep cumulus convection in the cen-
tral convection zone of the vortex.

Assuming the tropical cyclone is in strict gradient
and hydrostatic balance, the secondary circulation can be
diagnosed by solving a partial differential equation in the
radius-height plane for the meridional streamfunction (the
so-called Eliassen equation for the transverse circulation).
This equation governs the overturning circulation that is

1Correspondence to: Prof. M. T. Montgomery, Department of Meteor-
ology, Naval Postgraduate School, Monterey, CA USA. E-mail:
mtmontgo@nps.edu

required to keep the vortex in a state of persistent ther-
mal wind balance as the tangential momentum forcing and
thermodynamic heat forcing tries to drive the vortex out
of balance. Previous work has suggested that this balance
model is sufficient to describe the secondary circulation
in an intensifying tropical cyclone, including in the vortex
boundary layer (Heng et al. 2017). However, this assertion
has been rebutted by Montgomery and Smith (2018), who
noted, inter alia, that Heng et al. did not solve a strictly
balance vortex model and inadvertently ignored the deriva-
tional requirement that the basic state vortex remain in a
state of strict thermal wind balance during the vortex evo-
lution.

Heng et al. (2018) attempted to rebut the critique of
Montgomery and Smith (2018) by solving the Eliassen
equation for a single numerical simulation, but again
employed basic state vorticies that are not in strict ther-
mal wind balance. Recent work of Montgomery and Pers-
ing (2020) has affirmed prior findings of Bui et al. (2009),
Abarca and Montgomery (2014) and demonstrated that the
strict Eliassen balance model fails to represent the strong
inflow in the boundary layer needed to generate the inten-
sifying tangential winds.

Most previous solutions of the Eliassen equation have
been obtained using the successive over-relaxation (SOR)
method including those in the aforementioned papers.
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Recent work by Wang et al. (2020) using a particularly high
spatial resolution simulation of an intensifying tropical
cyclone has found that balance solutions can be obtained
only by using a coarsened resolution representation of the
simulated vortex. This work affirms and underscores the
findings of Montgomery and Persing (2020) and raises a
new question of whether axisymmetric balance dynamics
is robustly meaningful in high resolution simulations of
tropical cyclone intensification. By robustly meaningful we
mean that a solution actually exists. A particular problem is
that, as shown by Smith et al. (2018), the evolution of a vor-
tex in a balanced formulation develops regions of inertial
instability in which the Eliassen equation becomes hyper-
bolic. In an attempt to overcome this problem, it is neces-
sary to modify the coefficients of the Eliassen equation in
these regions so that the equation remains globally ellip-
tic. The procedure for carrying out this modification, often
referred to as regularization, is necessarily ad hoc. Even if a
mathematical solution of the regularized Eliassen equation
could be shown to exist, an extensive region of regulariza-
tion may be a reason for the SOR method to fail, unless the
resolution of the model data in the Eliassen equation are
coarsened.

As a first step in verifying the robustness of their find-
ings, Wang et al. used an independent multi-grid solution
method for solving the Eliassen equation. The purpose of
this study is threefold: (1) to document the details of the
computational methods used in Wang et al. (2020); (2)
to explore the sensitivity of the solutions to the particu-
lar method used; and (3) to assess the robustness of con-
clusions based on the SOR method. A specific question
addressed is whether a convergence solution of the Eliassen
equation for a high-resolution simulation can be obtained
using a multi-grid method when the straightforward SOR
method fails.

We describe the Calculation configuration in section 2
and review briefly the SOR method and the more sophisti-
cated multi-grid method in section 3. The results of various
calculations are presented in section 4. The conclusions are
presented in section 5.

