
Boundary Layer Meteorology

Chapter 06

Turbulence closure techniques

The large number of equations we have developed would 
suggest that we have a fairly complete description of 
turbulent flow.

A closer examination shows that there is a large number of 
unknowns. An unknown is a quantity for which we have no 
prognostic equation.

In fact the number of unknowns in the set of equations for 
turbulent flow always exceeds the number of equations so 
that the problem is not closed.

To make further progress we have to parameterize these 
unknowns.

This is called the turbulence closure problem.



The nature of the closure problem

Consider the prognostic equation for the mean potential 
temperature:
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Called a double correlation, or a 
second statistical moment.

To eliminate this as an unknown we derive a forecast 
equation for it. Unfortunately this equation contains triple 
correlation (or third moment) terms such as            .i ju u′ ′ ′θ

The prognostic equation for this third moment contains 
fourth moment terms and so on …

The matter is actually worse, because                 really 
represents 9 terms, one for each value of i and j. Of these, 6
remain because of symmetries in the tensor matrix, e.g.

i ju u′ ′ ′θ

1 2 2 1u u u u′ ′ ′ ′ ′ ′θ = θ

Similar problems occur for the turbulence equations for 
momentum.
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A tally of equations and unknowns for various statistical 
moments of momentum demonstrating the closure problem 
for turbulent flow. 

Prognostic  Moment       Equation                     No of     No of  
eqn. for                                                           eqns unknowns
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The full set of equations includes even more unknowns.

There is an easy way to anticipate which unknowns remain 
at any level of closure after symmetries are considered, as is 
shown in the following table for momentum correlations.

In the full equations of motion there are additional 
unknowns such as pressure correlations and terms 
involving viscosity.



Correlation triangles indicating the unknowns for various 
levels of turbulence closure, for the momentum equations 
only. Notice the pattern in these triangles, with the u, v, and 
w statistics at their respective vertices, and the cross 
correlations in between.
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To make make mathematical/statistical description of 
turbulence tractable, one approach is to use only a finite 
number of equations, and then approximate the remaining 
unknowns in terms of known quantities.

Such closure approximations or closure assumptions are 
named by the highest order prognostic equations that are 
retained.
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Using the equations in the table as an example, for first-
order closure the first equation is retained and the second 
moments are approximated.

Similarly, second-order closure retains the first two 
equations, and approximates involving third moments.



Some closure assumptions utilize only a portion of the 
equations available within a particular moment category.

For example, if equations for the turbulence kinetic energy  
and temperature and moisture variance are used along with 
the first-moment equations of Table 6-1, the result can be 
classified as one-and-a-half order closure.

It clearly would not be full second-order closure because not 
all of the prognostic equations for the second moments (i.e. for
the fluxes) are retained, yet it is higher order than first-order 
closure.

One can similarly define zero-order closure and half-order 
closure methods.

Two major schools of thought of turbulence have appeared 
in the literature: local and nonlocal closure.

Neither local nor nonlocal methods are exact, but both 
appear to work well for the physical situations for which 
the parameterizations are designed.

For local closure, an an unknown quantity at any point in 
space is parameterized by values and/or gradients of known 
quantities at the same point.

Local closure thus assumes that turbulence is analogous to 
molecular diffusion.

The Donaldson example in the next section demonstrates a 
local second-order closure. In the literature, local closure 
has been used at all orders up through third order.

Local and nonlocal closure



For nonlocal closure, the unknown quantity at one point is 
parameterized by values of known quantities at many 
points in space.

This assumes that turbulence is a superposition of eddies, 
each of which transports fluid like an advection process.

Nonlocal methods have been used mostly with first-order 
closure.

The next table summarizes the myriad of closure methods 
which have often appeared in the meteorological 
literature.

Generally, the higher-order local closures and the nonlocal 
closures yield more accurate solutions than lower order, 
but they do so at added expense and complexity.

Local and nonlocal closure

Classification of closure techniques that have been 
frequently reported in the literature. Bulk and similarly 
methods are discussed later.

