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We question recent studies invoking the existence of a traditional ‘logarithmic
surface layer’, or log layer, in the boundary layer of the rapidly rotating core of a
hurricane. One such study argues that boundary-layer parametrization schemes that
do not include a log layer are ‘badly flawed’. Another study assumes the existence of
a log layer to infer drag coefficients at hurricane wind speeds. We provide theoretical
reasoning supported by observational evidence as to why significant departures from
the normally assumed logarithmic layer might be expected, questioning its use in
the inference of the drag coefficient at high wind speeds and laying bare suggestions
that hurricane models using boundary-layer schemes that do not represent the
log layer should not be used. The ramifications of these findings for hurricane
modelling are discussed. Finally, we draw attention to a study examining a range of
boundary-layer schemes demonstrating that a recently articulated boundary-layer
spin-up mechanism transcends the presence of a log layer.
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1. Introduction

The importance of the boundary layer in tropical cyclones
has been recognized for several decades because the frictional
breakdown of gradient wind balance leads to strong inflow
in the layer. This inflow converges moisture evaporated
from the sea surface to feed the deep convective clouds in
the storm’s inner core.

The boundary layer is a key element of Ooyama’s seminal
axisymmetric tropical cyclone model (Ooyama, 1969),
Carrier’s hurricane model (Carrier et al., 1971; Carrier,
1971a,b) as well as Emanuel’s (1986) model for an axially
symmetric, steady-state hurricane. Emanuel’s model became
the basis for a widely used theory for the potential intensity
(PI) of a hurricane, i.e. the maximum gradient wind speed
(Bister and Emanuel, 1998; Emanuel and Rotunno, 2011).
In all of these models, the boundary layer is treated as a layer

of air of constant density. In the models of both Ooyama
and Emanuel, the boundary layer is treated as a layer of
constant depth and with vertically uniform properties, and
explicitly or effectively assumes that the layer is in gradient
wind balance (Smith et al., 2008).

Recently, Smith et al. (2009) have demonstrated that the
role of the boundary layer extends beyond that of converging
moisture: it has a dynamical role in converging absolute
angular momentum, M∗. Although M is not materially
conserved in the boundary layer, large tangential wind speeds
can be achieved there if the radial inflow is sufficiently large
to bring the air parcels to small radii with minimal loss of M.
This spin-up mechanism, while coupled to the interior flow

∗Defined as rv + 1/2fr2, where r is the radius, v is the (azimuthally
averaged, storm-relative) tangential wind speed, and f is the Coriolis
parameter.
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via the radial pressure gradient at the top of the boundary
layer, is tied fundamentally to the dynamics of the boundary
layer, where the flow is not in gradient wind balance over
a substantial radial span. It was shown that this mechanism
accounts for the occurrence of the maximum tangential wind
in the boundary layer, a feature that has been found also
in observational studies (Montgomery et al., 2006; Kepert,
2006a,b; Bell and Montgomery, 2008; Sanger et al., 2012).

The idealized numerical calculations of Smith et al. (2009)
employed a relatively simple bulk boundary-layer
parametrization scheme, albeit more sophisticated than
Emanuel’s slab model. For this reason, the calculations were
repeated by Smith and Thomsen (2010) using a range of
boundary-layer schemes having various degrees of sophisti-
cation. While the latter study showed quantitative differences
in the intensification rate, mature intensity and certain flow
features in the boundary layer for different schemes, in all
cases the maximum tangential wind was found to occur
close to the top of the inflow layer (Figure 2 of Smith and
Thomsen, 2010; Figure 1 here), implying that the boundary-
layer spin-up mechanism articulated by Smith et al. (2009)
is robust and not dependent on a particular scheme. Similar
results were obtained by Braun and Tao (2000) and Nolan
et al. (2009a,b) in case-studies of two particular hurricanes,
where different boundary-layer schemes were compared.
While a range of schemes were investigated in all these stud-
ies, some relatively crude and others rather sophisticated,
none of the studies went so far as recommending a particular
scheme.

In an effort to address this issue, Kepert (2012) compared
a range of boundary-layer parametrization schemes in the
framework of a steady-state, height-resolving, boundary-
layer model in which the tangential wind speed at the top
of the boundary layer is prescribed and assumed to be in
gradient wind balance. One outcome of his study as stated
in his abstract is that ‘... one popular class of schemes is
shown to be badly flawed in that it incorrectly predicts
the near-surface wind profile, and therefore should not
be used. Another is shown to be sensitive to diagnosis of
the boundary-layer depth, a difficult problem in the core
of the tropical cyclone, and caution is advised. The Louis
boundary-layer scheme and a higher-order closure scheme
are, so far as we can discern, without major problems,
and are recommended’. In his conclusions, Kepert states
that ‘one class of schemes, representing the Bulk and Hi-
Res parametrizations† available within MM5‡, produces
the strongest surface inflow, strongest supergradient jet,
and fails to produce the observed near-surface logarithmic
layer’ and ‘these features are due to the diffusivity being
a maximum at the lowest model level, which in turn
is due to an incorrect parametrization of the mixing
length. These schemes are therefore significantly in error
on observational and theoretical grounds’ and that ‘... it
would seem prudent that such studies be repeated with a
more reasonable parametrization’. Kepert does not elaborate
on what constitutes ‘significantly in error’ (presumably, this
remark applies also to Emanuel’s widely-used PI theory that
assumes a slab boundary layer) and we question here the
‘observational and theoretical grounds’ that underpin his
claim.

