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Abstract:

We revisit the linear boundary layer approximation that expresses a generalized Ekman balance and use it to clarify a range of

interpretations in the previous literature on the tropical cyclone boundary layer. Some of these interpretations relate to the reasons

for inflow in the boundary layer and others relate to the presumed effects of inertial stability on boundary layer dynamics. Inertial

stability has been invoked, for example, to explain aspects of boundary layer behaviour, including the frontogenetic nature of the

boundary layer and its relationship to vortex spin up.

Our analysis exposes the fallacy of invoking inertial stability as a resistance to radial inflow in the boundary layer. The analysis shows

also that the nonlinear acceleration terms become comparable with the linear Coriolis acceleration terms in relatively narrow, but

inertially stable vortices. Estimates of the nonlinear accelerations using the linear solutions are expected to underestimate the actual

contribution in a nonlinear boundary layer model, cautioning against neglecting the nonlinear terms in diagnostic or prognostic models.

KEY WORDS Tropical cyclones; boundary layer, generalized Ekman balance, inertial stability

Date: June 14, 2020; Revised ; Accepted

1 Introduction

The surface boundary layer of a tropical cyclone is

known to have a strong control on the evolution of

the vortex (see e.g. Braun and Tao 2000; Nolan et al.

2009a,b; Smith and Thomsen 2010; Kilroy et al. 2016 and

the review by Montgomery and Smith 2017). The first three

papers cited showed that vortex evolution in a numerical

model is sensitive to the boundary layer parameterization

employed in the model, highlighting the need for improved

observations of the inner-core boundary layer. To this end,

recent work applying analyses of observational data to

improve forecast models has been described by Zhang et al.

(2015, 2017) and Zhang and Rogers (2019).

In idealized studies, Kilroy et al. (2016) developed the

concept of “boundary layer control” as part of an expla-

nation for the long-term behaviour of tropical cyclones in

the prototype problem for cyclone intensification on an f
plane using a nonhydrostatic, three-dimensional numerical

model, while Kilroy et al. (2017) showed that the bound-

ary layer was an important feature of tropical cyclogenesis,

even at comparatively low wind speeds.

In the context of a high resolution (at that time, δx = 6
km) simulation of Hurricane Andrew (1992), Zhang et al.

1Correspondence to: Prof. R. K. Smith, Meteorological Institute, Ludwig-
Maximilians University, Theresienstrasse 37, 80333 Munich, Germany.
E-mail: roger.smith@lmu.de

(2001) set out, inter alia, to answer three main questions:

“To what extent is the gradient wind balance model a

good approximation to the local and azimuthally averaged

tangential winds in an intensifying hurricane? What causes

the gradient wind imbalance locally and in an azimuthally

averaged state? What is the intensifying mechanism of

tangential winds in the eyewall?”

Their answer to the first question was yes, to a degree

within approximately 10%. However, the supergradient

wind was found to play an important role in the corner flow

region of the simulated storm and also in the eyewall where

the air motion has an outward component. Zhang et al.

found that (p106): “The radial momentum budgets show

that supergradient flows and forces, even after being tem-

porally and azimuthally averaged, are well organized from

the bottom of the eye center to the upper outflow layer in

the eyewall.”

Zhang et al. then explained the development of the

supergradient wind and spin up of the eyewall as follows

(p106): “ ... the development of unbalanced flows in the

eyewall during the intensifying stage could be readily

understood as follows. As the storm deepens, the cross-

isobaric radial inflow in the marine boundary layer trans-

ports more absolute angular momentum from the hurricane

environment into the eyewall region than frictional dissipa-

tion. The major radial inflow decelerates as it approaches

the radius of maximum wind where the centrifugal force
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2 R. K. SMITH AND M. T. MONTGOMERY

exceeds radial pressure gradient force. The more the radius

of the eyewall shrinks, the greater is the maximum tangen-

tial wind near the top of the marine boundary layer. Then,

all the inflow air mass must ascend in the eyewall, trans-

porting absolute angular momentum upward to spin up the

tangential flow above. This upward transport of absolute

angular momentum could increase significantly the local

centrifugal force, thereby causing the pronounced supergra-

dient acceleration and the development of radial outflow in

the eyewall. In the present case, the supergradient acceler-

ation occurs at the same order of magnitude as radial pres-

sure gradient force in the vicinity of Vmax (the maximum

wind speed, our insertion), and accounts for the generation

of an outflow jet near the top of the marine boundary layer.

However, the local changes in tangential winds are always

small due to the intense advection in the eyewall. It is evi-

dent that (a) the intensity of the radial outflow depends crit-

ically on the upward transport of absolute angular momen-

tum, and (b) the spindown of the eyewall by radial outflow

must be overcompensated by the upward transport of abso-

lute angular momentum if the storm is to deepen. Of course,

the underlying ocean (and latent heat release in the eyewall)

is the fundamental energy source for the deepening of trop-

ical cyclones.”

According to the foregoing view, the evaporation of

water from the underlying ocean supports a nonlinear spin

up mechanism wherein the development of supergradient

winds in the boundary layer of the vortex, in combina-

tion with the upward transport of absolute angular momen-

tum from the boundary layer, plays an important role in

the intensification of the storm’s eyewall cloud. Similar

findings were reported in idealized, but finer resolution

numerical simulations by Smith et al. (2009), Persing et al.

(2013) and Smith et al. (2017). The nonlinear dynamics of

the vortex boundary layer and its contribution in spinning

up the eyewall is discussed further from the perspective

of the newly developed rotating convection paradigm by

Montgomery and Smith (2017).

The upshot of these findings is that if the unbalanced

processes play such a pronounced role in spinning up a

tropical cyclone eyewall, a more complete understanding

of the dynamics of the tropical cyclone boundary layer is

certainly warranted.

One of the simplest models for a vortex boundary layer

is the axisymmetric model that was first studied by Eliassen

(1971) and Eliassen and Lystad (1977). Montgomery et al.

(2001) pointed out that the neglected non-cyclostrophic

terms in the boundary layer may become significant at

higher swirl speeds, which might limit the applicability of

the theory to tropical cyclones.