2 The calculations
In axisymmetric cylindrical coordinates (r, z), the Eliassen
equation for the streamfunction ψ of the secondary circula-
tion has the following form (as in Montgomery and Persing
2020),
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where v is the tangential velocity components(denotes the
azimuthal wavenumber zero flow component), χ = 1/θ is
the inverse of the potential temperature, C = v2/r + fv is
the sum of centrifugal and Coriolis forces per unit mass,
ξ = f + 2v/r is twice the local absolute angular velocity,
f is the Coriolis parameter (assumed constant) and g is
the acceleration due to gravity. ζ = (1/r)∂(rv)/∂r is the
vertical component of relative vorticity, N2 is the square
of the Brunt-Väisälä frequency, defined as (g/θ)∂θ/∂z,
and I2g = ξ(ζ + f) + (C/χ)∂χ/∂r is the square of the
generalized inertial frequency. The quantities Ā and C̄
are proportional to the static stability and inertial stability,
respectively. The quantity B̄ characterizes, in part, the
strength of the vertical shear of the gradient wind. The
forcing term Θ̇ represents a combination of the diabatic
heating and momentum forcing, θ̇ and V̇ respectively,
defined as follows
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In the anelastic approximation, the transverse velocity
components u and w are given in terms of ψ by:

u = − 1

rρ

∂ψ

∂z
, w =

1

rρ

∂ψ

∂r
. (7)

(a)

Figure 1. The idealized tropical-cyclone-like vortex to a prescribed
diabatic heating rate in Calc-A. Shown as contours of tangential
velocity (black thick contour interval 5 m s−1) and prescribed

diabatic heating, θ̇(r, z) (shaded, contour interval 5 K per hour).

Four sets of calculations are carried out to compare the
balanced solutions for the streamfunction of the secondary
circulation of tropical-cyclone-like flows obtained using the
SOR and multigrid solution methods.

The first set of calculations, referred to as Calc-
A, relate to the balanced streamfunction of an idealized
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tropical-cyclone-like vortex defined by a specified tangen-
tial wind profile, v(r, z), forced by a specified distribution
of diabatic heating rate θ̇(r, z), where
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with b = 0.45, Vm = 60 m s−1, rm = 30 km, zd =18 km, and
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with δr = r − rc, δz = z − zc, rc = 30 km, zc = 8 km
and rw = 20 km. In these formulae: Vm is the maximum
tangential wind speed, which occurs at the surface at radius
rm; rc and zc are the radius and height of the maximum
diabatic heating; Θ̇ = 70 K h −1 is the maximum amplitude
of the heating rate, rw is the width of the heating function
which is 20 km. The tangential wind decreases sinusoidally
with height to an altitude of zd =18 km and is set to
zero above 18 km. There is no momentum forcing in
these particular calculations. The prescribed structure of
tangential wind and diabatic heating is shown in Fig. 1.

The set of calculations, Calc-B, relate to the balanced
secondary circulation at 60 h of the simulation in Wang
et al. (2020). The tangential wind field is azimuthally-
averaged and time-averaged for one hour using 1 minute
output data and the corresponding balanced pressure and
temperature distribution are obtained by using the unap-
proximated method of Smith (2006), assuming a latitude
of 20oN and the Dunion moist tropical sounding (Dunion
2011) at some large radius. The original horizontal grid
spacing is 1 km from the model output and there are 78
vertical levels from 0 km to 25 km. The vertical grid spac-
ing is 100 m in the first 1 km and 500 m from16 km to 25
km. Between 1 km and 16 km, the vertical grid spacing is
uniformly stretched.

The set of calculations, Calc-C, relate to the balanced
secondary circulation of the vortex structure in Wang et al.
(2020) at 60 h. but with the prescribed diabatic heating rate
in Calc-A, while the set of calculations Calc-D relate to
the balanced secondary circulation of the vortex structure
in Calc-A, but with the diabatic heating and momentum
forcing in Wang et al. (2020) at 60 h. The full set of
calculations is summarized in Table I.

Calculation vortex forcing

Calc-A ideal ideal
Calc-B model model
Calc-C model ideal
Calc-D ideal model

Table I. Summary of all calculations

Each set of calculations is performed with the SOR
and multi-grid method with different radial and/or vertical

resolution. To meet the special requirements of the multi-
grid method in relation to the number of grid points, the
computational domain of each case consists of a cylindrical
region 256 km in radius and 19.2 km in height.

Table II shows the number of non-elliptic points in
Calc-B and Calc-C. It is clear that, the number of non-
elliptic grid points increases with decreasing grid spac-
ing. Figure 2 shows that the negative discriminant area
is broader at the finest resolution (panel (b)) than at the
coarsest resolution (panel (a)), especially in the upper-
troposphere. Furthermore, the regions of static and sym-
metric instability are somewhat more extensive in the
upper-troposphere. It is foreseeable that the increase in
negative discriminant area in the case of higher resolution
might lead to additional difficulty in solving the Eliassen
equation.