†Kepert’s article gives a more detailed description of these schemes.
‡The Pennsylvania State University/National Center for Atmospheric
Research mesoscale model.

The main basis of Kepert’s critique of many schemes is
that the log layer has to be satisfied to avoid ‘significant
error’ and, for consistency with a constant stress layer,
the associated mixing length and eddy diffusivity must
increase linearly with depth near the surface. This assertion
appears to be founded on an observational study of the
hurricane boundary layer by Powell et al. (2003) and on
laboratory measurements in non-rotating boundary layers
in a turbulent fluid (Von Kármán, 1921; Schlichting, 1979;
see also Stull, 1988; Garratt, 1992). Using a composite
analysis of a large number of Global Positioning System
(GPS) dropwindsonde soundings in the inner core of storms,
Powell et al. showed that the logarithmic layer provides an
acceptable fit to the wind speed data below about 200 m (his
Figure 1), although there is a large scatter in the wind speed
data and Powell et al. showed only data points at each height
and not individual vertical profiles. The existence of such a
layer is used by both Powell et al. (2003) and Holthuijsen
et al. (2012) as a basis for estimating the drag coefficient at
major hurricane wind speeds.

We are unconvinced by this ‘observational support’ for
the ubiquity of a log layer in the core region of a rapidly
rotating vortex for several reasons articulated below. We
are unconvinced also by the theoretical support for the
log layer in tropical cyclones asserted by Powell et al.,
Kepert and others, which is based on dimensional analysis
and assumes horizontal homogeneity. The purpose of this
article is to revisit the interpretations of Powell et al. (2003)
regarding the log layer and to question some of the scientific
conclusions reported in Kepert’s study.

The structure of the article is as follows. In section 2 we
review the derivation of the log layer and explain why it
may be inapplicable in a rapidly rotating vortex. In section 3
we show examples of inner-core dropwindsonde soundings
that do not support the existence of a log layer. Section 4
considers the implications of the issues raised for modelling
the hurricane boundary layer and section 5 presents the
conclusions.

2. Theoretical considerations

2.1. The log layer revisited

The derivation of the log layer for the atmospheric
boundary layer is reviewed in a classical paper by
Tennekes (1973) and is based on an asymptotic similarity
theory expounded by Blackadar and Tennekes (1968). The
starting point is the equations of motion for a stationary,
horizontally homogeneous, barotropic boundary-layer flow
with constant density ρ, which is forced by a geostrophic
flow, ug:

−f (v − vg) = d

dz
(−u′w′), (1)

f (u − ug) = d

dz
(−v′w′), (2)

where u and v are the standard Reynolds-averaged zonal and
meridional wind components in the boundary layer, ug and
vg are the corresponding geostrophic wind components at
the top of the boundary layer, f is the Coriolis parameter, and
z is the height above the surface. The expressions −u′w′ and
−v′w′ are the vertical turbulent momentum fluxes of zonal
and meridional momentum, respectively (primes denote a

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 72–81 (2014)



74 R. K. Smith and M. T. Montgomery

departure from the mean flow, w′ being the perturbation of
vertical velocity). Taking the magnitude of the geostrophic

wind as G = (u2
g + v2

g)
1/2

, the surface roughness length as

zo, and the surface stress ρu2∗ (here u∗ is the surface friction
velocity), it is possible to establish a relationship between the
two non-dimensional quantities: u∗/G and Ro = G/(fzo),
the surface Rossby number. Typically Ro >> 1.

Tennekes (1973) notes also that these equations admit
two kinds of self-similar solutions:

1. zf /u∗ finite (i.e. finite relative height in the boundary
layer), but with z/zo → ∞ and Ro → ∞. Then, to a
first approximation, the wind profile is asymptotically
independent of Ro, provided it is plotted as

u − ug

u∗
= Fx

(
zf

u∗

)
,

v − vg

u∗
= Fy

(
zf

u∗

)
, (3)

where Fx and Fy are some universal functions to be
determined. This is the scaling for the part of the
boundary layer above the surface layer.

