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Equations for turbulent flow

To quantitatively describe and forecast the state of the 
boundary layer, we turn to the governing equations of fluid 
dynamics.

These include:

• the continuity equation

• the momentum equation (expressing Newton’s 2nd law)

• the thermodynamic equation

• the moisture equation

• the equation of state

Special problems for turbulent flow

In principle, the equations can be applied directly to turbulent
flows, but this is generally too complicated.

We would not be able to resolve all turbulent scales down to 
the smallest eddy to determine the initial condition.

Instead, for simplicity, we pick some cut-off eddy size below 
which we include only the statistical effects of turbulence.

In some mesoscale and synoptic scale models the cut off is on 
the order of 10 to 100 km, while for some boundary layer 
models known as large eddy simulation models, the cut off is 
on the order of 100 m.



Special problems for turbulent flow

The complete set of equations as applied to the boundary layer 
are so complex that no analytic solution is known: we are 
forced to look for approximate solutions.

We can seek

• exact analytical solutions to simplified subsets of the 
equations, or

• approximate numerical solutions to a more complete set of 
equations.

We begin by formulating equations that are statistically 
averaged over the small eddy sizes.

Mean and turbulent parts of the flow

There is a very easy way to isolate the large-scale variations 
from the turbulent ones: by averaging the wind speed 
measurements over a period of 30 min to one hour, we can 
eliminate or average out the positive and negative deviations 
of the turbulent velocities about the mean.

Let
u U u′= +

instantaneous wind     mean wind turbulent part

The existence of a spectral gap allows us to partition the 
flow field in this manner.



Basic governing equations  1

Equation of state (ideal gas law for moist air)

d vp R T= ρ

pressure    density    specific gas constant   virtual temperature

vT T(1 0.61r)= +

Water vapour mixing ratio 
or specific humidity

Basic governing equations  2

Mass conservation (continuity equation): two forms
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Basic governing equations  3

Conservation of momentum (Newton’s second law)

iji i
j i3 ijk j k

j i j

u u 1 p 1u g 2 u
t x x x

∂τ∂ ∂ ∂
+ = − − δ − ε Ω +

∂ ∂ ρ ∂ ρ ∂

I          II   III  IV  V  VI

Term I represents the rate-of-change of momentum (inertia)
Term II is the advection of momentum
Term III is the pressure gradient force
Term IV is the Coriolis force
Term V is the gravitational force
Term VI is the viscous stress term
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ij ji k
ij

j j j i k

uu u1 1 2
x x x x 3 x

⎧ ⎫⎡ ⎤∂τ ∂ ⎡ ⎤∂ ∂∂ ⎪ ⎪= μ + − μδ⎢ ⎥⎨ ⎬⎢ ⎥ρ ∂ ρ ∂ ∂ ∂ ∂⎢ ⎥ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

Assuming that μ is not a function of position,

Term VI ⇒

2
ij ji k

2
j j i j i k

uu u1 2
x x x x 3 x x

⎧ ⎫⎡ ⎤∂τ ∂ ⎡ ⎤∂ ∂μ ∂ ∂⎪ ⎪= + −⎢ ⎥⎨ ⎬⎢ ⎥ρ ∂ ρ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
For an incompressible fluid

2
ij i

2
j j

u1
x x

∂τ ∂
= ν

ρ ∂ ∂
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Conservation of momentum ⇒

2
i i i

j i3 ijk j k 2
j i j

u u u1 pu g 2 u
t x x x

∂ ∂ ∂∂
+ = − − δ − ε Ω + ν

∂ ∂ ρ ∂ ∂

This is just the Navier-Stokes’ equation

Basic governing equations  6

Conservation of moisture (water substance)

T

2
qT T

j q 2
j j

Sq q qu
t x x

∂ ∂ ∂
+ = ν +

∂ ∂ ∂ ρ

I          II               III    IV

Term I represents the local rate-of-change of water substance
Term II is the advection of water substance
Term III is the diffusion of water vapour (specific humidity q)
Term IV is the net source of water substance