An analytical solution of the linear boundary layer

model was obtained by Kepert (2001), who further

extended the model to a moving vortex and, in a follow

up study, Kepert and Wang (2001) compared predictions of

the analytical solution of the linear model with a numerical

solutions of a nonlinear model and used the comparison as

a basis for interpreting boundary-layer behaviour.

Smith and Montgomery (2008) derived a slab version

of the linear boundary layer model as one of a hierarchy of

approximations for the slab model and solutions were com-

pared with full nonlinear solutions of the slab model. They

examined also the self-consistency of the linear approxi-

mation and showed that it required the smallness of a gen-

eralized vortex Rossby number. This Rossby number will

generally not be small in the inner core region of a sharply

peaked tangential wind profile at the top of the bound-

ary layer. The scale analysis developed in that study was

extended to the more general linear case by Vogl and Smith

(2009) and the self-consistency of the linear approxima-

tion was investigated in the tropical cyclone context. These

authors examined also the extent to which the accuracy

of the linear approximation depends on the profile of the

imposed tangential wind field at the top of the boundary

layer. Consistent with Vogl and Smith (2009), Abarca et al.

(2015) found that the generalized Ekman balance became

invalid in both the intensifying primary eyewall region and

forming secondary eyewall region.

Despite the limitations of the linear boundary layer

model, it remains of intrinsic scientific interest because it

is an extension of the classical Ekman boundary-layer the-

ory to circular flow and because it may be solved analyt-

ically. In this paper we review the solutions of the linear

boundary layer for broad and narrow profiles of gradient

wind at the top of the boundary layer and revisit the inter-

pretations of these solutions presented in previous studies,

which are frequently invoked to explain behaviour in the

nonlinear boundary layer problem also. We lay particu-

lar emphasis in reviewing these interpretations on the pre-

sumed role of inertial stability on the boundary layer struc-

ture. The concept of inertial stability has been called upon

by numerous authors including three early landmark stud-

ies of the boundary layer, itself, by Shapiro (1983), Kepert

(2001), Kepert and Wang (2001), the more recent study by

Kepert (2017), as well as explanations for convergence in

the boundary layer as part of an explanation for the physics

of tropical cyclone intensification by Emanuel (2018).

2 Equations and solution in brief

In this section we summarize briefly the generalized Ekman

model for a circular vortex that is in gradient wind balance

above the boundary layer. The presentation follows closely

that of Vogl and Smith (2009) and we focus only on the key

results and interpretations pertinent to the main goals of this

study.

For an axisymmetric flow expressed in cylindrical

polar coordinates, the radial and tangential momentum

equations for the steady boundary layer may be written as:

u
∂u

∂r
+ w

∂u

∂z
− v′2

r
− ξgv

′ =
∂

∂z

(

K
∂u

∂z

)

, (1)

u
∂v′

∂r
+ w

∂v′

∂z
+ ζagu =

∂

∂z

(

K
∂v′

∂z

)

, (2)
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TROPICAL CYCLONE BOUNDARY LAYER 3

where vg(r) is the gradient wind at the top of the boundary

layer, v′ = v − vg is the agradient wind, i.e. the departure

of the tangential wind from the gradient wind, u and w
are the radial and vertical velocity components, and K is

a turbulent eddy diffusivity. It is assumed for simplicity

that the radial flow above the boundary layer is zero. The

quantities ξg = 2v/r + f and ζag = dvg/dr + vg/r + f are

twice the absolute angular velocity and the absolute vertical

vorticity of the gradient wind, respectively.

Linearization of these equations gives

0 = ξgv
′ +

∂

∂z

(

K
∂u

∂z

)

, (3)

0 = −ζagu+
∂

∂z

(

K
∂v′

∂z

)

. (4)

Here the linear acceleration terms have been moved to

the right-hand sides of the equations, where they are then

interpreted as forces per unit mass. In this form, the linear

equations are seen to express everywhere a local force

balance. These equations may be combined into a single

fourth-order ordinary differential equation for either v′ or

u.

The vertical velocity in the boundary layer is deter-

mined by the continuity equation. Because the boundary

layer is typically thin, density variations across it may be

neglected and the continuity equation takes the approxi-

mate form:
∂ru

∂r
+

∂rw

∂z
= 0. (5)

When K is treated as constant, Equations (3) and (4)

may be readily solved by taking, for example, the second

vertical derivative of (3) and using (4) to eliminate ∂2u/∂z2

leaving a single fourth order differential equation for v′,
i.e.,

∂4v′

∂z4
+

I2

K2
v′ = 0, (6)

where, as before, I2(r) = ξgζag is the inertial stability of

the gradient flow at the top of the boundary layer. It may be

verified that the solution of (6) that is bounded as z → ∞
is1

v′(r, z) = vg(r)e
−z/δ(a1 cos(z/δ) + a2 sin(z/δ)),

(7)

where δ = (2K/I)1/2 is the boundary-layer scale thickness

and, as shown below, a1 and a2 are functions of radius.

The corresponding solution for u is obtained simply by

substituting for v′ in (4), i.e.,

1Note that Equation (6) has solutions of the form exp(αz), where
α4 = −(K2/I2) or (K2/I2) exp(πi+ 2nπi), i =

√
−1 and n is an

integer. Then possible values of α are ± exp(iπ/4) and ± exp(3iπ/4), or

±(1± i)/
√
2. The two values that lead to bounded solutions as z → ∞

are −(1± i)/
√
2.

u(r, z) = −χvg(r)e
−z/δ(a2 cos(z/δ)− a1 sin(z/δ)),

(8)

where χ = (ξg/ζag)
1/2. It follows from (7) that

v′(r, 0)/vg(r) = a1 and from (8), that u(r, 0)/vg(r) =
−χa2. The values for a1 and a2, which are functions of

radius, are determined by suitable boundary conditions at

the sea surface, z = 0.