2. z/zo finite, but with zf /u∗ → 0 and Ro → ∞.
Again, to a first approximation, the wind profile
is asymptotically independent of Ro, provided it is
plotted as

u

u∗
= Fs

(
z

zo

)
,

v

u∗
= 0 , (4)

where Fs is another universal function to be
determined and it has been assumed that the surface
stress points in the x-direction. This is the scaling for
the surface layer.

Tennekes notes that, although Eq. (3) is valid only well
outside the surface layer (z/zo → ∞) and Eq. (4) is valid
only inside the surface layer (z/zo finite), they must have a
region of common validity if Ro is large enough. This region
of overlap, in which z/zo → ∞ and zf /u∗ → 0, is called the
matching layer, or inertial sublayer. In this layer, Eqs (3) and
(4) and all their derivatives have to agree with each other.
Blackadar and Tennekes (1968) showed that the matching
is possible only if the wind profile is logarithmic with height
and that, if the coordinate axes are chosen so that the surface
stress is in the x-direction, Eqs (3) and (4) have the forms:

u − ug

u∗
= 1

κ
log

(
zf

u∗

)
+ B

κ
, v = 0,

vg

u∗
= −A

κ
, (5)

and

u

u∗
= 1

κ
log

(
z

zo

)
, v = 0, (6)

where A, B and κ are constants, the latter being the Von
Kármán constant.

Tennekes (1973, section 4) notes that ‘from a theoretical
point of view, the inertial sublayer (represented here by
Eq. (6)) is a constant-stress layer in the asymptotic sense,
provided zf /u∗ → 0 as Ro → ∞’. He estimates that the
stress stays within 1% of its surface value only below
zf /u∗ = 10−3, which, in typical conditions, amounts to
z = 3 m. He goes on to point out that ‘the logarithmic law
is useful and accurate well above that height if the boundary
layer is an adiabatic one’. This statement would appear to

suggest that the wind profile in the direction of the surface
stress continues to remain logarithmic for some distance
above the matching layer, but since the wind component
transverse to the stress direction is not determined above
the matching layer, it would not follow that the total wind
continues to increase logarithmically with height.

Alternative derivations of the logarithmic velocity profile
in a layer adjacent to surface are common in the literature
for the case of a homogeneous flow on an f -plane (e.g. Brown,
1974; Panofsky and Dutton, 1984; Stull, 1988; Garrett, 1992;
McWilliams, 2006). Most of these derivations are based on a
scale analyses of the layer alone, without considering a formal
matching to the boundary layer above, although Panofsky
and Dutton and Garratt do discuss also the so-called Rossby
similarity theory summarized above and Brown presents a
detailed analysis of matching in a subsequent chapter. The
derivations assume that the flow in the surface-based layer
is unidirectional and independent of f . For example, the
starting point for McWilliams’ derivation is based on the
idea that the mean vector velocity profile u(z) has a large
shear with a profile shape governed by the boundary stress
(characterized by the friction velocity u∗) and the near-
boundary turbulent eddy size (effectively the height z) in the
following way:

du

dz
= u∗

κz
ŝ , (7)

where ŝ is a unit vector in the direction of the surface shear
stress and other quantities are defined above. This equation
may be integrated to yield

u(z) = u∗
κ

log

(
z

zo

)
ŝ. (8)

Accordingly, the wind is unidirectional in the direction
of the surface shear stress and increases logarithmically
in magnitude with height. Note that, if expressed as wind
components in any locally orthogonal coordinate system, the
magnitude of both components must increase with height.

In the case of a steady axisymmetric vortex with tangential
wind speed vg(r) in gradient wind balance above the
boundary layer, the equations analogous to Eqs (1) and
(2) are

u
∂u

∂r
+ w

∂u

∂z
− v2

a

r
−

(
f + 2vg

r

)
va = ∂

∂z
(−u′w′), (9)

u
∂va

∂r
+ w

∂va

∂z
+ (f + ζg)u = ∂

∂z
(−v′w′), (10)

where now u and v are the radial and tangential components
of the Reynolds-averaged wind, respectively, and v has been
replaced by the agradient wind va = v − vg. The derivation
makes the normal boundary-layer approximation in which
the radial pressure gradient is uniform across the boundary
layer and the radial derivative of the turbulent shear stress
is neglected. Now, in the steady-state case, the radial flow
at the top of the boundary layer is zero§ (i.e. ug = 0)

§If the mean radial flow above the boundary layer were not zero, the
tangential flow would evolve with time on account of the material
conservation of absolute angular momentum, except in the special case
of a vortex in which the flow above the boundary layer is along absolute
angular momentum surfaces.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Radius–height cross-sections of azimuthally averaged radial (thin contours, with negative values dashed) and tangential (bold contours) wind
components in the lowest 2 km averaged at 15 min intervals during the period 108–120 h for the different boundary-layer schemes: (a) bulk scheme, (b)
Blackadar scheme, (c) Burk–Thompson scheme, (d) MRF scheme, (e) Gayno–Seaman scheme, and (f) the steady linear model. The contour interval is
5 m s−1. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

while the tangential flow is a function of radius, r. Also,
ζg = (1/r)d(rvg)/dr is the vertical component of relative
vorticity of the gradient wind.