Non-elliptic dz = 600 m dz = 300 m dz = 150 m

dr = 2 km 558 1273 2517
dr = 1km 1119 2559 5064

Table II. Number of non elliptic points in Calc-B and Calc-C for
different radial and vertical grid spacings, dr and dz, respectively.

3 Solution methods

3.1 Successive over-relaxation method
On the discrete (r, z) mesh of points, the solver iterates
for ψ by linearly marching through the grid mesh and
minimizing the residual R defined by

R = Āδrrψ + B̄δrzψ + C̄δzzψ + D̄δrψ + Ēδzψ − Θ̇.
(10)

Here, the operator δ represents a discrete partial derivative
in the direction of the subscript, with second-order deriva-
tives having subscripts. The streamfunction at iteration step
k + 1 is obtained from that at step k by successive over-
relaxation:
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and ω = 1.8 is the empirically chosen over-relaxation par-
ameter (generally between 1.0 and 2.0). The iteration is
deemed to have converged if the maximum difference in
ψ between two iteration steps is less than 10−8 times the
maximum magnitude of the solution at all interior (r, z)
grid points. This criterion follows the suggestion of Adams
1991 in his multi-grid method. Other technical details of the
method can be found in Press et al. (1992) page 866–870.
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(a) (b)

Figure 2. Sign of the coefficients Ā, C̄ and the discriminant D = 4ĀC̄ − B̄2 in the Eliassen equation (1) for Calc-B and Calc-C with (a)
dr = 2 km, dz = 600 m and (b) dr = 1 km, dz = 150 m.. The quantities Ā and C̄ are proportional to the static stability and inertial stability,
respectively, while the quantity B̄ characterizes, in part, the strength of the vertical shear of the gradient wind. Ā (zero lines as green), B̄

(zero lines as black) and D (shaded, blue for negative, red for positive).

3.2 Multi-grid method

The multi-grid method is an iteration method that has
become quite popular and versatile for solving linear ellip-
tic partial differential equations and even some nonlinear
problems (Adams 1991). Although the method is not an
over-relaxation method in the traditional sense, the method
takes advantage of the fact that the residual error damps
more quickly on small scales than larger scales of the grid
mesh. The difference in error attenuation between the small
and large scales allows one to cycle between small-scale
and large scale grids in order to accelerate the convergence
rate of the solution. Specifically, the fine grid is used to
eliminate the high-frequency oscillation error; the elimina-
tion of the low-frequency oscillation error is accomplished
by the coarser grids and the coarse-grid solution is then
projected back onto the fine grid and the cycle is repeated
and so on until the residual decreases to a given error crite-
rion. Because the convergence speed of the low-frequency
oscillation error in the coarse grid is faster than on the orig-
inal grid, the multi-grid method is generally much faster
than other classical, one-scale, iteration methods, such as
SOR, Gauss-Siedel or Jacobi iteration. The computational
efficiency of the multi-grid method is generally very high
because the method scales in proportion to the number of
grid points of the mesh. An excellent tutorial on multi-grid
methods and their relation to the classical one-scale itera-
tion methods is provided by Briggs et al. 2000.

In the implementation of the multi-grid method
method herein, the same convergence criterion is employed
as for the SOR method discussed above.

4 Results

4.1 Calculation set Calc-A

This set of twelve calculations Calc-A comprise six using
the SOR method and six using the multi-grid method with
a combination of dr = 1 km or 2 km and dz = 150 m, 300
m,.or 600 m. Figure 3 shows radial and vertical velocity

components structure for a selection of these calculations.
The 1 km radial grid spacing corresponds to the spacing in
the model simulation used to generate the data for Calc-B.
The panels in the left column show the solutions using the
multi-grid method and the right columns show those using
the SOR method. From the figure it is seen that the flow in
all panels is essentially the same, confirming the integrity
of both solution methods.