Order of        Local     Nonlocal                     Other
closure                                           (bulk and similarity methods)

Zero                                                            X
Half                       X             X                      X
First                      X             X
One-and-a-half    X
Second                  X
Third                    X



Regardless of which order closure is used, there are 
unknown turbulence terms which must be parameterized as 
a function of known quantities and parameters.

A known quantity is any quantity for which a prognostic or 
diagnostic equation is retained.

Parameterization rules
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For example, if we decide to use second-order closure, the 
unknown quantity            can be parameterized as a function 
of     and because we have prognostic equations for 
these quantities.
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A parameter is usually a constant, the value of which is 
determined empirically. For example, the parameter can be 
a separate term, a multiplicative constant, or the value of a 
power or exponent.

By definition, a parameterization is an approximation to 
nature. In other words, we are replacing the true (natural) 
equation describing a value with some artificially 
constructed approximation.

Sometimes parameterizations are employed because the true 
physics has yet to be discovered.

Sometimes the known physics are too complicated to use for 
particular application, given cost or computer limitations.

Parameterization will rarely be perfect - the hope is that it 
will be adequate.

Parameterization involves human interpretation and 
creativity, which means that different investigators can 
propose different parameterizations for the same unknown.

In fact, Donaldson (1973) noted that “there are more models 
for closure of the equations of motion at the second-order 
correlation level than there are principal investigators 
working on the problem”. 

Although there is likely to be an infinite set of possible 
parameterizations for any quantity, all acceptable 
parameterizations must follow certain common-sense rules.

Most importantly, the parameterization for an unknown 
quantity should be physically reasonable. 



In addition, the parameterization must:

• have the same dimensions as the unknown,

• have the same tensor properties,

• have the same symmetries,

• be invariant under an arbitrary transformation of 
coordinate systems,

• be invariant under a Galilean (i.e. inertial or 
Newtonian transformation,

• satisfy the same budget  equations and constraints.

These rules apply to all orders of closure. 

As an example, Donaldson (1973) has proposed that the 
unknown            be parameterized by:
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where Λ is a parameter having the dimension of length (m), 
and the knowns are e (turbulent kinetic energy per unit 
mass, m2 s−2) and           (momentum flux, m2 s−2).i ju u′ ′

See Stull, p202 for discussion
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I review now some of the parameterizations that have 
been presented in the literature.

The review is by no means comprehensive - it is meant 
only to demonstrate the various types of closure and their 
features.

Regardless of the type of parameterization used, the 
result closes the equations of motion for turbulent flow 
and allows them to be solved for various forecasting, 
diagnostic, and other practical applications.

Local closure

Local Closure: Zero and Half Order

Zero-order closure implies that no prognostic equations are 
retained, not even the equations for the mean quantities.

In other words, the mean wind, temperature, humidity, and 
other mean quantities are parameterized directly as a 
function of space and time.

Obviously, this is neither local or nonlocal closure because it 
avoids the parameterization of turbulence altogether.

For this reason, I will not dwell on zero-order closure here, 
but will return to it later under the topic of similarity theory. 



Half-order closure

Half-order closure uses a subset of the first moment 
equations.

A variation of this approach is called the bulk method:  in 
this a profile shape for wind or temperature is assumed, but 
the resulting wind or temperature curve can be shifted 
depending on the bulk-average background wind or 
temperature within the whole layer.

For example, a BL (bulk) average <θ(t)> is forecast using 
equations like:

Then, a profile shape Δθ(z) is assumed, and the final values of 
θ(z,t) are found from:                                       . 
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(z, t) (t) (z)θ = θ + Δθ

Half-order closure

Such schemes are used for:

1) bulk or slab mixed layer models with Δθ(z) = 0 at all 
heights;

2) For cloud models with Δθ(z) modelled as linear 
functions of height within separate cloud and subcloud 
layers; and

3) For stable boundary layers with Δθ(z) approximated 
with either linear, polynomial, or exponential profile 
shapes.



First-order closure

First-order closure retains the prognostic equations for only 
the zero-order mean variables such as wind, temperature, 
and humidity.

Consider the idealized scenario of a dry environment, 
horizontally homogeneous, with no subsidence.

The geostrophic wind is assumed to be known. 