Although a scale analysis shows that the nonlinear terms
in Eqs (9) and (10) cannot be neglected in the boundary
layer of a tropical-cyclone-strength vortex (e.g. Smith, 1968;
Carrier, 1971a; Vogl and Smith, 2009), let us suppose for
the sake of the current discussion that they can. Then
the equations are similar in structure to Eqs (1) and
(2), but the presence of the radially variable coefficients
involving the absolute angular velocity, f + 2vg/r, and the
absolute vorticity, f + ζg, of the gradient wind invalidates
the scaling analysis discussed above. In a rapidly rotating
vortex, these terms are dominated by the contributions
2vg/r and ζg, which typically are unequal and have a strong
radial variation, except possibly close to the centre, where
the flow may be in approximate solid-body rotation. In
this case, the assumption of horizontal homogeneity in the
analysis of the Eqs (1) and (2) for constant f is no longer
valid. Hence, even if the nonlinear terms are ignored, it is
by no means obvious to us that a similar scaling analysis
can be applied, since additional scales including the radius,
the absolute angular velocity and relative vorticity of the
gradient flow have emerged. These scales reflect the presence
of a net, radially inward, pressure-gradient force which is a
maximum at the surface where the tangential flow is reduced
the most by the azimuthal frictional stress. In other words,
the vertical gradient of horizontal velocity in Eqs (9) and (10)
does not depend simply on the distance from the surface (and
neither does the eddy diffusivity). Thus the existence of a net

transverse pressure gradient force with components along
and normal to the surface stress vector would invalidate the
assumption of a constant stress throughout a surface-based
layer.

As far as we are aware, the validity of the near-surface
constant stress assumption in the turbulent boundary layer
of a rapidly rotating vortex has not been questioned. Indeed,
it has been advocated by Kepert (2012) as an essential
ingredient of any plausible boundary-layer scheme. We
present evidence below from various numerical calculations
as well as observations suggesting that the assumption cannot
be justified in the inner core of a hurricane.

2.2. Near-surface wind structure in hurricane models

There is both observational and theoretical support to
suggest that the vertical gradients of the radial and tangential
wind components have different signs near the surface in
the inner core of a hurricane, a feature that is not compatible
with one property of the log layer noted above. The tendency
to produce the maximum radial inflow at the surface is
evident for all the schemes investigated by Braun and Tao
(2000), Nolan et al. (2009a,b) and Smith and Thomsen
(2010), whether or not the formulation of the scheme
incorporated a log layer. As an illustration of this feature, we
show in Figure 1 vertical cross-sections of the azimuthally
averaged radial and tangential wind speed components in
the idealized hurricane simulations described by Smith and
Thomsen (2010) for five different boundary-layer schemes.
The cross-sections encompass the lowest 2 km in height with
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the velocity fields being averaged at 15 min intervals during
the mature stage of vortex evolution (the period 108–120 h).
The boundary-layer schemes include the bulk scheme, the
Blackadar scheme, the Burk–Thompson scheme, the MRF
scheme, and the Gayno–Seaman scheme, details of which are
summarized in Smith and Thomsen (2010) with references.
Kepert (2012) gives an erudite summary of the essential
features of these different schemes.

For comparison, Figure 1(f) shows an example of cross-
sections obtained by solving the quasi-linear boundary-layer
model with a prescribed tangential wind profile¶ just below
the top of the layer. In this example, the maximum tangential
wind speed at large height is taken to be 60 m s−1 and the
eddy diffusivity is taken to be a constant, equal to 100 m2s−1.
The quasi-linear model is locally analogous to the classical
Ekman layer model‖ (Eliassen and Lystadt, 1977; Kepert,
2001). Although it has been shown that the quasi-linear
approximation becomes invalid in the inner core of a
hurricane (Carrier, 1971a,b; Vogl and Smith, 2009), this
model shows also the tendency to produce the maximum
radial wind component at the surface.

As an aid to comparing the schemes in Figure 1, we show
in Figure 2 the vertical profiles of the radial and tangential
wind components at the radius (rmax) of the maximum
azimuthally averaged tangential wind speed (vmax). Included
also are the corresponding profiles for the quasi-linear
solution shown in Figure 1(f). Again these profiles highlight
the fact that in all cases, vmax occurs near the top of the
inflow layer. It is particularly noteworthy that for all schemes,
and for the quasi-linear solution, the maximum radial wind
speed occurs at or very close to the surface.