The maximum inflow occurs near the surface while the
maximum outflow occurs at a height of about 15 km. The
strongest ascent occurs in the region of maximum heating,
a feature to be expected from the study of Shapiro and
Willoughby (1982) and Smith et al. (2018). The maximum
inflow for each of the 12 cases differs by no more than 0.2
m s−1 and the maximum outflowdiffers by no more than 0.1
m s−1. In essence, for this idealized case, the multi-grid and
SOR methods give essentially the same results, irrespective
of grid spacing.

4.2 Calculation set Calc-B

We turn now to examine in more depth the solutions for
the balanced secondary circulation in the high-resolution
tropical cyclone simulation presented by Wang et al. (2020)
forced by the azimuthally averaged diabatic heating and
tangential momentum forcing (including the eddy terms)
diagnosed from the simulation at 60 h. These forcing
distributions are shown in figures 9b,c of Wang et al.
(2020). Table III shows that, as the resolution increases,
convergence solutions become harder to obtain. Figure 4
compares solutions for the balanced secondary circulation
with different grid resolutions with that obtained from the
azimuthally averaged output from the simulation, itself, at
60 h. Figure 4a shows the azimuthally-averaged circulation
in the simulation while Figure 4b shows the corresponding
balanced solution obtained using the SOR method with a
radial grid spacing of 2 km and vertical grid spacing of
600 m This choice of grid configuration is coarser than that
used for the simulated vortex for reasons discussed in the
Introduction.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) components of the secondary circulation in a subset of Calc-
A. The calculations differ in the method of solution (left columns SOR, right columns multigrid) and the radial and vertical grid spacing
(dr, dz): (a) and (b) dr = 2 km, dz = 600 m; (c) and (d) dr = 1 km, dz = 600 m; (e) and (f) dr = 2 km, dz = 300 m; (g) and (h) dr = 1
km, dz = 150 m. Contour interval for ū: 2 m s−1 when ū > 0, 1 m s−1 when ū < 0. Positive contours solid, negative contours dashed.

Shading values indicated on color bar. Green thick contours are shown for w̄: 0.25 m s−1 (Only positive values are shown).

As noted by Wang et al. (2020), the mean height of
the balanced outflow is too low (12 km compared with 14
km) and the outflow is split at larger radii in the balanced
solution. There are strong discrepancies also in the strength
and radial extent of the inflow layers. For example, the
inflow below the outflow layer is approximately twice

as strong in the balanced solution and the inflow layer
above the outflow layer is barely evident. The maximum
radial velocity in the upper level outflow in the balance
solution is 23.3 m s−1 compared with 20.3 m s−1 in
the simulation. The boundary layer inflow in the balance
solution is significantly weaker than in the simulation

Copyright c© 2020 Meteorological Institute TCRR 76: 1–11 (2020)
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(a)

(b) (c)

(d) (e)

Figure 4. Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) components of the secondary circulation at 60 h in the numerical
simulation (panel (a)) and in a subset of axisymmetric balanced solutions for Calc-B. The fields in panels (a) are azimuthally-averaged and
time-averaged for one hour using 1 min output. (b) SOR and (c) multi-grid with dr = 2 km, dz = 600 m. (e) multi-grid with dr = 2 km,
dz = 300 m; (f) multi-grid with dr = 1 km, dz = 600 m. Contour interval for 2 m s−1 when ū > 0, 1 m s−1 when ū < 0. Positive contours
solid, negative contours dashed. Shading values indicated on color bar. Only two thick contours are shown for w̄. For w̄ > 0, 0.25 m s−1

(green, solid); for w̄ < 0, -0.02 m s−1 (green, dashed). Shading values indicated on colour bar.

(maximum inflow 7.5 m s−1 compared with 24.5 m s−1,
a factor of three discrepancy), but is much deeper in the
inner region as found by Montgomery and Persing (2020).

Figure 4c shows the balance solution using the multi-
grid method with the same grid configuration as in Figure
4b. Comparing Figures 4b and 4c it is seen that the multi-
grid solution is almost the same as that obtained with
SOR. Indeed, the maximum upper-level outflow and inflow
have comparable values (Table IV), but the outflow and
inflow weaken slightly faster with radius with the multi-
grid method. Again, the boundary layer inflow in the
balance solution is much weaker than in the numerical
simulation, reflecting the fact that the balance assumption
in the boundary layer is poor.