First-order closure

The governing prognostic equations for the zero-order 
variables then reduce to
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The unknowns in this set of equations are the second 
moments:

u w v w w′ ′ ′ ′ ′ ′θ



If we let ξ be any variable, then one possible first-order 
closure approximation for flux          is :

where the parameter Kξ is a scalar with m2 s−1.

For positive Kξ, the above expression implies that the 
flux        flows down the local gradient of ξ.

ju K
zξ

∂ξ′ ′ξ = −
∂

ju′ ′ξ

ju′ ′ξ

This closure approximation is often called gradient transport 
theory or K-theory.

Although it is one of the simplest parameterizations, it 
frequently fails when large-size eddies are present in the flow.

Hence, we can classify it as a small-eddy closure technique.

Local closure

K is known by a variety of names:

• eddy viscosity

• eddy diffusivity

• eddy-transfer coefficient

• turbulent-transfer coefficient

• gradient-transfer coefficient

the latter because it relates the turbulent flux to the gradient
of the associated mean variable.

Sometimes, different K values are associated with different 
variables. A subscript “M” is used for momentum, resulting 
in KM as the eddy viscosity. 



Local closure

For heat and moisture, we will use KH and KE for the 
respective eddy diffusivities.

There is some experimental evidence to suggest that for 
statically neutral conditions:

KH = KE = 1.35KM

It is not clear why KM should be smaller than other K values.

Perhaps pressure-correlation effects contaminated the 
measurements upon which the expression is based.

Example 1

Given KH = 5 m2 s−1 for turbulence within a background stable 
environment, with lapse rate ∂θ/∂z = 0.01 K/m. Find w'θ'.

Solution
j

j

u K
xξ

∂ξ′ ′ξ = −
∂

Use                                     Put j 3ξ = θ =

2 1 1 1
Hw K 5 m s 0.01K m 0.05K ms

z
− − −∂θ′ ′θ = − = − × = −

∂
Discussion

Normally a negative heat flux would be expected in a stably-
stratified environment, assuming only small eddies were 
present: i.e. in an environment with warm air above colder 
air, turbulence moves warm air down the gradient to cooler 
air, which in this case is a downward (or negative) heat flux.



Example 2

Suggest a parameterization set to close the Ekman equations.

Solution

M

M

uu w K
z
vv w K
z

w K
zθ

∂′ ′ = −
∂
∂′ ′ = −
∂

∂θ′ ′θ = −
∂

Discussion: If these equations are inserted into the Ekman 
equations, there are three equations for three unknowns θ, 
u, and v. This is a closed set which can be solved 
numerically if K values are known.

N

Example 3

Given KH = 5 m2 s−1 for turbulence within a background 
horizontally-homogeneous environment, find        .

Solution
u′ ′θ

Hu K
x

∂θ′ ′θ = −
∂

Horizontally homogeneous ⇒ ⇒0
x

∂θ
=

∂
u 0′ ′θ =

Discussion: it makes no difference whether KH is positive, 
negative or exceptionally large - K-theory will always 
yield zero flux in a uniform environment, regardless of 
the true flux.



Analogy with viscosity

For a Newtonian fluid, the molecular stress τmol can be 
approximated by: 

mol
u
z

∂
τ = ρν

∂

By analogy, one might expect that the turbulent Reynolds  
stress can be expressed in terms of the mean shear, with  ν
replaced with an eddy viscosity KM, i.e. 

Re ynolds M
uK
z

∂
τ = ρ

∂

Dividing by ρ gives the usual kinematic form.

ρKM is sometimes called the Austausch coefficient. 

Since turbulence is much more effective than viscosity at 
causing mixing, one would expect Km > ν.

Values of Km in the literature vary from 0.1 m2 s−1 to 2000
m2 s−1, with typical values ≈ 1 to 10 m2 s−1 .

Values of ν are much smaller, ≈ 1.5 x 10−5 m2 s−1 .

Magnitude is not the only difference between the molecular 
and eddy viscosities: a significant difference is that ν is a 
function of the fluid, while Km is a function of the flow.