For a turbulent boundary layer like that in a tropical

cyclone, an appropriate boundary condition at the surface is

to prescribe the surface stress, τs, as a function of the near-

surface wind speed, normally taken to be the wind speed at

a height of 10 m, and a drag coefficient, CD . The condition

takes the form

τs
ρ

= K
∂us

∂z
= CD |us|us, (9)

where us = (u, vg(r) + v′)s is the wind vector at a height

of 10 m. We apply a linearized form of this condition at

z = 0, appropriate for the linearized form of the equations,

to determine the constants a1 and a2 in (7) and (8). The

derivation is as follows. The substitution of (7) and (8) into

the boundary condition (9) leads before linearization to the

following pair of algebraic equations for a1 and a2:

a2 + a1 = −νa2
√
X, (10)

a2 − a1 = ν(1 + a1)
√
X, (11)

where X = (1 + a1)
2 + χ2a22, ν = CDRe and

Re = vgδ/K is a Reynolds’ number for the boundary

layer. When a1 and a2 are small compared with unity, con-

sistent with the linear theory, the expression for X can be

linearized to give X ≈ 1 + 2a1, whereupon
√
X ≈ 1 + a1.

Then the linearized form of (10) is

a2 + a1 = −νa2, (12)

a2 − a1 = ν(1 + 2a1), (13)

which have the unique solution

a1 = − ν(ν + 1)

2ν2 + ν + 2
, a2 =

ν

2ν2 + ν + 2
. (14)

The vertical velocity, w(r, z) is obtained by integrating

the continuity equation (5) with respect to z:

w(r, z) =
1

r

∂

∂r

[

rKvg
ζagδ

(

(a2 − a1)
{

1− e−z/δ cos
z

δ

}

+e−z/δ(a1 + a2) sin
z

δ

)]

.

(15)
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4 R. K. SMITH AND M. T. MONTGOMERY

3 Solutions

Given a radial profile of vg(r) such as one of those shown

in Figure 1, together with values for K , CD and f , it

is possible to calculate the full boundary-layer solution

(u(r, z), v(r, z), w(r, z)) on the basis of Equations (7), (8)

and (15)). For illustration purposes, we choose typical

values of the foregoing parameters: K = 50 m2 s−1, CD =
2.0× 10−3 and f = 10−4 s−1. The former two values are

chosen based on recent observations of Zhang et al. (2011)

and Bell et al. (2012) (see section 5.2 for an examination of

solution sensitivity to K). For all these parameter values,

the radial variation of the quantities ν, I2, a1 and a2 are

shown in the appendix for the two profiles of vg(r) in

Figure 1.

Figure 1. Tangential wind profiles as a function of radius. This profile

has the form vg(r) = v1s/(1 + sx), where s = smr/rm, r is the

radius, rm = 50 km and sm and v1 are constants chosen to make v =
vgm, the maximum tangential wind speed, when r = rm. red curve

has x = 1.6, blue curve has x = 2.3. The thin black reference curves

are discussed in the text. These have the form v = vgm/(rm/r)n,

where the exponent n equals either 0.5 or 1.

As a point of reference, corresponding wind profiles

for a Rankine (v ∼ r−1) and modified Rankine (v ∼ r−0.5)

vortex are shown outside the radius of maximum winds.

Although the narrow vortex profile decays more rapidly

than the modified Rankine vortex outside of 100 km radius,

the decay is still slower than that for the Rankine vortex to

400 km radius and hence inertially (centrifugally) stable for

any latitude in this radial span.

Figure 2 shows radius-height cross sections of the

isotachs of u, v and w below a height of 2 km for solutions

with the tangential wind profiles shown in Figure 1. It

shows also the radial variation of the boundary layer depth

scale, δ. Note that δ decreases markedly with decreasing

radius, while the inflow increases. The decrease of δ is

simply related to the radial increase in the inertial stability

parameter, I2, with decreasing radius, but it ignores the

likely increase in eddy diffusivity as the gradient wind

speed increases. With the broader wind profile (x = 1.6),

the maximum inflow occurs at a radius of about 85 km, 45

km outside the radius of maximum tangential wind speed

above the boundary layer, rm (panel (a)).

There is a region of weak outflow above the inflow

layer with the maximum occurring at a similar radius to

that of the maximum inflow. The tangential flow is slightly

supergradient (i.e. v′ > 0) in a region near the radius of

maximum gradient wind rm (panel (a)) and the maximum

vertical velocity occurs within this region. The maximum

vertical velocity at “large heights” peaks at a radius of about

30 km, well inside rm (panel (c)). There is ascent in a region

that expands in radius with height from about 30 km near

the surface to about 190 km at a height of 2 km (panel (e)).

Beyond this region there is weak subsidence, the maximum

subsidence peaking at a radius of about 220 km and a height

of about 500 m. The boundary layer depth scale increases

from just less than 100 m near the rotation axis to just over

600 m at r = 400 km (panel (g)).

With the narrower wind profile (x = 2.3), the radial

inflow is markedly stronger and somewhat deeper, but the

maximum inflow occurs further outwards, near a radius of

100 km (panel (b)). The tangential flow is again slightly

supergradient in a region near the radius of maximum

gradient wind, rm (panel (d)). The vertical velocity is

considerably stronger (note the larger contour spacing in

panel (f) compared with that in panel (e)) and the maximum

ascent now occurs significantly further outwards, beyond

80 km radius, and at a significantly larger altitude, well

above 1 km. The slope of the region of ascent has greatly

increased and the strongest subsidence has become more

confined radially and is much closer to the region of

maximum ascent.

4 Interpretations

Since the linear boundary layer approximation, or gener-

alized Ekman balance approximation, is an expression of a

local force balance in a situation where the material acceler-

ation of air parcels is negligibly small, one cannot appeal to

the material acceleration terms in Newton‘s second law to

explain the differences in behaviour for the broad and nar-

row profiles. Any interpretations of flow behaviour must be

based on the assumption of force balance, which, of course,

is reflected in the structure of the solution for the velocity

components in Equations (7), (8) and (15).

