Boundary Layer Meteorology
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Prognostic equations for turbulent quantities

» So far we have obtained prediction equations for mean
guantities in a turbulent flow.

» These equations involve covariances: e.g.
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» We now derive prediction equations for fluctuating quantities

in a turbulent flow.

Perturbation quantities represent turbulent fluctuations
from their respective means.

In theory, prognostic equations for these departures could be
used to forecast each individual gust, given appropriate
initial and boundary conditions.

Unfortunately, the time span over which a forecast is likely
to be accurate is proportional to the lifetime of the eddy
itself: O(a few secs) for the smallest eddy to about 15 min for
the larger thermals.

Such durations are not useful in meteorological applications.

Instead we derive prognostic equations as an intermediate
step towards finding prognostic equations for variances and
covariances of the variables.




Momentum equation

Recall that
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This is a prognostic equation for the turbulent gust U,

Similarly for moisture
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For heat
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We can use these prognostic equations to obtain prognostic
equations for the variances.

Free convection scaling variables

» So far we have obtained prediction equations for mean
guantities in a turbulent flow.

» These equations involve covariances: e.g. \
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» We now derive prediction equations for fluctuating quantities
in a turbulent flow.

» Before doing this we digress to see how experimental data are
scaled, so that such data can be used for guidance.




We have learnt that turbulence can be produced by buoyant
convective processes (i.e. thermals of warm air rising and
cooler air subsiding) and by mechanical processes (i.e. wind
shear).

Sometimes one process dominates.

When convective processes dominate, the BL is said to be in
a state of free convection.

When mechanical processes dominate, the BL is said to be in
a state of forced convection.

Free convection occurs over land on clear sunny days with
light or calm winds.

Here we focus on free convection scales (scales for forced
convection were introduced earlier).

In free convection, strong solar heating at the surface
creates a pronounced diurnal cycle in turbulence and mixed
layer depth.

Earlier, profiles of heat and moisture fluxes were non-
dimensionalized to remove these diurnal changes.

The resulting heat flux profiles, for example, presented
height in terms of a fraction of the mixed layer depth and
flux values as fractions of surface flux values.

A similar scheme to remove nonstationary effects is useful
for determining the relative contributions of the various
terms in the variance and flux equations.

We consider now scalings for free convection conditions.




» Length scale: Thermals rise until they encounter the stable
layer capping the mixed layer.

» Thermals are the dominant eddy in the convective boundary
layer, and all smaller eddies feed on the thermals for energy.

» = would expect many turbulent processes to scale to the
mixed layer depth (z;) in convective situations.

» Velocity scale: The strong diurnal cycle in solar heating
creates a strong heat flux into the air from the earth’s
surface.

» The buoyancy associated with this flux fuels the thermals.

9

» We can define a buoyancy flux as 6-w'6'V .
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> Although the surface buoyancy flux could be used directlly
as a scaling variable, it is more convenient to generate a
velocity scale instead, using the two variables we know to be
important in free convection: surface buoyancy flux, and
the mixed layer depth, z;.

» Combining these variables gives the free convection scaling
velocity, w*, also called the convective velocity scale:

o
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» This scale appears to work quite well; for example the
magnitude of the vertical velocity fluctuations in thermals is
on the same order as w*. For deep mixed layers with
vigorous heating at the ground, w* can be on the order of 1
to2ms?t
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Sample variations of the friction velocity and the convective scaling
velocity with time for the O’Neill (Nebraska) and Wangara (Australia)
field programs.

» Time scale: The velocity and length scales can be combined

to give the free convection time scale, t.:
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» Velocity scale: The strong diurnal cycle in solar heating

creates a strong heat flux into the air from the earth’s
surface.

» The buoyancy associated with this flux fuels the thermals.
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> We can define a buoyancy flux as =w’'0;, .
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Prognostic equations for variances
» Momentum variance
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Prognostic equations for variances

» Now average and apply the Reynolds’ averaging rules:
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» This general form of the prognostic equation for the variance
of the wind speed is usually simplified further before being

used for BL flows.




