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Prognostic equations for turbulent quantities

So far we have obtained prediction equations for mean 
quantities in a turbulent flow.

These equations involve covariances: e.g.

We now derive prediction equations for fluctuating quantities 
in a turbulent flow.
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Perturbation quantities represent turbulent fluctuations 
from their respective means.

In theory, prognostic equations for these departures could be 
used to forecast each individual gust, given appropriate  
initial and boundary conditions.

Unfortunately, the time span over which a forecast is likely 
to be accurate is proportional to the lifetime of the eddy 
itself: O(a few secs) for the smallest eddy to about 15 min for 
the larger thermals.

Such durations are not useful in meteorological applications.

Instead we derive prognostic equations as an intermediate 
step towards finding prognostic equations for variances and 
covariances of the variables.



Momentum equation
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Momentum equation
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This is a prognostic equation for the turbulent gust     .iu′

Similarly for moisture

2
j TT T T T T

j j j q 2
j j j j j

(u q )q q q q qu u u
t x x x x x

′ ′∂′ ′ ′ ′∂ ∂ ∂ ∂ ∂′ ′+ + + = ν +
∂ ∂ ∂ ∂ ∂ ∂



For heat
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For a scalar quantity
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We can use these prognostic equations to obtain prognostic 
equations for the variances.

Free convection scaling variables

So far we have obtained prediction equations for mean 
quantities in a turbulent flow.

These equations involve covariances: e.g.

We now derive prediction equations for fluctuating quantities 
in a turbulent flow.

Before doing this we digress to see how experimental data are 
scaled, so that such data can be used for guidance.
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We have learnt that turbulence can be produced by buoyant 
convective processes (i.e. thermals of warm air rising and 
cooler air subsiding) and by mechanical processes (i.e. wind 
shear).

Sometimes one process dominates.

When convective processes dominate, the BL is said to be in 
a state of free convection.

When mechanical processes dominate, the BL is said to be in 
a state of forced convection.

Free convection occurs over land on clear sunny days with 
light or calm winds.

Here we focus on free convection scales (scales for forced 
convection were introduced earlier).

In free convection, strong solar heating at the surface 
creates a pronounced diurnal cycle in turbulence and mixed 
layer depth.

Earlier, profiles of heat and moisture fluxes were non-
dimensionalized to remove these diurnal changes.

The resulting heat flux profiles, for example, presented 
height in terms of a fraction of the mixed layer depth and 
flux values as fractions of surface flux values.

A similar scheme to remove nonstationary effects is useful 
for determining the relative contributions of the various 
terms in the variance and flux equations.

We consider now scalings for free convection conditions.



Length scale: Thermals rise until they encounter the stable 
layer capping the mixed layer.

Thermals are the dominant eddy in the convective boundary 
layer, and all smaller eddies feed on the thermals for energy.

⇒ would expect many turbulent processes to scale to the 
mixed layer depth (zi) in convective situations.

Velocity scale: The strong diurnal cycle in solar heating 
creates a strong heat flux into the air from the earth’s 
surface.

The buoyancy associated with this flux fuels the thermals.

We can define a buoyancy flux as                  .v
v
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Although the surface buoyancy flux could be used directlly
as a scaling variable, it is more convenient to generate a 
velocity scale instead, using the two variables we know to be 
important in free convection: surface buoyancy flux, and 
the mixed layer depth, zi.

Combining these variables gives the free convection scaling 
velocity, w*, also called the convective velocity scale:
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This scale appears to work quite well; for example the 
magnitude of the vertical velocity fluctuations in thermals is 
on the same order as w*. For deep mixed layers with 
vigorous heating at the ground, w* can be on the order of 1
to 2 m s-1.



Sample variations of the friction velocity and the convective scaling 
velocity with time for the O’Neill (Nebraska) and Wangara (Australia) 

field programs.

Time scale: The velocity and length scales can be combined 
to give the free convection time scale, t*:

Velocity scale: The strong diurnal cycle in solar heating 
creates a strong heat flux into the air from the earth’s 
surface.

The buoyancy associated with this flux fuels the thermals.

We can define a buoyancy flux as                  .v
v
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Prognostic equations for variances

Momentum variance
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Prognostic equations for variances

Now average and apply the Reynolds’ averaging rules:

22
ii i i i

j i j i j
j j j

2
i jv i

ij3 i j i3 i i i2
i v j j

uu u uu 2u u 2u u
t x x x

(u u )uu p2f u u 2 2 gu 2 u 2u
x x x

′′ ′∂∂ ∂ ∂′ ′ ′ ′+ + + =
∂ ∂ ∂ ∂

′ ′∂′ ′′ ′ θ ∂∂′ ′ ′ ′ ′ε − + δ + ν −
ρ ∂ θ ∂ ∂

because       iu′

This general form of the prognostic equation for the variance 
of the wind speed is usually simplified further before being 
used for BL flows.



Dissipation
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Dissipation 2



Dissipation 3

We can neglect the first term on the right and use:

Not so in a hurricane BL!