When interpreting the first five panels in Figure 1, it
should be borne in mind that the lowest model level in the
MM5 calculations is at a height of approximately 40 m and
that the plotted surface wind components are obtained by
quadratic extrapolation using wind component values at this
level and the two above it in each grid column. While some
boundary-layer schemes in MM5 (e.g. the Bulk scheme)
apply a quadratic stress law at the lowest model level, and do
not extrapolate the winds to the surface, more sophisticated
schemes (e.g. the Blackadar and Gayno-Seaman schemes)
assume implicitly or explicitly the presence of a log layer.
For the latter schemes, the nominal ‘ocean surface’ would be
at the roughness height zo of the assumed log layer and the
wind speed would be zero at this level. However, it seems
to us physically unrealistic to plot zero wind speed at this
height in the figure, recognizing that the ocean surface is ill-
defined in a major hurricane due to wave-breaking, spume
and emulsion processes and the fact that waves may be many
metres in height. Nevertheless, the MM5 profiles in Figure 2
should be interpreted with caution below a height of 40 m.

¶Profile 3 in Figure 1 of Smith (2003).
‖The quasi-linear model for the steady boundary layer is obtained by
neglecting the nonlinear acceleration terms for the agradient wind in
the horizontal momentum equations (9) and (10) and the centrifugal
and Coriolis terms are linearized about the gradient wind of the bulk
vortex at the top of the boundary layer (Vogl and Smith, 2009). The
radial diffusion of momentum is neglected also. These equations have
the form −ζav′ = (∂/∂z)(K∂u/∂z) and −ξu = (∂/∂z)(K∂v′/∂z), where
u and v′ are the radial and tangential components of the agradient wind,
ζa is the absolute vorticity of the gradient wind, ξ = 2v/r + f is twice
the absolute angular velocity of the gradient wind, K is the vertical eddy
diffusivity and z is the height. Simple closed-form solutions at a given
radius may be obtained if the diffusivity is assumed to be constant with
height.

Figure 2. Vertical profiles of azimuthally averaged radial and tangential
wind components in the lowest 2 km at the radius of maximum tangential
wind speed for the different schemes shown in Figure 1: b = bulk scheme, B
= Blackadar scheme, BT = Burk–Thompson scheme, M = MRF scheme,
GS = Gayno–Seaman scheme, and L = steady quasi-linear model. This
figure is available in colour online at wileyonlinelibrary.com/journal/qj

It is significant that, for the region inside the radius
of maximum tangential winds, Kepert’s (2012) solutions
have also the tendency to produce the maximum radial
inflow at the surface. This is a feature of all the schemes he
investigated, whether or not a log layer was ‘imposed’ by the
choice of the linear variation of near-surface eddy diffusivity
with height (e.g. his Figures 3 to 6). As noted above, such
a feature is inconsistent with the existence of a log layer.
Even so, it is pertinent to mention that the numerical model
used by Kepert, as well as the quasi-linear boundary-layer
model summarized above, have an issue in that, as pointed
out by Smith and Montgomery (2010), they effectively
prescribe the tangential wind at the top of the boundary
layer where the flow is upwards. Such a prescription at an
outflow boundary makes the physical problem ill-posed as
the boundary layer itself should be allowed to determine
the tangential momentum that it expels into the bulk vortex
aloft (see also Rotunno and Bryan, 2012, p 17).

As noted above, a property of the layer defined by the
solution (6) is the strict unidirectional nature of the wind
within it. However, if the solution (5) continues to hold for
some distance above the matching layer, the wind profile in
the direction of the surface stress may remain logarithmic
with height while there may be some cyclonic turning with
height (Blackadar and Tennekes, 1968).

To show that a unidirectional surface-based layer is not a
feature of any of the parametrization schemes in Figure 1,
irrespective of whether they represent a log layer in the
traditional sense (i.e. they have an eddy diffusivity increasing
linearly with height implying a constant stress layer), we
show in Figure 3 the hodographs of the wind profiles in
Figure 2. Except in the MRF scheme (which, as noted by
Smith and Thomsen, predicts a rather diffuse boundary
layer) and in the quasi-linear solution, the schemes indicate
that a significant turning of the wind vector with height
occurs in the lowest few hundred metres, a property that
cannot be represented by the traditional log layer. Note that,
except in Figure 3(c), the radial wind component remains
approximately constant or actually decreases in magnitude
with height in the lowest 50 m. This feature is certainly not
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(a) (b) (c)

(d) (e) (f)

Figure 3. Wind hodographs in the lowest 2 km corresponding to the vertical profiles in Figure 2. (a) bulk scheme, (b) Blackadar scheme, (c)
Burk–Thompson scheme, (d) MRF scheme, (e) Gayno–Seaman scheme and (f) quasi-linear model. The tick marks on the curves indicate height
intervals every 50 m starting at the surface and ending at 400 m. The two lines with arrows represent the wind vectors at the surface (left/blue) and at a
height of 400 m (right/green), respectively. The vertical line marks u = 0. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

a property of the traditional log layer, where the magnitude
of both components must increase with height.