When the vertical grid spacing is halved, the SOR
method failed to converge, but a convergent solution is

still possible using the multi-grid method (Figure 4d).
However, this solution is significantly different in detail
from that with the coarser vertical resolution in Figure
4c. The outflow layer has a stronger maximum and has a
more obvious two-layer structure at large radii. The upper
inflow is stronger also and extends to a larger radius, even
exceeding the strength of that in the numerical simulation.
Although the maximum boundary layer inflow is larger
also, its strength is still greatly underestimated relative to
that of the simulation. When the vertical grid spacing is
halved again to 150 m, neither solution methods converge
(Table III).

When the radial grid spacing is reduced to 1 km,
the same as in the numerical simulation (Figure 4e), a
convergent solution is possible only using the multi-grid
method and only then using the coarsest vertical grid

Copyright c© 2020 Meteorological Institute TCRR 76: 1–11 (2020)
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spacing of 600 m. The solution in this case is virtually
indistinguishable from that in Figure 4c. These findings
support that of Wang and Smith (2019), Wang et al. (2020)
and Montgomery and Persing (2020) indicating that the
balance solution has intrinsic limitations in diagnosing the
secondary circulation of the numerical simulation.

Calc-B SOR MG

dr = 2 km, dz = 600 m solvable solvable
dr = 2 km, dz = 300 m unsolvable solvable
dr = 2 km, dz = 150 m unsolvable unsolvable
dr = 1 km, dz = 600 m unsolvable solvable
dr = 1 km, dz = 300 m unsolvable unsolvable
dr = 1 km, dz = 150 m unsolvable unsolvable

Table III. Summary of SOR and multi-grid performance for Calc-B.

Calc-B upper-max upper-min lower-min

Simulation 20.3 m/s -4.9 m/s -24.5 m/s
SOR, 2 km, 600 m 23.3 m/s -10.2 m/s -7.5 m/s
MG, 2 km, 600 m 22.8 m/s -9.7 m/s -7.5 m/s
MG, 2 km, 300 m 38.9 m/s -14.8 m/s -9.2 m/s
MG, 1 km, 600 m 22.8 m/s -9.7 m/s -7.5 m/s

Table IV. Maximum values of inflow and outflow for each case in
Calc-B.

4.3 Calculation set Calc-C

In an effort to pinpoint the reasons for the failure of the
SOR and multi-grid methods to converge for lower grid
spacings in calculation set Calc-B, we turn first to a set
of calculations with the same vortex structure in Calc-B,
but with the idealized forcing used in Calc-A. The tangen-
tial wind structure and prescribed diabatic heating rate used
in Calc-C are shown in Figure 5a. As in Calc-B, there are
regions where the discriminant of the Eliassen equation is
negative (Figure 2) and the equation requires regulariza-
tion. Even though the diabatic heating rate in these calcu-
lations has a regular shape, the secondary circulation has
more structure than in Figure 3 with an inflow layer beneath
the upper-level outflow.

The two solutions with the same grid spacing are
similar with two local maxima in the upper-level outflow
(Figure 5b,c). However, the multi-grid solution with the
same radial grid spacing, but a vertical grid spacing of
300 m has three local maxima within the outflow layer
and a much stronger upper level inflow (Figure 5d). As
in Calc-B and as detailed in Table V, the SOR method
does not converge with a 300 m vertical grid spacing and
neither solution method converges with a 150 m vertical
grid spacing.

When the radial grid spacing is reduced to 1 km,
it is only possible to obtain a solution with the multi-
grid method and only then with a vertical grid spacing
of 600 m. This solution, which is shown in Figure 5e,
is virtually the same as the solution with a 2 km radial
grid spacing in Figure 5b. This result suggests that the
solution is less sensitive to changes in the radial resolution
than to changes in the vertical resolution, at least where a
convergent solution is possible.

Calc-C SOR MG

dr=2km, dz=600m solvable solvable
dr=2km, dz=300m unsolvable solvable
dr=2km, dz=150m unsolvable unsolvable
dr=1km, dz=600m unsolvable solvable
dr=1km, dz=300m unsolvable unsolvable
dr=1km, dz=150m unsolvable unsolvable

Table V. Summary of SOR and multi-grid performance for Calc-C.