Molecular diffusivity for water vapour

Net water source

qT specific humidity for water substance
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2
q

j q 2
j j

Sq q q Eu
t x x

∂ ∂ ∂
+ = ν + +

∂ ∂ ∂ ρ ρ

Molecular diffusion of liquid water is neglected

E = rate-of-evaporation of liquid water

Put qT = q + qL and
T Lq q qS S S= +

LqL L
j

j

Sq q Eu
t x

∂ ∂
+ = −

∂ ∂ ρ ρ

Basic governing equations  8

Conservation of heat (First law of thermodynamics)
*2
j

j 2
j j p j p

Q1 LEu
t x x c x cθ

∂∂θ ∂θ ∂ θ
+ = ν − −

∂ ∂ ∂ ρ ∂ ρ

I          II   III  IV  V

Term I represents the rate-of-change of potential temperature
Term II is the advection of potential temperature
Term III is the effect of the molecular diffusion of heat
Term IV is the effect of the radiative flux divergence
Term V is the effect of the latent heat consumed by evaporation

*
jQ is the component of net radiation in the j-direction



Basic governing equations  9

Conservation of a scalar quantity

2

j c c2
j j

c c cu S
t x x

∂ ∂ ∂
+ = ν +

∂ ∂ ∂

I          II   III       IV

Term I represents the rate-of-change of the scalar
Term II is the advection of the scalar
Term III is the effect of the molecular diffusion of the scalar
Term IV is the source of the scalar quantity

c is the scalar concentration (per unit mass of air)

Manipulation of the equation of state

v v v, T T T , p p p′ ′ ′ρ = ρ + ρ = + = +Put

vp RT= ρ ( )( )v vp p R T T′ ′ ′+ = ρ + ρ +

( )vp R T T′ ′= ρ + ρ

small

vp R T= ρ

( )v v v v vp p R T T T T′ ′ ′ ′ ′+ = ρ + ρ + ρ + ρ



Manipulation of the equation of state

small

vp R T= ρ

( )v v v v vp p R T T T T′ ′ ′ ′ ′+ = ρ + ρ + ρ + ρ

( )v v v vp R T T T′ ′ ′ ′ ′= ρ + ρ + ρ

v v v

v v

T Tp
p T T

′ ′ ′′ ′ ρρ
= + +

ρ ρ

v

v

Tp
p T

′′ ′ρ
= +

ρ

v

v

Tp
p T

′′ ′ρ
= +

ρ

Static pressure fluctuations are associated with variations in 
the mass of air from column to column in the atmosphere.

For the larger eddies and thermals in the BL, these 
fluctuations may be as large as 0.1 mb, while for smaller 
eddies the effect is smaller.

Dynamic pressure fluctuations associated with wind speeds 
≈ 10 m s−1 cause fluctuations of about 0.1 mb also. 

Thus for most BL situations

4
5

p 10 Pa 10
p 10 Pa

−′
= = 3v

v

T 1 K 3.3 10
T 300 K

−′
= = ×cf



v

v

T
T

′′ρ
≈ −

ρ
v

v

Tp
p T

′′ ′ρ
= +

ρ

v

v

′′ θρ
≈ −

ρ θ

Air that is warmer than average is less dense than average.

These equations allow us to substitute temperature 
fluctuations, easily measurable quantities, in place of 
density fluctuations, which are not so easily measured.

Show as 
exercise

Shallow convection approximation

j
j

u
x

∂ξ
=

∂

Flux form of the advection terms

Advection term                            ξ any dependent variable

j
j

j j

u
u

x x
∂∂ξ

= + ξ
∂ ∂

j

j

u
0

x
∂

=
∂

continuity eq.