4.1 Factors determining the inflow and verti-

cal motion

In the tangential wind direction, the force balance

expressed by Equation (4) is between the generalized Cori-

olis force, −ζagu (minus the generalized Coriolis acceler-

ation), which is positive, and the downward diffusion of

tangential momentum, which is negative. This balance is

sometimes referred to as torque balance when the equation

is multiplied by the radius. It follows that, in the linear the-

ory, the radial flow is determined by the tangential (sic)

momentum equation. As discussed in section 6, this gen-

eralized Ekman balance has led a number of authors to

erroneously argue that the inflow in the nonlinear problem

is determined also by torque balance. In fact, the inflow

Copyright c© 2020 Meteorological Institute TCRR 0: 1–14 (2020)
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Broad vortex Narrow vortex

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Isotachs of (a),(b) radial velocity u, (c),(d) tangential velocity v and (e),(f) vertical velocity w in the r − z plane obtained by

solving Equations (3) and (4) with the two tangential wind profiles shown in Figure 1. Left columns for the wind profile with x = 1.6, right

columns with that for x = 2.3. Contour intervals: for u, 2 m s−1 for negative values (blue contours), 0.05 m s−1 for positive values (thin red

contours); for v, 5 m s−1 for values < 50 m s−1 (red contours), 0.5 m s−1 for values > 50 m s−1 (thin blue contours), for w, 0.02 m s−1 for

positive values (red contours), 0.005 m s−1 for negative values (thin blue contours). (g),(h) Corresponding radial variation of boundary-layer

scale depth, δ(r), (unit: km).

is determined by integrating the nonlinear radial accel-

eration, u∂u/∂r+ w∂u/∂z − v′2/r, along the air parcel

trajectories: see e.g. sections 5.2 and 6. Using Equation

(1), the radial acceleration is equal to the generalized Cori-

olis force, ξgv
′, plus the frictional force. Because ξgv

′ is

a leading-order measure of the degree of gradient wind

imbalance, we refer to it here as the agradient force.

Copyright c© 2020 Meteorological Institute TCRR 0: 1–14 (2020)



6 R. K. SMITH AND M. T. MONTGOMERY

(a) (b)

(c) (d)

Figure 3. Radial variation of (a) χ and (b) χvg(r) (units: m s−1 for the two vortex profiles in Fig. 1. Curves for profile exponent x = 1.6 in

red, for x = 2.3 in blue. Variation of (c) umin (units: m s−1 and wmax (units: cm s−1, and (d) rumin and rwmax in km with wind profile

exponent x. Curves for umin and rumin in blue, wmax and rwmax in red.

At a given radius, the only parameter in the solution

that contains information about the local radial variation

of the flow is the absolute vorticity, ζag(r). In conjunction

with ξg , ζag enters in determining the amplitude of the

radial velocity in Equation (8) through the factor χvg(r),
where χ = (ξg/ζag)

1/2. Moreover, ζag and ξg determine

the inertial stability I2, which, in turn, is a parameter

involved in determining the boundary layer depth δ. It is

only indirectly through the dependence of δ on I2 that the

inertial stability appears in the solution for the radial flow.

Since the coefficients a1(r) and a2(r) depend on δ
and therefore on I2 through their dependence on ν(r), it is

difficult to discern the precise mathematical dependence of

the radial inflow on I2 because of the height dependence of

a2 cos(z/δ)− a1 sin(z/δ) in the formula for u in Equation

(8). Notwithstanding this dependence, the radial profiles of

χ and χvg(r) for the two vortex profiles shown in Figure

3 help to provide an understanding the different structure

of the radial flow seen in panels (a) and (b) of Figure 2.

These profiles are compared in panels (a) and (b) of Figure

3, respectively.

First note that as r → 0, ξg is dominated by 2vg/r and

ζa is dominated by ζ so that χ ≈ 1. In contrast, as r → ∞,

both quantities are dominated by f , so that, again, χ → 1.

In both vortex profiles, χ exceeds unity for all other radii,

but whereas for the broad vortex profile with x = 1.6, the

radial profile of χ is comparatively flat, for the narrower

profile with x = 2.3 it has a sharp peak near a radius of 120

km. This peak is close to the radius of minimum ζag , the

magnitude of this minimum being smaller for the sharper

profile on account of the smaller minimum of ζg . The radial

profiles of χvg(r) shown in Figure 3b show also a sharper

peak for the narrower vortex profile, the peak being located

at a radius of 100 km, compared with only 60 km for the

broader peak of the broader vortex profile.

The linear solution (Figure 2) shows that the maximum

radial inflow is stronger for the narrower vortex profile

(a little over 16 m s−1 compared with a little over 10 m

s−1). This property is succinctly captured by the pre-factor,

χvg(r), plotted in Figure 3b. The stronger radial inflow at

radii beyond rvmax for the broader vortex profile (cf. Figure

2) is captured also by the pre-factor χvg(r). If the inflow

was controlled primarily by the inertial stability, the radial

inflow would be weaker for the broader profile. Precisely

the opposite behaviour is found!

4.2 Supergradient winds in the linear solution

In section 3 we showed that the tangential flow is slightly

supergradient (i.e. v′ > 0) in a region near the radius of

maximum gradient wind rm. In the linear boundary layer

solution, in regions of supergradient winds, the agradient

force in the radial momentum equation is radially out-

wards, i.e. ξgv
′ > 0, and this force is exactly balanced by

the upward diffusion of negative radial momentum, i.e.

∂τrz/∂z < 0, where τrz = K∂u/∂z is the radial stress at

height z (see Equation (3)). In turn, the generalized Coriolis

force associated with the diffused negative radial momen-

tum u is balanced by the downward diffusion of tangential

momentum as represented by Equation (4).

Copyright c© 2020 Meteorological Institute TCRR 0: 1–14 (2020)



TROPICAL CYCLONE BOUNDARY LAYER 7

4.3 Dependence on vortex size

The broader velocity profile has a mostly larger inertial

stability than the narrower profile, a fact that is reflected in a

mostly shallower vertical depth scale in this case (compare

panels (g) and (h) of Figure 2). For this reason, the more

radially-confined pattern of radial and vertical flow seen

in panels (b) and (f) of Figure 2 compared with those in

panels (a) and (e) cannot be attributed to the differences in

inertial stability when the latter is interpreted as a measure

of resistance to radial motion.