Thus, while ν is uniquely determined by the chemical 
composition of the fluid and its state (temperature and 
pressure, etc.), Km varies as the turbulence varies.

Thus, on must parameterize Km as a function of other 
variables such as z/L, Richardson number or the stability
∂θv/ ∂z.



Mixing length theory

Assume that there is turbulence in a statically neutral 
environment, with a linear mean humidity gradient in the 
vertical.

z' z'

q' u'
z z

Z Z

uq

Air parcel

N

qq z
z

∂′ ′= −
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uu z
z

∂′ ′= −
∂

In order for the parcel to move upward a distance z', it 
must have some vertical velocity w'.

If the nature of turbulence is such that w' is proportional to 
u', then we might expect w' = −cu' for the linear wind shear 
sketched in the previous slide (i.e. for ∂u/∂z > 0), and w' = cu' 
for ∂u/∂z < 0, where c is some constant of proportionality.
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6.4.4c

It follows that the magnitude of the shear is important.



The kinematic eddy flux of moisture is R

We know that                       and                      .
qq z
z

∂′ ′= −
∂

uw c z
z

∂′ ′=
∂

Multiply these expressions and average over the spectrum 
of different eddy sizes z' to obtain the average flux R:

2 u qR c(z )
z z

∂ ∂′= −
∂ ∂

is the variance of the parcel displacement distance. 2(z )′

2(z )′ is a measure of the average distance a parcel moves in 
the mixing process that generated the flux R.

In this way we can define a mixing length, l, by
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This is directly analogous to K-theory if
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Suggests that |KM| should increase as the shear increases 
(i.e. as a measure of the turbulence intensity) and as the 
mixing length increases (i.e. as a measure of the ability of 
turbulence to cause mixing).
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In the surface layer, the size of the turbulent eddies is limited 
by the presence of the earth’s surface. Thus it is sometimes 
assumed that l2 = k2z2, k = von Kármán’s constant ⇒ the 
eddy viscosity in the surface layer:



For stable boundary layers, Delage (1974) proposed the 
following parameterization for mixing length that has been 
used since as a starting point for other parameterizations:

where LL is a local Obukhov length based on local values of 
stress and heat flux above the surface, Ug is the geostrophic 
wind speed, and β is an empirical constant.

Lg

1 1 1
kz 0.0004U / f kL

β
= + +

l

Limitations of mixing-length theory

The relationship                      is only valid when turbulence 

is generated mechanically.

uw c z
z

∂′ ′=
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Hence, mixing-length derivation is valid only for statically 
neutral conditions, even though K-theory has been applied to 
statically stable conditions.

Also, linear gradients of wind and moisture were assumed in 

deriving                     .qq z
z

∂′ ′= −
∂

In the real atmosphere, gradients are approximately linear 
only over small distances (i.e., the first-order term of a Taylor 
series expansion) ⇒ mixing-length theory is a small-eddy 
theory.



Sample parameterizations of K

The eddy viscosity is best not kept constant, but should be 
parameterized as a function of the flow.

The parameterizations for K should satisfy the following 
constraints:

• K = 0 where there is no turbulence
• K = 0 at the ground (z  = 0).
• K increases as TKE increases.
• K varies with static stability (in fact, one might expect 
that a different value of K should be used in each of the 
coordinate directions for anisotropic turbulence).
• K is non-negative (if one uses the analogy with viscosity).

This latter constraint has occasionally been ignored. 

Some remarks about eddy viscosity

The normal concept of an eddy viscosity or a small-eddy 
theory is that a turbulent flux is down the gradient.

Such a down-gradient transport means heat flows from hot 
to cold, moisture flows from moist to dry, and so forth.

Down-gradient transport is associated with positive values 
for K, and is consistent with the molecular viscosity analogy.

In the real atmosphere, however, there are occasions where 
transport appears to flow up the gradient (i. e. counter-
gradient).

This is explained physically by the fact that there are large 
eddies associated with rise of warm air parcels that transport 
heat from hot to cold, regardless of the local gradient of the 
background environment.



Thus, in an attempt to make small-eddy K-theory work in 
large-eddy convective boundary layers, one must resort to 
negative values of K.