( )j
j

u
x
∂

= ξ
∂

Flux form

A kinematic flux



Conservation of momentum

Vertical component (put x3 = z, u3 = w)

2

2
j

Dw 1 p wg
Dt z x

∂ ∂
= − − + ν

ρ ∂ ∂
j

j

D u
Dt t x

∂ ∂
= +

∂ ∂

2

2
j

D(w w ) 1 (p p ) (w w )( ) g( )
Dt z x

′ ′ ′+ ∂ + ∂ +′ ′ρ + ρ = − ρ + ρ − + μ
ρ ∂ ∂

Treat ν, μ as constants

2

2
j

D(w w ) 1 p (w w ) 1 p1 g g
Dt z x z

′ ′ ′ ′ ′⎛ ⎞ρ + ρ ∂ ∂ + ∂⎛ ⎞+ = − − + ν − + ρ⎜ ⎟⎜ ⎟ρ ρ ρ ∂ ∂ ρ ∂⎝ ⎠⎝ ⎠

2

2
j

D(w w ) 1 p (w w ) 1 p1 g g
Dt z x z

′ ′ ′ ′ ′⎛ ⎞ρ + ρ ∂ ∂ + ∂⎛ ⎞+ = − − + ν − + ρ⎜ ⎟⎜ ⎟ρ ρ ρ ∂ ∂ ρ ∂⎝ ⎠⎝ ⎠

3v

v

T 3.3 10
T

−′′ρ
= − ≈ ×

ρ
p g 0
z

∂
+ ρ =

∂
Assume hydrostatic equilibrium in the mean

2

2
j

D(w w ) 1 p (w w )g
Dt z x

′ ′ ′ ′+ ρ ∂ ∂ +
= − − + ν

ρ ρ ∂ ∂

Cannot neglect: Boussinesq approximation

v

v

g g
′′ θρ

− ≈
ρ θ



2
v

2
v j

Dw 1 p wg
Dt z x

′′ ′ ′θ ∂ ∂
= − + ν

θ ρ ∂ ∂

Air that is warmer than average is accelerated upwards.

The last two terms represent the effects of the vertical 
pressure gradient and viscous stress on the motion.

Equation important in the evolution of convective thermals.

w 0≡

Although subsidence, w, is important in mass conservation 
and in material advection from aloft, it is less important in 
the momentum equation.

In fair weather BLs, it can vary from 0 to 0.1 m s−1. This is 
small compared with w', which frequently varies over the 
range 0 to 5 m s−1. In the momentum equation only, we can 
take:

Conservation of momentum

( )g g
1 p 1 pf u , v ,

y x
⎛ ⎞∂ ∂

= −⎜ ⎟ρ ∂ ρ ∂⎝ ⎠

Then

Ageostrophic wind 

Horizontal component (put x1 = x, x2 = y, u1 = u, u2 = v)

Define the geostrophic wind by

2

g 2
j

2

g 2
j

Du uf (v v)
Dt x

Dv vf (u u)
Dt x

∂
= − − + ν

∂

∂
= − + ν

∂



Combined momentum equation

2
vi i i

j ij3 gj j i3 2
j v j

u u u1 pu f (u u ) g
t x z x

⎡ ⎤′ ′θ∂ ∂ ∂∂
+ = −ε − − δ − + ν⎢ ⎥∂ ∂ θ ρ ∂ ∂⎣ ⎦

Here we have applied the shallow convection, incompressibility, 
hydrostatic and Boussinesq approximations and set

ug = (ug, vg, 0) .

Horizontal homogeneity

D u v w
Dt t x y z

ξ ∂ξ ∂ξ ∂ξ ∂ξ
= + + +

∂ ∂ ∂ ∂

Expand the total derivative of any mean variable

Averaged variables such as θ or turbulent KE exhibit large 
vertical variations over 1 – 2 km of the BL, but a much 
smaller horizontal variation over the same 1 – 2 scale.

However, ⏐w⏐ <<⏐(u,v)⏐

⇒ the terms are comparable in many situations.



Sometimes micrometeorologists wish to focus their attention 
on turbulence effects at the expense of neglecting mean 
advection.

By assuming horizontal homogeneity, we can set

And neglecting subsidence gives w = 0.

While these assumptions are frequently made to simplify the 
derivations, they are rarely valid in the atmosphere.

When made, the advection terms involving mean quantities 
disappear, leaving the important turbulent flux terms.