Pressure perturbations



Pressure perturbations 2, Coriolis term

Coriolis term 2



Simplified velocity variance budget equations
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I   II   III  IV  V  VI        VII
Term I represents the rate-of-change of variance
Term II is the advection of variance by the mean wind
Term III is the production or loss term, depending on the sign 
of the buoyancy flux
Term IV is a production term. The momentum flux is usually 
negative in the BL because momentum is lost to the surface; 
thus it results in a positive contribution to the variance when 
multiplied by the negative sign.

Terms V - VII

Simplified velocity variance budget equations
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Term V is a turbulent transport term. It describes how the 
variance is moved around by the turbulent eddies.
Term IV describes how variance is redistributed by pressure 
perturbations. It is often associated with gravity waves.
Term VII represents the viscous dissipation of velocity 
variance.



Prognostic equations for each component separately

The full set of equations is

We can examine also the prognostic equations for each 
individual component of the velocity variance if we relax 
slightly the summation requirement associated with 
repeated indices: e. g. put i = 2 for an equation for        .

Any other repeated indices, such as j, continue to imply a 
sum. We must remember to reinsert the terms that were 
omitted by assuming anisotropy.
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Prognostic equations for each component separately

222 2
ji

j j
j j j j

u uu u u 2 u p 2p u uu 2u u 2
t x x x x x x

⎛ ⎞′ ′∂′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′+ = − − − + − ν⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ρ ∂ ρ ∂ ∂⎝ ⎠
222 2

ji
j j

j j j j

v uv v u 2 v p 2p v vu 2v u 2
t x x x y y x

⎛ ⎞′ ′∂′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′+ = − − − + − ν⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ρ ∂ ρ ∂ ∂⎝ ⎠
22 2

jv i
j j

j v j j

2

j

w uw w w u 2 w pu 2g 2w u
t x x x z

2p w w2
z x

′ ′∂′ ′ ′ ′ ′ ′∂ ∂ θ ∂ ∂′ ′+ = − − −
∂ ∂ θ ∂ ∂ ρ ∂

⎛ ⎞′ ′ ′∂ ∂
+ − ν⎜ ⎟⎜ ⎟ρ ∂ ∂⎝ ⎠

Most terms have the same meaning as before.            represents 
pressure  redistribution, associated with the return to isotropy.



Budget studies

Budget study is the name given to an evaluation of the 
contributions of each term in prognostic equations.

Some terms are very difficult to measure in field 
experiments, which is why computer simulations are 
carried out.

In the budget studies to be described, field data and 
numerical simulations are combined.

In most cases, field data have significantly more scatter 
than the simulations.

(a) Variation of vertical velocity variance with height, z during 
daytime. Range of measured and modelled values are shaded.

(b) Range of the ratio of the vertical velocity variance to the eddy 
kinetic energy. 

N



N

(a) Modelled profiles of vertical velocity variance during 
Night 33-34 of Wangara. Abscissa changes from the linear to 

logarithmic at 10. (b) Range of vertical velocity variance, 
normalized by a measure of stable boundary layer depth, h. 

18 h

21 h

03 h

07 h

Normalized velocity variance verses height in statically neutral
conditions, where h (≈ 2 km) is the height where v is zero. Based 

on a large-eddy simulation by Mason and Thomson (1987) 
using ug = 10 m s−1, vg = 0, and u* = 0.4 m s −1. N



(a) Range of horizontal velocity variance, normalized by the 
convective velocity scale w*

2, versus dimensionless height z/zi, for 
typical conditions with combined convection and wind shear.
(b) Idealized range for free convection with no mean shear. N

(a) Modelled profiles of horizontal eddy kinetic energy during 
Night 33-34 of Wangara. Abscissa changes from the linear to 

logarithmic at 10. (b) Range of vertical velocity variance, 
normalized by a measure of stable boundary layer depth, h. 
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21 h

03 h

07 h
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Moisture variance
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Consider only the vapour part of the specific humidity:
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t
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Next, average and apply the Reynolds averaging rules:

To change this into flux form, add the averaged turbulent 
continuity equation multiplied by q'2 (i.e. add                           ) 
and rearrange slightly.          
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As was done for momentum, the last term is split into two parts,
one of which (the molecular diffusion of specific humidity 
variance) is small enough to be neglected. The remaining part is
defined as twice the molecular diffusion term, εp, by analogy 
with momentum:
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Interpretation

The prognostic equation for specific humidity variance is
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Term I represents the rate-of-change of humidity variance
Term II is the advection of humidity variance by the mean 
wind
Term IV is the production term, associated with turbulent 
motions occurring within a mean moisture gradient
Term V represents the turbulent transport of humidity 
variance.

Modelled vertical profiles of dimensionless specific 
humidity variance for Wangara Day 33. N



Modelled vertical profiles of terms in the specific humidity 
variance equation for Wangara Day 33 at hour 14.1.

N

Heat (potential temperature) variance
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Modelled vertical profiles of dimensionless virtual 
potential temperature variance for Wangara Day 33. N

Modelled profiles of virtual potential temperature 
variance during the night 33-34 of Wangara. N
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Modelled vertical profiles in the virtual potential 
temperature variance budget equation. N
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