Since this results in heat flowing from cold to hot, it is 
counter to our common-sense concept of diffusion.

Thus, K-theory is not for use in convective mixed layers.

There has been no lack of creativity by investigators in 
designing parameterizations for K.

The following table lists some of the parameterizations for K
that have appeared in the literature (Bhumralkar, 1975).

Variations of K in the horizontal have also been suggested to 
explain phenomena such as mesoscale cellular convection 
(Ray, 1986).

Examples of parameterizations for K in the BL

Neutral surface layer

Neutral surface layer      



Examples of parameterizations for K in the BL

Neutral or stable boundary layer

Unstable (convective) boundary layer  

Numerical model approximation for anelastic 3-D flow  

Typical variation of eddy viscosity, K, with height in the 
boundary layer (After O’Brien, 1970).

Surface layer

Boundary layer

zSL

h

z

0  K(h)                                               K
0



The Ekman spiral

Even with first-order closure, the Ekman equations are 
often too difficult to solve analytically.

The exception is the case of a steady (∂/∂t = 0), horizontally 
homogeneous (∂/∂x = 0, ∂/∂y = 0), statically neutral (∂θv/∂t = 
0), barotropic atmosphere (ug,vg constant with height) with 
no subsidence (w = 0).

An analytic solution of these equations for the ocean was 
obtained by Ekman in 1905 and was soon modified for the 
atmosphere.
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f (v v ) u w
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f (u u ) v w
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∂ ′ ′− − = −
∂
∂ ′ ′− = −
∂

Align the x-axis with the geostrophic wind (i.e. put vg = 0).

Use first-order local closure K-theory, with constant KM.

M M
u vu w K , v w K
z z

∂ ∂′ ′ ′ ′= − = −
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M 2
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g M 2

ufv K
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vf (u u ) K
z

∂
= −

∂
∂

− =
∂

The boundary conditions are:

g(u, v) 0 at z 0 and (u, v) (u ,0) as z= = → → ∞

The solution is (see DM, Ch. 5):
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π
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π
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π
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Wind vector

Ekman layer solution

Atmosphere

Define the Ekman layer depth,  δE = πδ.

Surface stress
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2 2

2 22
* Ms s

s s

u vu u w v w K
z z
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The surface stress is characterized by u*

Use

Put z = 0



Ekman layer depth

The wind speed is supergeostrophic at z = π/γE, which is also 
the lowest height where the wind is parallel to geostrophic.

Sometimes this height is used as an estimate of the depth of 
the neutral boundary layer.

Hence the Ekman layer depth, hE, is defined as hE = π/γE.

Assuming that KM = cku*hE, where c is a constant of 
proportionality ≈ 0.1, and k is the von Kármán constant, 
then:

2
E *h 2ck u / f= π

The major conclusion from the Ekman solution is that 
friction reduces the boundary layer wind speed below 
geostrophic, and causes it to cross the isobars from high 
towards low pressure.

In a synoptic situation where the isobars are curved, such as 
a low or high pressure system, the cross-isobaric component 
of flow near the surface causes convergence or divergence, 
respectively.

Hence, mass continuity requires that there be rising air in 
low pressure systems, and descending air in highs.

The process of inducing vertical motions by boundary layer 
friction is called Ekman pumping.

Ekman pumping



The oceanic Ekman layer

The ocean drift current is driven by the surface wind stress, 
neglecting pressure gradients in the ocean ⇒

Now choose a coordinate system with the x-axis aligned with 
the surface stress and z positive up.

The boundary conditions are:
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KM and u* refer to their ocean values
2 2
* *water air

u surface stress uρ = = ρ

Solution:

Now KM and δE apply to ocean values.
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Ocean

Subsurface 
drift current

Surface drift 
current

Surface stress 
vector

x
y

The surface current is 45o to the right of the surface stress, in 
the direction of ug. The surface drift current is ≈ | ug|/30.

Although the Ekman solution is analytic and has been 
around for a long time, the conditions under which it was 
derived rarely happen in nature in the atmosphere.

At best, it gives an approximate quantitative solution for 
statically neutral boundary layers (i.e., mechanical 
turbulence production characteristic of strong winds, with 
no buoyancy effects).