3. Observations of the hurricane boundary layer

The data used by Powell et al. (2003) to justify the presence
of a log layer have a great deal of scatter and individual
profiles are not shown. However, other studies indicate
that many individual inner-core wind soundings do not
exhibit the structure of a traditional log layer. In fact, GPS
dropwindsonde data in the inner core of hurricanes and
typhoons frequently show radial wind profiles that have a
maximum inflow at the surface. It may be worth noting that
Powell et al. assume a traditional, strict, constant-stress log
layer as defined above and do not invoke the Blackadar and
Tennekes formulation embodied in Eq. (5). Thus, even if
the component of flow in the direction of the stress remains
logarithmic for some height range above the inertial sub-
layer, it is unclear to what degree the total wind speed might
remain logarithmic, because the asymptotic theory does not
determine the corresponding formula for v in this region.
It seems possible that the uncertainty in the applicability

of the asymptotic theory to heights above the inertial layer
could account for at least a part of the scatter in the data.

Composite dropwindsonde soundings in the eyewall of
individual storms can provide a useful perspective on the
vertical structure of the boundary-layer winds there. Two
such examples are illustrated here using data from typhoon
Jangmi (Figure 4) presented by Sanger et al. (2012), and
hurricane Isabel (2003) (Figure 5) presented by Montgomery
et al. (2006) and Bell and Montgomery (2008). In both
cases, the maximum storm-relative tangential wind speed
(vmax) occurs within the layer of relatively strong inflow (u).
Without exception, the tangential wind component (v) is a
minimum at the surface. While the magnitude of v in Jangmi
increases with height near the surface, that of u decreases
with height, except in a very shallow layer (below 50 m) in the
supertyphoon stage. In Isabel, a negative vertical gradient of
radial velocity is evident throughout the boundary layer on
two out of three days, except in a very shallow layer below
50 m. On 14 September, the maximum inflow resides at the
surface.

In those profiles where the radial wind speed increases
with height below 50 m, we cannot definitively rule out the
existence of a shallow log profile, but we can rule out a log
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Figure 4. Vertical profiles of the storm-relative tangential (v) and radial
(u) wind components in the eyewall composites for typhoon Jangmi
(2008). Indices 1, 2, 3 on the curves denote the tropical storm, typhoon and
supertyphoon stages, respectively. These data have a vertical resolution of
50 m. Data courtesy of N. T. Sanger. This figure is available in colour online
at wileyonlinelibrary.com/journal/qj

Figure 5. Vertical profiles of the storm-relative tangential (v) and radial
(u) wind components in the eyewall composites for hurricane Isabel (2003)
on three consecutive days of observations (12–14 September). Numbers
on curves denote the date. These data have a vertical resolution of 50 m.
Data courtesy of M. A. Bell. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

layer extending 100–200 m in depth as proposed by Powell
et al. (2003) for inferring drag coefficients at major hurricane
wind speeds. However, the subsequent decrease in the radial
wind component above this height is not consistent with a
traditional log layer.

Figure 6 shows the hodographs of the eyewall wind
composites for Jangmi presented in Figure 4. As in the
numerical calculations shown in Figure 3, much of the
turning of the wind occurs within the lowest few hundred
metres. While the turning of the wind does not, by itself,
rule out the existence of a logarithmic wind profile as noted
in section 2, it does challenge the existence of a traditional
surface-based log layer in which the wind and shear stress
vector are unidirectional.

The turning of the wind is particularly marked in the
supertyphoon stage of Jangmi, for which the hodograph is
quite similar to that in the bulk scheme (compare Figure 3(a)
with Figure 6(c)). This finding would indicate that the bulk
scheme is not necessarily as poor as Kepert’s (2012) critique of
it might suggest.

It may be argued that typhoon Jangmi and hurricane
Isabel are only two storms and that the structures shown
in Figures 4–6 may not be general. For this reason,
we show in Figure 7 composite plots of storm-relative
radial and tangential velocity for the eyewall region of
thirteen Atlantic hurricanes. These eyewall composite
profiles were constructed from data used to characterize
the mean boundary-layer structure of the near-core vortex
region contained within a radius of about four times
the radius of maximum tangential winds (Zhang et al.,
2011a). The eyewall composites consist of several hundred
dropwindsondes. In these composites, the tangential velocity
component increases in magnitude with height near the
surface. The radial velocity component increases slightly
in magnitude with height within the first 50 m, and
subsequently decreases rapidly. The increase of the two
wind components in the lowest 50 m would not rule out the
existence of a log layer there. To examine this possibility, we
plot in Figure 8 the total wind speed from these components
as a function of height in the lowest kilometre and also the
wind hodograph to a height of 2 km. It is seen that, while
the profile of total wind is approximately logarithmic in the
layer between 100 and 400 m, this logarithmic profile does
not extend all the way to the surface. Moreover, as in the
hodographs shown in Figures 3 and 6, the wind vector turns
through an appreciable angle within this layer, ruling out
that the layer behaves as a constant-stress layer. While it
might be argued that the logarithmic behaviour would be
consistent with solution (5), we note again that this equation
refers to the wind component in the direction of the surface
stress. Moreover, the decrease in the radial component of
flow above 50 m is strong evidence that the net radial pressure
gradient with height is important in the near-surface layer.