The lower panels of Figure 3 summarize the changes

in the maximum inflow, umin, and maximum ascent, wmax,

in the linear boundary layer solutions as the imposed vortex

profile becomes narrower, i.e. the exponent x increases. It is

seen that both umin and wmax increase with x. The increase

is slow at first, especially for umin, but becomes more rapid

as x exceeds about 2 in the case of wmax and about 2.2

in the case of umin. The radius of maximum inflow rumin

changes little until x exceeds 2, whereafter it begins to

increase with x until x = 2.4. Shortly after this value of x,

the vortex profile becomes inertially unstable for a latitude

of 20o. In contrast, the radius of maximum ascent, rwmax,

steadily increases with x at a rate that is approximately

linear from a value of only 30 km for x = 1.6 to a value

near 95 km for x = 2.3.

5 Limitations of the linear theory

While providing a qualitatively correct picture of the

frictionally-induced convergence in the boundary layer,

a scale analysis of the boundary layer equations would

suggest that the linear approximation may become poor

quantitatively in a tropical cyclone strength vortex because

the nonlinear acceleration terms may not be ignored:

indeed, they may even dominate the linear terms (see

Vogl and Smith 2009).

Figure 4 shows the structure of linear and nonlinear

acceleration terms as well as their sum in the radial and

tangential momentum equations, (1) and (2), respectively,

for the broad and narrow gradient wind profiles shown in

Figure 2. The nonlinear acceleration terms on the left-hand-

side of each of these equations, calculated from the linear

solutions (Equations (7), (8) and (15)), are shown in Figure

2.

The linear radial acceleration, −ξgv
′, in panels (a) and

(b) show a radially-outward acceleration at low levels with

maximum values at the surface at radii between 30 and 40

km. This positive acceleration is equivalent to an agradient

force that is of the opposite sign and in the linear solution is

exactly balanced by the radial frictional force. Therefore, in

this balanced perspective, the positive acceleration should

not be interpreted as decelerating the boundary-layer inflow

(see Equation 3). At larger heights, the radial acceleration

is negative with a minimum value between 20 and 40 km

radius and an altitude between 200 and 400 m.

The nonlinear radial acceleration, u∂u/∂r+
w∂u/∂z − v′2/r, in panels (c) and (d) is positive in

the innermost region and negative beyond. For the broad

gradient wind profile (x = 1.6) this term is relatively small

in magnitude compared with the linear acceleration term,

but for the narrow profile (x = 2.3), its magnitude is much

larger and it makes a significant contribution to the total

radial acceleration in panel (f).

The linear tangential acceleration, ζagu, in panels (g)

and (h) is mostly negative, but in each case there are small

positive values aloft. These are most noticeable above 400

m in height and inside a radius of 50 km. As noted in

section 4, in the linear solution, the negative acceleration

corresponds to a positive generalized Coriolis force that, in

turn, is balanced by a negative frictional torque.

The nonlinear tangential acceleration, u∂v/∂r +
w∂v/∂z + uv′/r, in panels (i) and (j) is positive for both

the broad and narrow vortex profiles and in neither case

is its magnitude negligibly small compared with the linear

solution. Accordingly, it makes a substantial contribution

to the total acceleration in panels (k) and (l).

Significantly, the nonlinear terms indicate accelera-

tions in both the radial and tangential directions are positive

compared with the corresponding linear acceleration, i.e.

−ξgv
′ in Equation (1) and ζau in Equation (2). For this

reason one might expect the linear solution to produce a

weaker and broader inflow than a corresponding nonlinear

solution and thereby a weaker and less concentrated region

of ascent at inner radii. Not surprisingly, all the radial and

tangential acceleration terms are more radially confined for

the narrow vortex profile.

Since the foregoing estimates of the importance of the

nonlinear terms is based on the linear solution, due to the

quadratic nature of the nonlinearity, these estimates using

the linear solutions can be expected to underestimate the

actual contribution in a nonlinear boundary layer model

(see e.g. Figures 2-4 in Smith and Montgomery 2008).

5.1 Supergradient winds in the nonlinear

boundary layer

As argued by Vogl and Smith (2009), the primary reason

for the departure of the linear solution from the nonlinear

solution is the neglect of the radial advection of tangential

momentum (or equivalently absolute angular momentum).

The neglect of the vertical advection of the enhanced

tangential momentum is a factor also, especially at radii

near where the inflow terminates and ascends into the

eyewall. The separate contributions of the radial advection

and vertical advection of momentum to the total advection

are illustrated in the top three rows of Figure 5 for the

narrow vortex profile solution (x = 2.3) and with K =
50 m2 s−1. As in the previous section, the nonlinear

terms are estimated using the linear solution and are likely

to represent lower bounds on the contributions from a

corresponding full nonlinear solution.

Copyright c© 2020 Meteorological Institute TCRR 0: 1–14 (2020)
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Broad vortex Narrow vortex

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 4. Isotachs in the r − z plane of (a)(b) linear radial acceleration −ξv′ in Equation (1), (c),(d) nonlinear radial acceleration

u∂u/∂r +w∂u/∂z − v′2/r, with the nonlinear term calculated from the linear solution to Equations (7) and (8), (e),(f) total radial

acceleration (linear + nonlinear) u∂u/∂r + w∂u/∂z − v′2/r − ξv′, (g),(h) linear tangential acceleration ζau in Equation (2), and (i),(j)

nonlinear tangential acceleration u∂v′/∂r + w∂v′/∂z + uv′/r with the nonlinear term calculated from the linear solution to Equations (7)

and (8), (k),(l) total tangential acceleration (linear + nonlinear) u∂v′/∂r + w∂v′/∂z + uv′/r + ζau. Left columns for the tangential wind

profile in Figure 1 with x = 1.6, right column with the profile for x = 2.3. Contour intervals for radial terms: 5 m s−1 h−1 (thick contours),

1 m s−1 h−1 (thin contours); for tangential terms: 2 m s−1 h−1 (thick contours), 0.5 m s−1 h−1 (thin contours). Positive values red, solid;

negative values blue, dashed.
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K = 50 m2 s−1