4.4 Calculation set Calc-D

The final set of calculations, Calc-D, uses the full diabatic
heating and momentum forcing (including that from the
eddies) from the numerical simulation (shown in figures
9b,c of Wang et al. 2020), as in Calc-B, but incorporate
the idealized vortex structure in Calc-A. The unique fea-
ture is that this vortex is everywhere symmetrically stable
and the Eliassen equation does not require regularization.
The balanced secondary circulation for this set of calcula-
tions is shown in Figure 6. The four calculations with 600 m
vertical grid spacing and either 1 or 2 km radial grid spac-
ing show similar structures with a hint of a second outflow
maximum above the main outflow layer. The second out-
flow maximum is presumably related to the fine structure
of the diabatic heating rate. With a vertical grid spacing of
300 m, the second outflow feature becomes more marked
using both solution methods (panels (e) and (f)), while in
the finest resolution solutions (panels (g) and (h)), the sec-
ond outflow structure is even more pronounced.

Notably, there is no concentrated inflow layer below
the main outflow layer as in Calc-B and Calc-C. This result
indicates that the upper-level inflow layer in Calc-B and
Calc-C is mainly a consequence of the need to regularize
the coefficients of the Eliassen equation in regions of
symmetric instability. The implications of this finding are
discussed in the next section.

As shown in Table VI, when the resolution increases,
flow extrema increase marginally. For the case of the
same resolution, both two solution methods give essentially
the same results. Most importantly, without the need to
regularize the Eliassen equation, a convergent solution can
be obtained using both solution methods.
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(a)

(b) (c)

(d) (e)

Figure 5. Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) components of the secondary circulation in a subset of Calc-C.
For comparison, panel (a) shows the tangential wind from the numerical simulation at 60 h and a prescribed diabatic heating rate (K per
hour). (b) SOR method, dr = 2 km, dz = 600 m. Panels (c)-(e) use the multi-grid method with (c) dr = 2 km, dz = 600 m; (d) dr = 2
km, dz = 300 m; (e) dr = 1 km, dz = 600 m. Contour interval for ū: 2 m s−1 when ū > 0, 1 m s−1 when ū < 0. Positive contours solid,
negative contours dashed. Shading values indicated on color bar. Green thick contours are shown for w̄: 0.25 m s−1 (Only positive values are

shown).

4.5 Summary of the calculations

Taken together, the four sets of calculations described
above indicate that the ability to obtain a convergent solu-
tion of the Eliassen equation for the balanced secondary
circulation of a high-resolution simulated tropical cyclone
is severely compromised by the presence of regions where
the azimuthal flow is inertially and/or symmetrically unsta-
ble. Such regions are predominantly found in the upper
troposphere (see e.g. Smith et al. 2018). By severely com-
promised, we mean that it is no longer possible to obtain
a convergent solution at a resolution commensurate with
that of the simulation. In these situations, it is possible to
obtain a convergent solution only by coarsening the grid,
which serves to shrink the region of instability. With this

coarsening, the solutions obtained by the SOR and multi-
grid methods are essentially the same, but in the calcula-
tions carried out here, the multi-grid method is capable of
obtaining a convergent solution with a smaller radial and/or
vertical grid spacing than the SOR method, before it too
fails to converge.

Comparison between the two sets of calculations Calc-
C and Calc-D suggest that the inflow layer just beneath
the upper-level outflow layer in any balance solution is a
consequence of the regularization that is required in Calc-
C, but not in Calc-D. Because regularization is an ad hoc
procedure, this result calls for caution in attributing such
inflow layers to a balanced flow response driven by the
distribution of diabatic heating and tangential momentum
forcing. It follows that an explanation of the upper-level
inflow layers that are found in numerical simulations of