In summary, the foregoing observations indicate a
significant turning of the wind vector with height in the
lowest few hundred metres of the inner-core boundary
layer, generally accompanied by a decrease in the radial
wind component with height. These features, which support
the modelling results discussed in section 2, cannot be
represented by the traditional surface log layer. Even in
the eyewall composite for many hurricanes, the vertical
profile of storm-relative wind speed does not strictly follow
a logarithmic profile throughout the lowest 200 m.

4. Ramifications for hurricane modelling

Kepert (2012) criticizes the bulk and ‘high-res’ schemes on
one ground that they do not produce the observed near-
surface logarithmic layer. As argued above, the basis for a
log layer in the inner core of a hurricane is not compelling,
either on theoretical or observational grounds. Even so, the
question remains: how important are the structural details
of the shallow surface layer on the prediction of vortex
evolution, provided that the surface stress and surface heat
fluxes are adequately represented?

From an elementary perspective, in the classical Ekman
solution (including the version where the surface stress is
assumed to be in the direction of the surface wind), the
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(a) (b) (c)

Figure 6. Wind hodographs in the lowest 2 km corresponding with the vertical wind profiles of Jangmi shown in Figure 4. The tick marks on the curves
indicate height intervals every 50 m starting at the surface and ending at 400 m. The two lines with arrows represent the wind vectors at the surface
(left/blue) and at a height of 400 m (right/green), respectively. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

radial volume transport depends only on the surface stress
and not on the details of the shallow surface layer. This
result follows directly by integrating the steady linearized
tangential momentum equation with respect to height and
assuming that the tangential wind approaches the gradient
wind at large heights. A similar result is true for the quasi-
linear model of the boundary layer discussed above.

In the classical Ekman solution, the vertical velocity at the
top of the boundary layer is simply proportional to the radial
gradient of the volume transport in the layer, and hence to
the radial gradient of the surface shear stress. This result
follows immediately by integrating the continuity equation
with respect to height (Gill, 1982, section 9.4). Like the
volume transport, the vertical velocity at large height does
not depend on the details of the surface layer. These same
remarks apply also to the quasi-linear vortex boundary-layer
model discussed in section 2.

While a scale analysis shows that neither the Ekman
model nor the quasi-linear model are valid in the inner-core
region of a hurricane and that the nonlinear acceleration
terms in the boundary-layer equations are important in this
region (Smith, 1968; Smith and Montgomery, 2008; Vogl
and Smith, 2009), it has yet to be demonstrated that the
details of the shallow surface layer have a profound effect
on the volume of air converging in the boundary layer and
hence on the vertical motion out of the boundary layer,
provided that the surface stress is represented appropriately.

Of course, the magnitude and vertical distribution of the
radial velocity component depends in part on the assumed
vertical profile of diffusivity, even in the classical Ekman
solution. In particular, the bulk magnitude of the diffusivity
together with the Coriolis parameter determines the depth
of the inflow layer (e.g. Gill, 1982) and hence the depth
over which the volume flux is distributed. This dependence
on diffusivity extends therefore to the radial advection of
absolute angular momentum. Clearly, the efficacy of the
boundary-layer spin-up mechanism articulated by Smith
et al. (2009) will depend quantitatively on the particular
parametrization scheme as confirmed by the calculations

of Smith and Thomsen (2010) summarized in Figures 1–3
here.

As noted above, the calculations of Smith and
Thomsen (2010) demonstrate that a recently articulated
boundary-layer spin-up mechanism for the hurricane by
Smith et al. (2009) transcends the presence of a log layer.
Independently, Bryan (2012, his Figure 16) has shown that
the incorporation of a reduced vertical mixing length near
the surface (using the Blackadar formulation for vertical
mixing length) yields an essentially similar dependence
of maximum tangential winds on the ratio of enthalpy
and momentum surface exchange coefficients, while the
simulated vmax tended ‘to be slightly lower with the Blackadar
formulation for vertical mixing length’. Together, these
results suggest that the essence of tropical cyclone spin-up
and the dependence of maximum winds on the ratio of
enthalpy and momentum exchange coefficients is captured
without a log layer.