(a) (b)

(c) (d)

(e) (f)

K = 20 m2 s−1

(g) (h)

K = 90 m2 s−1

(i) (j)

Figure 5. (a)-(f): Isotachs in the r − z plane of the contributions to the nonlinear radial and tangential acceleration terms and

the sum of these contribution in the calculation with K = 50 m2 s−1. All terms are calculated from the linear solution. (a)
radial advection contribution including the perturbation centripetal acceleration, u∂u/∂r − v′2/r, (c) vertical advection contribution

w∂u/∂z, to (e) the nonlinear radial acceleration u∂u/∂r + w∂u/∂z − v′2/r. (d) radial advection contribution u∂v′/∂r + uv′/r,
(e) vertical advection contribution w∂v′/∂z to (f) the nonlinear tangential acceleration u∂v′/∂r +w∂v′/∂z + uv′/r. (g) nonlinear

radial acceleration and (h) nonlinear tangential acceleration based on the linear solution with K = 20 m2 s−1. (i) nonlinear radial

acceleration and (j) nonlinear tangential acceleration based on the linear solution with K = 90 m2 s−1. Contour intervals for radial

terms: 5 m s−1 h−1 (thick contours), 1 m s−1 h−1 (thin contours); for tangential terms: 2 m s−1 h−1 (thick contours), 0.5 m s−1 h−1

(thin contours). Positive values red, solid; negative values blue, dashed.
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The left column of Figure 5 refers to the nonlinear

terms in the radial momentum equation and the right col-

umn to those in the tangential momentum equation. In the

radial momentum equation, the contributions from radial

and vertical advection are positive inside a radius of about

100 km and negative beyond this radius, with maxima a

little over 2 m s−1 h−1. Further, the positive values are com-

parable in magnitude in both contributions. In the tangential

momentum equation, the radial advection has a maximum

value exceeding 2 m s−1 h−1, which is approximately twice

the maximum of the vertical contribution (i.e., just over 1

m s−1 h−1).

The radial advection of perturbation tangential

momentum shown in Figure 5b encapsulates the nonlin-

ear boundary layer spin-up mechanism as articulated most

recently by Smith and Montgomery (2017), pp1501-1502.

This mechanism was already anticipated in the early stud-

ies of Anthes (1971, 1974), Shapiro (1983) and Zhang et al.

(2001). The mechanism accounts for the generation of

much stronger supergradient winds inside and near the

radius of maximum gradient wind than those that occur in

the linear boundary layer solution. In a related study based

on an idealized numerical simulation, Abarca et al. (2015)

showed that the supergradient winds in both the intensify-

ing primary eyewall region and forming secondary eyewall

region were so large that the generalized Ekman balance

would be a poor approximation (see their Figures 3 and 4

and accompanying discussion).

5.2 Dependence on K

In footnote 3 of their paper, Kepert and Nolan (2014)

wrote: “Some may be surprised by the satisfactory perfor-

mance of the linearized model, given that Vogl and Smith

(2009) analyzed a linearized tropical cyclone boundary

layer model similar to that of Kepert (2001) and claimed

that the removal of the nonlinear terms was not consistent.

These terms are certainly important, as shown by Kepert

(2001), Kepert and Wang (2001), and Kepert (2013). How-

ever, Vogl and Smith’s analysis exaggerates their impor-

tance, because they use a very small value of the diffusivity,

K = 10 m2 s−1, which leads to a boundary layer that is

too shallow. The inflow becomes too strong to maintain the

necessary advective flux of absolute angular momentum

to balance its frictional destruction at the surface (Kepert

2013). Thus, the nonlinear advection terms are exagger-

ated.”

Since the publication of Vogl and Smith (2009), some

observational guidance has emerged on the vertical eddy

diffusivities in tropical cyclones (Zhang et al. 2011, Figure

10). Typical values of K given by Zhang et al. are on the

order of 50 m2 s−1, although, there is considerable scatter

in the observations, which show a dependence also of K
on mean wind speed. The value chosen here is within the

middle range of observed values with the lowest values

around 10 m2 s−1 and highest values around 100 m2 s−1,

while the value used by Vogl and Smith op. cit. is at the

lower end of the range, though not entirely unrealistic.

A more substantial issue would be the assumption of a

constant value for K at all radii and therefore all wind

speeds. The variation of K with radius is certainly an

important feature to represent in a realistic forecast model,

but this lies outside the scope of the current study.

To investigate the dependence of the nonlinear terms

on the value of K , we show in the last two rows of

Figure 5 cross sections of these terms for K = 20 m2

s−1 (panels (g) and (h)) and K = 90 m2 s−1 (panels

(i) and (j)), which should be compared with those for

K = 50 m2 s−1 in the middle row, panels (e) and (f).

While supporting Kepert‘s supposition that the magnitude

of the nonlinear terms will increase with decreasing K ,

one cannot safely claim that the values in Vogl and Smith

(2009) are exaggerated as those estimates, like the ones

in Figure 5, are likely to be lower estimates for these

terms (see section 5). The foregoing analysis shows that

the findings of Vogl and Smith are robust.

It is pertinent to analyse the penultimate sentence

in the foregoing quotation from Kepert and Nolan (2014):

“The inflow becomes too strong to maintain the necessary

advective flux of absolute angular momentum to balance

its frictional destruction at the surface (Kepert 2013)”. This

sentence is non sequitur because it does not say to what

“the inflow” refers. If it refers to the inflow in the linear

solution, then it cannot be “too strong to maintain the

necessary advective flux of absolute angular momentum

to balance its frictional destruction”, since it is from this

constraint that the inflow is determined. If, instead, it

refers to the inflow in the nonlinear solution (which was

not calculated by Vogl and Smith 2009), it would be an

example of the misleading invocation of torque balance to

explain the reason for inflow in the nonlinear boundary

layer.

6 Confusion in the literature

The foregoing exposition of linear boundary layer theory

provides a basis for clarifying a range of interpretations

in the previous literature on the tropical cyclone boundary

layer. Some of these interpretations relate to the presumed

effects of inertial stability on boundary layer dynamics as

invoked, for example, by Shapiro (1983), Kepert and Wang

(2001), Zhang et al. (2001) and Kepert (2017) to explain

aspects of boundary layer behaviour, and by Emanuel

(2018) to explain the frontogenetic nature of the boundary

layer and its relationship to vortex spin up.