Copyright c© 2020 Meteorological Institute TCRR 76: 1–11 (2020)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) components of the secondary circulation in a subset of Calc-D
(idealized vortex, generalized diabatic heating (K per hour) and generalized tangential momentum forcing (m s−1 per hour). The calculations
differ in the method of solution (left columns SOR, right columns multigrid) and the radial and vertical grid spacing (dr, dz): (a) and (b)
dr = 2 km, dz = 600 m; (c) and (d) dr = 1 km, dz = 600 m; (e) and (f) dr = 2 km, dz = 300 m; (g) and (h) dr = 1 km, dz = 150
m. Contour interval for ū: 2 m s−1 when ū > 0, 1 m s−1 when ū < 0. Positive contours solid, negative contours dashed. Shading values

indicated on color bar. Green thick contours are shown for w̄: 0.25 m s−1 (Only positive values are shown).

tropical cyclones needs to be based on more fundamental
considerations than assuming global thermal wind balance
(Wang et al. 2020).

The subset of calculations Calc-B that converge affirm

prior work of Bui et al. (2009), Abarca and Montgomery
(2014), Montgomery and Persing (2020), Wang and Smith
2019 and Wang et al. (2020) in that the boundary layer
inflow in the strict axisymmetric Eliassen balance model

Copyright c© 2020 Meteorological Institute TCRR 76: 1–11 (2020)
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Calc-D outflow inflow

MG, dr = 2 km, dz = 600 m 8.8 m/s -5.1 m/s
MG, dr = 1 km, dz = 600 m 8.9 m/s -5.2 m/s
MG, dr = 2 km, dz = 300 m 9.3 m/s -5.5 m/s
MG, dr = 1 km, dz = 300 m 9.3 m/s -5.5 m/s
MG, dr = 2 km, dz = 150 m 9.4 m/s -5.8 m/s
MG, dr = 1 km, dz = 150 m 9.5 m/s -5.9 m/s
SOR, dr = 2km, dz = 600 m 8.8 m/s -5.1 m/s
SOR, dr = 1km, dz = 600 m 8.9 m/s -5.2 m/s
SOR, dr = 2km, dz = 300 m 9.3 m/s -5.5 m/s
SOR, dr = 1km, dz = 300 m 9.4 m/s -5.6 m/s
SOR, dr = 2km, dz = 150 m 9.4 m/s -5.8 m/s
SOR, dr = 1km, dz = 150 m 9.5 m/s -5.9 m/s

Table VI. Maximum values of upper-level inflow and outflow for
each case in Calc-D.

is far too weak (by a factor of about 3) compared to the
simulated inflow in the inner-core region of the vortex. It
follows that the Eliassen balance model is unable to rep-
resent the nonlinear boundary layer spin up mechanism
that is essential for properly capturing the intensification
of the maximum tangential wind of an intensifying trop-
ical cyclone when realistic sub grid scale diffusivities are
employed consistent with current observational knowledge.
These results are further evidence to refute the claim by
Heng et al. 2017, Heng et al. 2018 that the balance dynam-
ics is sufficient to capture the secondary circulation of an
intensifying tropical cyclone, including the boundary layer.

5 Conclusions

We have compared two solution methods, the SOR-method
and a multi-grid method, to solve the Eliassen equation for
the balanced secondary circulation of a tropical cyclone
vortex to a particular forcing distribution of diabatic heating
and tangential momentum forcing. These solutions affirm
prior findings concerning the need to coarsen the data from
high-resolution numerical simulations in the presence of
inertial or symmetric instability when applied to determine
the corresponding balanced secondary circulation. They
show also that the multi-grid method is able to obtain
a convergent solution with a finer grid spacing than the
SOR method, although it too fails when the grid spacing
is too small. When both methods converge and the vortex
is symmetrically stable, the solutions are broadly similar.

The calculations suggest that the inflow layer just
beneath the upper-level outflow layer in a balance flow
solution of the Eliassen equation corresponding to a typ-
ical tropical cyclone simulation is a consequence of the
need to regularize this equation in regions of inertial and/or
symmetric instability. Because regularization is an ad hoc
procedure, this inference calls for caution in attributing
such inflow layers to a balanced flow response driven by

the distribution of diabatic heating and tangential momen-
tum forcing. Thus, an explanation of the upper-level inflow
layers that are found in numerical simulations of tropical
cyclones needs to be based on more fundamental consider-
ations than assuming global thermal wind balance.
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