It is evident from the foregoing discussion that
uncertainties in the optimum scheme for use in operational
hurricane models remain. In general, such models do not
have the vertical grid resolution to resolve the putative log
layer, which is used merely to extrapolate the wind from the
lowest model grid level to a standard height (normally 10 m)
where the normal aerodynamic drag formulation (in terms
of CD) is applicable. In view of the large uncertainties in the
formulation of the eddy diffusivity above the lowest model
level, the possible sensitivity to the precise formulation
of the surface layer may be over-exaggerated. Indeed, a
major issue confronting hurricane modellers is the lack of
observational data on the radial and vertical structure of
eddy diffusivity in the strong-wind region of hurricanes to
guide the formulation of this quantity in models. One step
in this direction has been taken in two recent articles by
Zhang et al. (2011b) and Zhang and Montgomery (2012).

Despite Kepert’s (2012) critique of the bulk and Blackadar
schemes, the results of section 2 show that the predictions
using the Blackadar scheme do not deviate significantly
from the other schemes and even those of the bulk scheme
are not totally unrealistic compared with some of the
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Figure 7. Vertical profiles of the tangential (v) and radial (u) wind
components in the eyewall composites of many hurricanes. Data
courtesy of J. A. Zhang. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

observations shown above. In particular, we have shown
that the wind speed profiles and hodographs in the vicinity
of the eyewall region using the Bulk and Blackadar schemes
are not inconsistent in magnitude with those in major
hurricanes such as Isabel and Jangmi. While we do not wish
to defend the use of simple boundary-layer schemes for their
accuracy in operational prediction models, we do believe that
they have an important role in generating understanding of
tropical cyclone spin-up and maximum potential intensity.
We believe that Kepert’s erudite comparison of the different
schemes is an important step in attempts to determine an
optimum scheme for use in operational prediction models.
Nevertheless, for the reasons articulated herein, we do not
subscribe to his assertion that the absence of a log layer
should be a criterion for rejecting a scheme.

Another issue raised by our results is the validity of
assuming a constant-stress layer with a logarithmic wind
speed profile for estimating the drag coefficient at major
hurricane wind speeds (e.g. Powell et al., 2003; Holthuijsen
et al., 2012). The basis of this assumption is that the flow
can be treated as horizontally homogeneous, which we have
shown here to be untenable on both observational and
theoretical grounds. In particular, the nonlinear inertial
effects are shown to be important near the surface, where
the effective radial pressure gradient force is largest. A
consequence is that the radial flow tends to be a maximum
at or near the surface, as seen in the observations, and
the vertical gradients of the magnitude of the radial and
tangential wind components tend to have opposite signs.
A method that avoids these assumptions in estimating the
drag coefficient at high wind speeds is discussed by Bell
et al. (2012), although this method has its own limitations
as well. This method is based on a control volume analysis
of absolute angular momentum and total energy around the
eyewall region in the lower troposphere.

It is beyond the scope of this article to quantify the errors
that might arise from the assumption of a log layer when
estimating the drag coefficient at high wind speeds, but
we regard this as a legitimate question for further study
following the concerns we have raised about the existence of
such a layer itself.

(a)

(b)

Figure 8. (a) Vertical profiles of the total wind, V, speed corresponding
with the tangential and radial wind components shown in Figure 7,
but plotted on a logarithmic vertical scale. (b) Hodograph of the wind
components plotted in Figure 7. Horizontal tick marks indicate heights
from 10 to 400 m at 10 m intervals. This figure is available in colour online
at wileyonlinelibrary.com/journal/qj

5. Conclusions

We have questioned the validity of the traditional surface-
based logarithmic layer in the inner core of hurricanes.
Definitive observational evidence for its existence in previous
studies is tenuous and is based on data that have a
significant amount of scatter. Indeed, many individual
eyewall soundings and a composite comprising thirteen
Atlantic hurricanes do not support its existence. There
are theoretical reasons why the logarithmic layer may be
violated in the inner core of hurricanes: this is because the
inward-directed effective pressure gradient force is largest
at the surface, where the tangential wind is reduced the
most from its gradient value aloft. The existence of this
cross-stream pressure-gradient force raises the possibility
that the largest inflow occurs at, or very close to, the surface,
which would imply that the horizontal shear-stress vector is
not unidirectional near the surface and that the magnitude
of the transverse wind component decreases with height.
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Both of these properties are inconsistent with a traditional
log layer. We have presented both numerical model results
and observational analyses in support of these ideas. We
noted that deviations from a logarithmic layer in the inner
core of hurricanes described herein must affect the ability to
infer the surface drag coefficient from dropwindsonde wind
profiles using methods that assume a logarithmic layer from
the outset. Finally, we drew attention to a study examining
a range of boundary-layer schemes demonstrating that
a recently articulated boundary-layer spin-up mechanism
transcends the presence of a logarithmic layer.
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