6.1 Reasons for the boundary layer inflow

As pointed out in section 4.1, the inflow in the nonlinear

boundary layer arises because of the agradient force in

the radial momentum equation. In contrast, in the linear

problem, the agradient force is exactly balanced by the

frictional force in the radial direction. In the tangential
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direction, the generalized Coriolis acceleration, −ζagu, is

exactly balanced by the frictional force, which is equivalent

to an assumption of torque balance. In this case, the

radial flow is determined by the tangential momentum

equation. On the assumption that the nonlinear boundary

layer flow does not deviate greatly from torque balance

(Willoughby 1988, p1862) a number of authors have been

led to erroneously argue that the inflow in the nonlinear

problem is determined by torque balance also.

The issues involved are subtle. Even if the degree of

imbalance expressed by the agradient force and friction

is small, it cannot be inferred that the imbalance can be

neglected. For one thing, the effects of a small net inward

force can accumulate over a hundred kilometres or more in

radius, just as the buoyancy force based on a few degrees

of temperature excess in a cumulonumbus cloud can lead to

a significant updraught strength. For another thing, torque

balance cannot account for the development of significant

supergradient winds that have been found in observations

(Kepert (2006); Sanger et al. (2014); Montgomery et al.

(2014)) and their contribution to the nonlinear deceleration

of the boundary layer inflow inside the radius of maximum

gradient wind speed.

As one illustration of the foregoing issues,

Kepert and Wang op. cit. note on the first page of

their paper that “vertical diffusion could maintain inflow

in the presence of a weakly supergradient jet in the upper

boundary layer”. The reader is left to work out what is

being diffused (presumably some component of horizontal

momentum), and the authors do not say how the diffusion

“maintains the inflow” nor do they explain the role of

the “weakly supergradient jet”, which is in the tangential

direction and not the radial direction. It would appear

that here they are invoking torque balance, even for the

fully nonlinear problem. As shown above, this would be

incorrect.

While acknowledging the radial force imbalance as

the source for the radial acceleration in their statement on

p2493: “From a Lagrangian point of view, the imbalance

in the adjustment terms directly accelerates the air parcels

inward”, Kepert and Wang return to invoking torque to

describe the nonlinear behaviour of the radial inflow for the

inertially stable and neutral cases. For example, on p2493:

sentence beginning “Our analysis so far has strongly sug-

gested that, ... ”; p2495: sentence beginning: “In summary,

frictional destruction of ...”, and p2500: paragraph begin-

ning “The spatial distribution of the jet ... ”.

6.2 The presumed role of inertial stability

The concept of inertial (or centrifugal) stability of an

axisymmetric vortex with tangential wind distribution v(r)

2There, Willoughby writes: “Although the wind may be supergradient
where the boundary-layer inflow decelerates and turns upwards into the
eyewall, the role of the imbalance in the secondary circulation has been
exaggerated.”

relates to the restoring force that acts on a fluid parcel

at some radius when it is displaced radially through a

small distance ∆r. If the vortex is situated on an f plane,

the restoring force per unit mass F = −I2∆r, where I2

is defined just below Equation (6) (Rayleigh 1917). It is

unclear how this concept relates to the vortex boundary

layer, where on account of friction, there is already a

nonzero agradient force acting on all fluid parcels.

The so-called inertial stability, I2, appears as a coef-

ficient in the Sawyer-Eliassen equation for the streamfunc-

tion of a slowly-evolving balanced vortex, another impor-

tant coefficient being the static stability N2 characterizing

the vertical restoring force per unit mass for a vertical dis-

placement, ∆z, of a fluid parcel (Willoughby 1979). Based

on the work of Eliassen (1951), Shapiro and Willoughby

(1982) pointed out that the circulation induced by a point

source of heating or momentum in such a balanced flow is

confined in radius if I2 >> N2 and confined in the verti-

cal if N2 >> I2. Kepert and Wang explained the strength

of the inflow in their nonlinear boundary layer solutions

using this balance framework. It is again unclear that bal-

ance dynamics can be applied to the boundary layer. For

one thing, the linear boundary layer solution expresses

a rather different balance (i.e. generalized Ekman bal-

ance) compared with thermal wind balance assumed by

Shapiro and Willoughby. For another thing, the existence

of infow in the frictional boundary layer is fundamentally a

consequence of radial force imbalance.

Possibly the first reference to the presumed role of

inertial stability as a restoring force in the boundary layer

was that by Shapiro (1983). When describing the axisym-

metric nonlinear boundary layer response to an imposed

radial pressure gradient forcing, Shapiro wrote on p1988:

“The inertial “wall”, evidenced by the rapid increase in

vorticity (ζo), just inside rmax (the radius of maximum tan-

gential wind speed, our insertion) leads to the rapid decel-

eration of uo (the radial velocity, our insertion), and strong

boundary layer convergence”.

Kepert and Wang (2001) use a similar argument, stat-

ing on p2493: “ ... the radius of maximum winds is a

highly favorable location for low-level jet occurrence, due

to the sudden increase in inertial stability allowing a strong

updraft there, and the increased radial gradient of Ma

(the absolute angular momentum of the gradient wind:

our insertion)”. The argument is similar to that of Shapiro

because the radial gradient of Ma is proportional to the

absolute vorticity.

Referring to the fact that the peak axisymmetric

updraft typically falls a few kilometers within the radius of

maximum tangential wind, Kepert (2017) argues on p3319

that “Essentially, this displacement is a measure of the

overshoot as the inflowing near-surface air encounters the

greater inertial stability of the gradient wind at the eyewall

and decelerates”.

