
Boundary Layer Meteorology

Chapter 09

Similarity theory

For a number of boundary layer situations, our knowledge 
of the governing physics is insufficient to derive laws based 
on first principles.

However, BL observations often show repeatable 
characteristics and we can derive empirical relationships 
for the variables of interest.

Similarity theory provides a way to organize and group 
variables to our maximum advantage, and provides 
guidelines on how to design experiments to gain the 
maximum information.

The idea is to organize variables into dimensionless groups.

A dimensional-analysis procedure to aid us:



Buckingham Pi theory

This theory aids us in forming dimensionless groups from 
selected variables.

The hope is that the proper choice of groups will lead to 
empirical relationships between these groups that are 
universal – i.e. they work everywhere and all the time for a 
particular situation.

There are four steps in developing a similarity theory:
1) Select (guess) which variables are relevant to the 

situation,
2) Organize variables into dimensionless groups
3) Use experimental data to determine the values of the 

groups
4) Fit an empirical curve to the data See Stull, Ch. 9

The log wind profile

One important application of similarity theory is to the mean 
wind profile in the surface layer.

The nature of this profile is relevant to the structure of 
buildings, bridges, snow fences, wind breaks, pollutant 
dispersion, and wind turbines, for example.

The surface layer wind profile has been studied extensively 
because of its accessibility to surface measurements.

The wind speed usually varies 
approximately logarithmically 
with height in the surface layer. 
Frictional drag causes the mean 
wind speed to become zero 
close to the ground.
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When plotted on semi-log graph paper, a logarithmic 
relationship such as the wind profile in statically neutral 
conditions appears as a straight line.

Typical wind 
speed profiles vs. 
static stability in 
the surface layer.

Wind profile in statically neutral conditions

We want a relationship for the mean wind U(z)

We speculate that the relevant variables are:

Surface stress, represented by u*, and surface roughness, 
represented by the aerodynamic roughness length, zo.

Buckingham Pi theory indicates the two dimensionless 
groups: U/u*, and z/zo.
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Von Kármán constant

The precise value is not agreed upon, but it is about 0.35-0.4.

From the graph



Alternative derivation

The momentum flux in the surface layer is:
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But momentum flux in approximately constant in the 
surface layer
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Aerodynamic roughness length

The aerodynamic roughness length, zo, is defined as the 
height where the wind speed becomes zero.

Given observations of wind speed at two or more heights, it 
is easy to solve for zo and u*:  
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Aerodynamic roughness length

The roughness length is not equal to the height of the 
individual roughness elements on the ground, but there is a 
one-to-one correspondence between those roughness 
elements and the aerodynamic roughness length.

In other words, once the aerodynamic roughness length is 
determined for a particular surface, it does not change with 
wind speed, stability, or stress.

It can change if the roughness elements on the surface 
change, such as caused by changes in the height and 
coverage of vegetation, erection of fences, construction of 
houses, deforestation or lumbering, etc.

Roughness length over the sea

Charnock’s relationship for the roughness length of the sea 
surface

For the sea, αc = 0.016.

This relationship can be applied also to blowing snow with 
appropriate change in parameter, αc  (Chamberlain, 1983) .
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Aerodynamic roughness length

For many large-scale numerical weather-forecast models the 
lowest grid-points (at height z1 above the surface) are so high 
that the surface layer is not resolved.

Nevertheless, it is important to account for varying 
roughness in the model forecast.

André and Blondin (1986) suggested that the effective 
roughness length (zoeff ) to be used in the model decreases as 
the altitude of the lowest grid point increases.

In particular, the ratio zo eff /h* decreases from about 0.1 to 
0.01 as z1 increases from 0.1 km to 1 km.

Taylor (1987), however, suggests that zo eff is independent of 
z1.

Aerodynamic roughness lengths for typical terrain types.
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Displacement distance

Over land, if the individual roughness elements are packed 
very closely together, then the top of those elements begins 
to act like a displaced surface.

For example, in some forest canopies the trees are close 
enough together to make a solid-looking mass of leaves, 
when viewed from the air.

In some cities the houses are packed close enough together 
to give  a similar effect; namely, the average roof-top level 
begins to act on the flow like a displaced surface.

Displacement distance

Flow over a forest canopy showing wind speed as a function 
of height. The thick canopy acts like a surface displaced a 
distance, d, above the true surface. zo = roughness length.
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Above the canopy top, the wind profile increases 
logarithmically with height.

We can define both a displacement distance, d, and a 
roughness length, zo, such that:

We now define U = 0 at z = d + zo.

Given wind speed observations in statically neutral 
conditions at three or more heights, it is easy to use 
computerized non-linear regression algorithms such as the 
Marquardt Method or the Gauss-Newton Method to solve 
for the three parameters, u*, zo, and d.

for statically neutral conditions
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Nondimensional wind shear
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The nondimensional wind shear is:
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Wind profile in non-neutral conditions
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Such formulae are called flux-profile relationships.

These relationships can be extended to non-neutral surface 
layers.

In non-neutral conditions we expect the buoyancy 
parameter and surface heat flux to be additional relevant 
variables.

Buckingham Pi analysis gives three dimensionless groups 
(neglecting the displacement distance):

relates the momentum flux, as represented 
by u*

2, to the vertical velocity profile.
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Alternatively, if we consider the shear instead of the speed, 
we get two dimensionless groups: φM and z/L.

Based on field data, Businger et al. (1971) and Dyer (1974) 
independently estimated the functional form to be:
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Businger et al. (1971) suggested that k = 0.35 from their 
data set.

Similar expressions have been estimated for the heat flux 
versus the virtual potential temperature profile.
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It is often assumed that the flux profile relationships for 
moisture or pollutants are equal to those for heat.

Where KM/KH is the ratio of eddy diffusivities of momentum 
and heat. This ratio equals 0.74 in neutral conditions.

Range of dimensionless (a) wind shear observations and (b) temperature 
gradient observations in the surface layer, plotted with interpolation formulae.



Diabatic wind profile

The Businger-Dyer relationships can be integrated with 
height to yield the wind speed profiles:
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Both expressions reduce to the log wind profile when z/L = 0.

Inertial subrange

There are many situations where middle size turbulent 
eddies “feel” neither the effects of viscosity, nor the 
generation of TKE.

These eddies get their energy inertially from the larger-size 
eddies, and lose their energy the same way to smaller-size 
eddies.

For a steady-state turbulent flow, the cascade rate of energy 
down the spectrum must balance the dissipation rate at the 
smallest eddy sizes.

Hence, there are only three variables relevant to the flow: S, 
κ, and ε. S = spectral energy density.

This similarity approach was pioneered by Kolmogorov
(1941) and Obukhov (1941).



Inertial subrange

By performing a Buckingham Pi dimensional analysis, we 
can make only dimensionless group from these three 
variables.

We know that Pi group must be equal to a constant, because 
there are no other Pi groups for it to be a function of.

Solving the above equation for S yields:

S(κ) = αk ε2/3 κ−5/3

where the αk is known as the Kolmogorov constant.
The value of αk has yet to be pinned down (Gossard, et al., 
1982), but it is in the range of αk = 1.53 to 1.68.
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To determine whether any measured spectrum has an inertial 
subrange one can plot the spectrum (S vs. κ) on a log-graph.
The inertial subrange portion should appear as a straight line 
with a −5/3 slope.