0, 0
x y

∂ξ ∂ξ
= =

∂ ∂

Horizontal homogeneity

Reorienting and rotating the coordinate system

We often use a Cartesian coordinate system aligned such 
that the (x,y,z) axes point (east, north, up).

Sometimes it is convenient to rotate the axes about the 
vertical (z-) axis so that x and y point in other directions. 
Some examples include aligning the x-axis with:

• The mean wind direction,
• The geostrophic wind direction,
• The direction of the surface stress, or
• Perpendicular to shorelines or mountain ridges.

The reason for doing this is to simplify some of the terms in 
the governing equations.



Equations for mean variables in a turbulent flow

The equation of state is assumed to hold in the mean: p RT= ρ

Continuity equation:

j j

j

(u u )
0

x
′∂ +

=
∂

jj

j j

u u 0
x x

∂ ′∂
+ =

∂ ∂
Time average

jj

j j

u u 0
x x

∂ ′∂
+ =

∂ ∂

= 0

jj

j

u
0

x
∂

=
∂

j

j

u
0

x
′∂

=
∂

Can put turbulent advection 
terms in flux form

Conservation of momentum

2
vi i i

j ij3 j i3 2
j v j

u u u1 (p p )u fu g
t x z x

′′ θ∂ ∂ ∂∂ +
+ = ε − − δ + ν

∂ ∂ ρ ∂ θ ∂

i i i i
j j ij3 i

j i

2
v i i

i3 2
v j

(u u ) (u u ) 1 (p p )(u u ) f (u u )
t x x

(u u )g g
x

′ ′ ′∂ + ∂ + ∂ +′ ′+ + = ε + −
∂ ∂ ρ ∂

⎡ ⎤′ ′θ ∂ +
− δ − + ν⎢ ⎥θ ∂⎣ ⎦

Expand the dependent variables into mean and turbulent 
parts, except where already done:



i i i i
j j ij3 j j

j i

2
v i i

i3 2
v j

(u u ) (u u ) 1 (p p )(u u ) f (u u )
t x x

(u u )g g
x

′ ′ ′∂ + ∂ + ∂ +′ ′+ + = ε + −
∂ ∂ ρ ∂

⎡ ⎤′ ′θ ∂ +
− δ − + ν⎢ ⎥θ ∂⎣ ⎦

i i i i i i
j j j j ij3 j ij3 j

j j j j

2 2
v i i

i3 2 2
i i v j j

u u u u u uu u u u fu fu
t t x x x x

u u1 p 1 p g g
x x x x

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′ ′+ + + + + = ε + ε
∂ ∂ ∂ ∂ ∂ ∂

⎡ ⎤′ ′′ θ ∂ ∂∂ ∂
− + − − δ − + ν + ν⎢ ⎥ρ ∂ ρ ∂ θ ∂ ∂⎣ ⎦

i i i i i i
j j j j ij3 j ij3 j

j j j j

2 2
v i i

i3 2 2
i i v j j

u u u u u uu u u u fu fu
t t x x x x

u u1 p 1 p g g
x x x x

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′ ′+ + + + + = ε + ε
∂ ∂ ∂ ∂ ∂ ∂

⎡ ⎤′ ′′ θ ∂ ∂∂ ∂
− + − − δ − + ν + ν⎢ ⎥ρ ∂ ρ ∂ θ ∂ ∂⎣ ⎦

Next average the whole equation

i i i i i i
j j j j ij3 j ij3 j

j j j j

2 2
v i i

i3 i3 2 2
i i v j j

u u u u u uu u u u fu fu
t t x x x x

u u1 p 1 p g g
x x x x

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′ ′+ + + + + = ε + ε
∂ ∂ ∂ ∂ ∂ ∂

′ ′′ θ ∂ ∂∂ ∂
− + − − δ − δ + ν + ν

ρ ∂ ρ ∂ θ ∂ ∂



2
i i i i

j j ij3 j i3 2
j j i j

u u u u1 pu u fu g
t x x x x

′∂ ∂ ∂ ∂∂′+ + = ε − − δ + ν
∂ ∂ ∂ ρ ∂ ∂

2
i ji i i

j ij3 j i3 2
j i j j

(u u )u u u1 pu fu g
t x x x x

′ ′∂∂ ∂ ∂∂
+ = ε − − δ + ν −

∂ ∂ ρ ∂ ∂ ∂

Add the continuity equation and average to put the 
turbulent advection term in flux form and move this term to 
the right-hand-side:

iu′ ×

Note the prediction equation for the mean wind is very similar 
to the original conservation equation, except for the last term.