In a similar vein, Emanuel (2018) argued on p15.15 of

his monograph on tropical cyclones: “ ... the boundary layer
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near the radius of maximum winds is strongly frontogenet-

ical, with convergence of the Ekman boundary layer flow

guaranteed by the large radially inward increase of inertial

stability as the vorticity rapidly increases inward”.3

All the foregoing arguments would appear to be based

on torque balance. As noted earlier, if one assumes that,

to a first approximation, linear Ekman balance holds in

the boundary layer, the radial velocity given by Equation

(4)4 is inversely proportional to ζag . It is evident that all

the authors are conflating absolute vorticity with inertial

stability. While the absolute vorticity is a mathematical

component of inertial stability, the two concepts have dif-

ferent physical meanings as well as different dimensions.

Although it is true that, in cases where the vortex core is

approximately in solid body rotation, inertial stability and

absolute vorticity both show a sharp increase with decreas-

ing radius near and inside the radius of maximum gradient

wind, neither quantity can be interpreted physically as a

resistance to radial motion in the boundary layer.

Further confusion relating to the role of inertial sta-

bility in the boundary layer is found in Zhang et al. (2001)

who write on p101: “Clearly, it is the centrifugal force (or

inertial stability) that prevents the low-level radial inflow

from reaching the eye, and vents the air from the bottom

of the eye to maintain the mass balance”. While their argu-

ments regarding the role of the centrifugal force are broadly

correct (see paragraph below), these authors conflate “iner-

tial stability” with the centrifugal force.

In the nonlinear boundary layer, the rapid decelera-

tion of the inflow near and inside the radius of maximum

gradient wind is due to the positive agradient force, which

is associated, mostly through the dominance of the cen-

trifugal force, with the development of supergradient winds

in that region (e.g. Anthes 1974, p506, Zhang et al. 2001,

sec. 4, Nguyen et al. 2002, sec. 5b, Smith and Vogl 2008,

p342, Smith et al. 2009). Thus, we would argue that it is

fallacious to invoke inertial stability to explain the rapid

deceleration of the inflow in the boundary layer. The fore-

going examples are only a few of the instances we found

in the literature where inertial stability has been invoked to

explain boundary layer behaviour, an indication that such

misleading interpretations have become entrenched.

3Strictly speaking, this reasoning, like that of Kepert and Wang (2001)
cited above, is not entirely sound. This is because, while the absolute
vorticity on the left-hand side of torque balance increases with decreasing
radius, the quadratic drag on the right-hand side of torque balance
increases with decreasing radius also. According to torque balance, the
radial inflow is determined by the ratio of the tangential drag per unit
depth to the absolute vertical vorticity, both of which increase with
decreasing radius. Although one might surmise that the increase in
absolute vorticity is more rapid than that of the drag per unit depth, it
is not obvious which effect wins, except for the special case of a Rankine
vortex (v ∼ r−1). However, torque balance becomes invalid in the case
of a Rankine vortex (e.g. McWilliams 1971; Kepert 2001).
4If Equation (4) is integrated vertically over the depth of the boundary
layer, the mean inflow is seen to be proportional to the surface stress in
the tangential direction and inversely proportional to the product of the
boundary layer depth times the absolute vorticity of the gradient wind
(e.g. Willoughby 1995, Equation (2.11)).

7 Conclusions

We have reviewed the linear theory of a turbulent vortex

boundary layer in the context of tropical cyclones and have

examined in detail two solutions of the linear boundary

layer equations for broad and narrow gradient wind profiles

that have the same radius of maximum tangential wind

speed. We examined further the integrity of these solutions

by using them to estimate the nonlinear terms that were

neglected in their derivation. These terms are not negligible

for the narrower vortex profile. The analysis shows that

the linear approximation is best for the broader gradient

wind profile. It shows also that the structural differences

between the two solutions cannot be explained on the basis

of inertial stability arguments.

We have argued that, even if the degree of radial force

imbalance in the boundary layer is small, its effects can-

not be simply dismissed. The reason is that the effects of a

small, but persistent net inward force can accumulate over a

hundred kilometres or more in radius. In particular, it is fal-

lacious to attribute inflow in the nonlinear boundary layer to

torque balance, because it would be determined then by the

tangential (sic) momentum equation. We pointed out that,

in the tangential direction, torque balance cannot account

for the development of supergradient winds and their con-

tribution to the rapid deceleration of the boundary layer

inflow inside the radius of maximum gradient wind speed.

These effects are intrinsically nonlinear and require consid-

eration of both horizontal momentum equations.

We have examined some previous interpretations of

both linear and nonlinear boundary layer behaviour, which

we believe are deficient. In particular, we have examined

arguments about boundary layer behaviour that invoke

inertial stability ideas borrowed from balance vortex theory

and have questioned the application of such ideas when

applied to the vortex boundary layer.
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Appendix: Radial variation of ν, I2, a1 and a2

Figure 6 shows the radial variation of the quantities

ν, I2, a1 and a2 that appear in the solution to the linear

boundary layer problem. These quantities are calculated

with the parameter values given at the start of section 3

and the two vortex profiles defined therein. It is seen that
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Parameter ν(r) Parameter I2(r)

Parameter a1(r) Parameter a2(r)

Figure 6. Radial variation of (a) ν, (b) I2, (c) a1 and (d) a2. Curves for x = 1.6 in red, for x = 2.3 in blue.

the parameter ν, the drag coefficient multiplied by the

boundary layer Reynolds‘ number, lies within the range

0 to 1 (panel (a)), as do the profiles of a1 and a2 that

appear in the solutions (7), (8) and (15) (panels (c) and

(d)). The profiles of a1 have the same qualitative behaviour

as those of ν, starting with a value of zero at r = 0.

For x = 1.6, the profiles show a broad maximum near

r = 220 km, beyond which they slowly decline. For x =
2.3, the maximum is more peaked near r = 120 km and

they decline more rapidly, much like both profiles of a2.

Since the coefficients a1 and a2 appear in the combination

a2 cos(z/δ)− a1 sin(z/δ) in the solution for u(r, z) in

Equation (8), their individual contribution to u(r, z) will

vary with height.

Figure 6b shows the radial variation of the inertial

stability, I2, illustrating the rapid increase with decreasing

radius inside the radius of maximum gradient wind and the

fact that the broader vortex has a larger increase than the

narrower vortex.
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