Dissipation

Consider a term of the form a’(u;z)faxf. Using simple rules of

calculus, we can rewrite it as:
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If we multiply the last term above by v, then it would be identical to the last term in
(4.3.1a). Thus, we can write the last term in (4.3.1a) as
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The first term on the right, which physically represents the molecular diffusion of
velocity variance, contains the curvature of a variance. The variance changes fairly
smoothly with distance within the boundary layer, its curvature being on the order of 10-¢
s in the ML to 102 s2 in the SL. When multiplied by v, the first term ranges in
magnitude between 1011 and 107 m?s3,

The last term on the right can be much larger. For example, if the eddy velocity
changes by only 0.1 m/s across a very small size eddy (for example, 1 cm in diameter),
then the instantaneous shear across that eddy is 10 . For smaller size eddies, the shear
is larger. When this value is squared, averaged, and multiplied by 2v, the magnitudes
observed in the turbulent boundary layer range between about 10 and 102 m? 53,
Typical values in the ML are on the order of 104 t0 103 m?2s73, while in the surface

layer, values on the order of 102 m? s can be found. Thus, we can neglect the first
term on the right and use:




Dissipation 3

We can neglect the first term on the right and use:
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The viscous dissipation, € , is defined as:
2
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It iy obvious that this term is always positive, because it is a squared quantity. Therefore,
when used in (4.3.1a) with the negative sign as required by (4.3.1c), it is always causing
a decrease in the variance with time. That is, it is always a loss term. In addition, it
becomes larger in magnitude as the eddy size becomes smaller. For these small eddies,
the eddy motions are rapidly damped by viscosity and irreversibly converted into heat.
[This heating rate is so small, however, that it has been neglected in the heat conservation

equation (3.4.55).] | Not so in a hurricane BL!

Pressure perturbations

Using the product rule of calculus again, the pressure

term -2 (u,/p) dp/dx, in (4.3.1a) can be rewritten as
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The last term is called the pressure redistribution term, The factor in square
brackets consists of the sum of three terms: Ju/dx, ov'/dy, and ow'/oz. These terms
sum 10 zero because of the turbulence continuity equation (3.4.2¢); hence, the last term in
the equation above does not change the total variance (by total variance we mean the sum
of all three variance components). But it does tend to take energy out of the components
having the most energy and put it into components with less energy. Thus it makes the
turbulence more isotropic, and is also known as the return-to-isotropy term.

Terms like du'/9x are larger for the smaller size eddies. Thus, we would expect that
smaller size eddies are more isotropic than larger ones. As we shall see later, this is
indeed the case in the boundary layer.




Pressure perturbations 2, Coriolis term

The end result of this analysis is that:
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Coriolis Term. The Coriolis term 2fc|-:ij3 ui'u]' is identically zero for velocity

variances, as can be seen by performing the sums implied by the repeated indices:
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because “1'“2' = uz'u 1' (see section 2.9.2). Many of the terms in the above sum were
not written out because the alternating unit tensor forced them to zero.

Coriolis term 2

Physically, this means that Coriolis force can not generate turbulent kinetic energy.

——

Kinetic energy enters the picture because the variance ni'z is nothing more than twice the

turbulence kinetic energy per unit mass. The Coriolis term merely redistributes energy
from one horizontal direction to another. Furthermore, the magnitude of the redistribution

term 2f_ ul'uz'

is about three orders of magnitude smaller than the other terms in

(4.3.1a). For that reason, the Coriolis terms are usually neglected in the turbulence
variance and covariance equations, even for the cases where they are not identically zero.




Simplified velocity variance budget equations
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Term | represents the rate-of-change of variance

Term Il is the advection of variance by the mean wind

Term 111 is the production or loss term, depending on the sign
of the buoyancy flux

Term IV is a production term. The momentum flux is usually
negative in the BL because momentum is lost to the surface;
thus it results in a positive contribution to the variance when

multiplied by the negative sign.
| TermsV - VI>

Simplified velocity variance budget equations
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TermV is a turbulent transport term. It describes how the
variance is moved around by the turbulent eddies.