For convective mixed layers, the Ekman profile shape is not 
observed, although it agrees qualitatively with the observed 
winds, which are subgeostrophic and cross-isobaric.

Observed stable boundary layers can have supergeostrophic 
winds at low altitudes, making the Ekman solution even 
qualitatively incorrect.

Discussion



One-and-a-half-order closure retains the prognostic 
equations for the zero-order statistics such as mean wind, 
temperature, and humidity, and also retains equations for 
the variances of those variables.

The TKE equation is usually used in place of the velocity 
variance equations.

Example (based on Yamada & Mellor, 1975), consider a 
horizontally homogeneous, dry environment, with no 
subsidence.

Again, consider the idealized scenario of a horizontally 
homogeneous dry atmosphere, with no subsidence.

The governing equations are ⇒

Local closure – one-and-a-half order
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At first glance, the addition of the variance equations seems 
to have hurt us rather than help us.

With first-order closure we had 3 unknowns for:

Discussion

u w , v w , w′ ′ ′ ′ ′ ′θ

Now we have an additional 6 unknowns! So why do it?

The reason is that knowledge of the TKE and temperature 
variance provide a measure of the turbulence intensity.

We can use this information to formulate an improved 
parameterization for the eddy diffusivity                   .

One suggested parameterization is ⇒
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The Λn are empirical length-scale parameters. They are often 
chosen by trial and error to match model simulations with data.

N



One problem with the foregoing closure is that the length 
scales are rather arbitrary.

The expressions for K are rather complex also, but can be 
represented approximately by:

1
2K e= Λ

Λ represents one of the length scales.

The set of equations is far too complex to solve analytically.

Typically the equations are solved numerically using finite 
difference methods.

The next figures show a numerical BL simulation of a two-
day period from the Wangara field experiment using the 
Yamada-Mellor one-and-a-half order closure.

A calculation



⇐ Simulated

⇐ Observed

using 1-1/2 closure

Wangara days 33-35

Eastward velocity

From Yamada & Mellor, 1975

⇐ Simulated

⇐ Observed

using 1-1/2 closure

Wangara days 33-35

Eastward velocity profiles

From Yamada & Mellor, 1975



See

Wangara simulated one-and-a-half order closure time and 
space variation of virtual potential temperature variance 

(units K2).

⇐ Simulated

⇐ Observed

using 1-1/2 closure

Wangara days 33-35

Virtual potential 
temperature

From Yamada & Mellor, 1975



⇐ Simulated

⇐ Observed

using 1-1/2 closure

Wangara days 33-35

From Yamada & Mellor, 1975

Virtual potential temperature

By studying the foregoing figures, we can learn some of the 
advantages of higher-order closure:

1) The higher-order scheme creates nearly well-mixed 
layers during the daytime that increase in depth with 
time.

2) At night, there is evidence of nocturnal jet formation 
along with the development of statically stable layer 
near the ground.

3) Turbulence intensity increases to large values during 
the day, but maintains smaller values at night in the 
nocturnal boundary layer.

Discussion



First-order closure, on the other hand, gives no information 
on turbulence intensity or temperature variance.

Furthermore, it has difficulty with the well mixed layers that 
have zero gradients of mean variables.

However, the benefits of higher-order closure do not come 
cheaply; they are gained at the expense of increased 
computer time and cost to first-order closure.

Discussion

Local closure – second  order − history

The development of higher-order-closure (usually meaning 
anything higher than  first-order-closure) was closely tied to 
the evolution of digital computer power.

Although the use of higher-moment equations for 
turbulence forecasting was suggested in the early 1940’s, the 
large number of unknown variables remained a stumbling 
block.

Around 1950, Rotta and Chou and others suggested 
parameterizations for some of the unknowns.

By the late 1960’s, computer power improved to the point 
where second-order closure forecasts for clear air 
turbulence and shear flows were first made. 



Local closure – second  order − history

In the early 1970’s, the United States Environmental 
Protection Agency began funding some second-order closure 
pollution dispersion models, and by the mid 1970’s a 
number of investigators were using such models.