Term IV describes how variance is redistributed by pressure
perturbations. It is often associated with gravity waves.
Term VII represents the viscous dissipation of velocity
variance.




Prognostic equations for each component separately

» We can examine also the prognostic equations for each
individual component of the velocity variance if we relax
slightly the summation requirement associated with
repeated indices: e. g. put i = 2 for an equation for v'

» Any other repeated indices, such as j, continue to imply a
sum. We must remember to reinsert the terms that were
omitted by assuming anisotropy.

The full set of equations is

Prognostic equations for each component separately
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Most terms have the same meaning as before. === represents
pressure redistribution, associated with the return to isotropy.




Budget studies

» Budget study is the name given to an evaluation of the
contributions of each term in prognostic equations.

» Some terms are very difficult to measure in field
experiments, which is why computer simulations are
carried out.

» In the budget studies to be described, field data and
numerical simulations are combined.

> In most cases, field data have significantly more scatter
than the simulations.
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(a) Variation of vertical velocity variance with height, z during
daytime. Range of measured and modelled values are shaded.
(b) Range of the ratio of the vertical velocity variance to the eddy
kinetic energy.
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(a) Modelled profiles of vertical velocity variance during
Night 33-34 of Wangara. Abscissa changes from the linear to
logarithmic at 10. (b) Range of vertical velocity variance,
normalized by a measure of stable boundary layer depth, h.

(a) CH (e

4 Nautrst 2 Neutral 2 Neutral

TN

%

T
u? /w2 vz [ u? w2/ u?

Normalized velocity variance verses height in statically neutral
conditions, where h (= 2 km) is the height where v is zero. Based
on a large-eddy simulation by Mason and Thomson (1987)
usingu; =10 ms, v, =0,and u.=0.4 ms -
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(a) Range of horizontal velocity variance, normalized by the
convective velocity scale w.?, versus dimensionless height z/z;, for
typical conditions with combined convection and wind shear.
(b) Idealized range for free convection with no mean shear.
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(a) Modelled profiles of horizontal eddy kinetic energy during
Night 33-34 of Wangara. Abscissa changes from the linear to
logarithmic at 10. (b) Range of vertical velocity variance,
normalized by a measure of stable boundary layer depth, h.




Moisture variance

Consider only the vapour part of the specific humidity:
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Next, average and apply the Reynolds averaging rules:
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To change this into flux form, add the averaged turbulent
continuity equation multiplied by g' (i.e. add q’zé’u} 10x;=0)
and rearrange slightly.
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As was done for momentum, the last term is split into two parts,
one of which (the molecular diffusion of specific humidity
variance) is small enough to be neglected. The remaining part is
defined as twice the molecular diffusion term, ¢,, by analogy

with momentum: :
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The prognostic equation for specific humidity variance is
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Term | represents the rate-of-change of humidity variance
Term Il is the advection of humidity variance by the mean
wind

Term IV is the production term, associated with turbulent
motions occurring within a mean moisture gradient

Term V represents the turbulent transport of humidity
variance.
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Modelled vertical profiles of dimensionless specific
humidity variance for Wangara Day 33.
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Modelled vertical profiles of terms in the specific humidity
variance equation for Wangara Day 33 at hour 14.1.

Heat (potential temperature) variance

Budget Equations. As was done with the moisture equation, start with (4.1.3),
multiply by 26°, use the product rule of calculus, Reynolds average, put into flux form,

neglect molecular diffusion but retain the molecular dissipation, and rearrange to yield:
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The terms above have physical representations analogous to those in (4.3.2). Term
VIIT is the radiation destruction term (sometimes given the symbol eg). It is difficult to

measure this term directly, but sometimes it is modeled as eg = (0.036 m/s)-e 8 2 /e 3;‘21
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where ey is about 1% to 10% of &g (Coantic and Simonin, 1984).
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Modelled vertical profiles of dimensionless virtual
potential temperature variance for Wangara Day 33.
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Modelled profiles of virtual potential temperature
variance during the night 33-34 of Wangara.
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Modelled vertical profiles in the virtual potential
temperature variance budget equation.
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