In fact, second-order closure appears to have started before 
one-and-a-half-order closure.

In the late 1970’s, some third-order closure models also 
started to appear in the literature, with many more third-
order simulations published in the 1980’s.

The set of second-order turbulence equations includes not 
only those from one-and-a-half order, but it includes second 
moment terms as well.

Using the same idealized example as above, consider a dry 
environment, horizontally homogeneous, with no 
subsidence.

The additional governing prognostic equations are those for

and          .

The resulting set of coupled equations is:
i ju u′ ′ iu′ ′θ



Unknowns

pressure-correlation terms:
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There are three basic closure ideas contained in Table 6-5:

• Down-gradient diffusion (items 1-3 and 6 in the table), 
diffusion of the third-order statistics down the gradient of the 
second-order statistics;

• Return to isotropy (items 4 and 5), proportional to the 
amount of anisotropy;

• Decay (items 7 and 8), proportional to the magnitude of the 
turbulence.



I will show next a sample second-order closure model forecast, 
based on the moist convective boundary layer simulations of 
Sun and Ogura (1980).

Besides the equations listed above, they include prognostic 
equations for mixing ration, r, . moisture variance r’2, moisture 
flux w’r’, and temperature-moisture covariance r’θ’.

Using the full second-order set of equations, they could produce 
forecasts of mean variables, as can be produced (with poorer 
accuracy) by first-order closure.

They could forecast variances, as can be produced (with poorer 
accuracy) by on-and-a-half-order closure.

Most importantly, they can also produce forecasts of fluxes and 
other covariances that the lower-order schemes can not forecast.



Local closure – third  order

It is beyond the scope of this course to go into the details of 
third-order closure.

In general, the prognostic equations for the triple-
correlation terms are retained, while parameterizations are 
devised for the fourth-order correlations, for the pressure 
correlations, and for viscous dissipation.

Some of the parameterizations presented in the literature 
assume that the fourth-order moments have a quasi-
Gaussian probability distribution, and can be approximated 
as a function of second-moment terms.

Any unrealistic values of some of the third moments are 
truncated or clipped to remain within physically realistic 
ranges, and various eddy damping schemes are used to 
prevent negative variances.



It is generally assumed that equations for lower-order 
variables (such as mean wind fluxes) become more accurate, 
as the closure approximations are pushed to higher orders.

In other words, parameterizations for the fourth-order 
terms might be very crude, but there are enough remaining 
physics (unparameterized terms) in the equations for the 
third moments that these third moments are less crude.

The second moment equations bring in more physics, 
making them even more precise - and so on down to the 
equations for the mean wind and temperature, etc.

Based on the successful simulations published in the 
literature, this philosophy indeed seems to work.

Higher-order moments are extremely difficult to measure in 
the real atmosphere.

Measurements of fluxes (second moments) typically have a 
large amount of scatter.

Eddy correlation estimates of third moments are even 
worse, with noise or error levels larger than the signal level.

Accurate forth-order moment measurements are virtually 
nonexistent.

This means that we have very little knowledge of how these 
third and fourth moments behave; therefore, we have little 
guidance for suggesting good parameterizations for these 
moments.

Now we see why such crude approximations are made in 
third-order closure models.



Higher-order closure models have many parameters that 
can be adjusted advantageously to yield good forecasts.

These parameters are fine-tuned using special limiting case 
studies and laboratory flows where simplifications cause 
some of the terms to disappear, allowing better 
determination of the few remaining terms.

Nonlocal closure – transilient turbulence theory

Nonlocal closure recognizes that larger-size eddies can 
transport fluid across finite distances before the smaller 
eddies have a chance to cause mixing.

This advective-like concept is supported by observations of 
thermals rising with undiluted cores, finite size swirls of 
leaves or snow, and the organized circulation patterns 
sometimes visible from cloud photographs.

Stull presents two first-order nonlocal closure models:
Transilient turbulence theory, approaches the subject 
from a physical space perspective.
Spectral diffusivity theory, uses a spectral or phase-
space approach.

Both allow a range of eddy sizes to contribute to the 
turbulent mixing process.

See Stull, pp225-242