2
i ji i i

j ij3 j i3 2
j i j j

(u u )u u u1 pu fu g
t x x x x

′ ′∂∂ ∂ ∂∂
+ = ε − − δ + ν −

∂ ∂ ρ ∂ ∂ ∂

I          II   III  IV  V  VI           VII

Term I represents the rate-of-change of mean momentum
Term II is the advection of mean momentum by the mean wind
Term III is the mean Coriolis force
Term IV is the mean pressure gradient force
Term V is the gravitational force
Term VI is the influence of the viscous stress on the mean motion
Term VII represents the influence of the Reynolds’ stress on the 
mean motion. It can be interpreted also as the divergence of the
turbulent momentum flux.



2
i ji i i

j ij3 j i3 2
j i j j

(u u )u u u1 pu fu g
t x x x x

′ ′∂∂ ∂ ∂∂
+ = ε − − δ + ν −

∂ ∂ ρ ∂ ∂ ∂

i j ij

j j

(u u ) 1
x x
′ ′∂ ∂τ

− =
∂ ρ ∂

Can write

where ij i ju u′ ′τ = − ρ

Implication:  turbulence must be considered in predicting the 
turbulent BL, even if we are trying to predict only mean 
quantities. The last term can often be as large in magnitude, 
or larger, than many other terms in the equation.

Turbulent momentum flux

Conservation of moisture

T

T T T T T T
j j j j

j j j j

2 2
qT T

q q2 2
j j

q q q q q qu u u u
t t x x x x

Sq q
x x

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′+ + + + + =
∂ ∂ ∂ ∂ ∂ ∂

′∂ ∂
ν + ν +

∂ ∂ ρ

Mean 
source term

T

2
q j TT T T

j q 2
j j j

S (u q )q q qu
t x x x

′ ′∂∂ ∂ ∂
+ = ν + −

∂ ∂ ∂ ρ ∂

Proceeding as before



T

2
q j TT T T

j q 2
j j j

S (u q )q q qu
t x x x

′ ′∂∂ ∂ ∂
+ = ν + −

∂ ∂ ∂ ρ ∂

I           II            III  IV        V

Term I represents the rate-of-change of mean total water
Term II is the advection of mean total water by the mean wind
Term III is the molecular diffusion of water vapour
Term IV is the mean source term for total water
Term V represents the divergence of the turbulent total water 
flux.

Similar equations can be written down for the vapour and 
non-vapour parts of the specific humidity.

Conservation of heat

i
j j j j

j j j j

* * 2 2
j j

2 2
p i i j j p

u u u u
t t x x x x

Q Q1 1 LE
c x x x x c

′′ ′∂θ∂θ ∂θ ∂θ ∂θ ∂θ′ ′+ + + + + =
∂ ∂ ∂ ∂ ∂ ∂

′∂ ∂ ′∂ θ ∂ θ
− − + ν + ν −

ρ ∂ ρ ∂ ∂ ∂ ρ

* 2
j j

j 2
j p i j p j

Q (u )1 LEu
t x c x x c x

′ ′∂ ∂ θ∂θ ∂θ ∂ θ
+ = − + ν − −

∂ ∂ ρ ∂ ∂ ρ ∂

Proceeding as before



I           II          III  IV     V           VI

Term I represents the rate-of-change of heat
Term II is the advection of heat by the mean wind
Term III is the molecular conduction of heat
Term IV is the mean radiative divergence source
Term V is the source associated with latent heat release
Term VI represents the divergence of the turbulent heat flux.

* 2
j j

j 2
j p i j p j

Q (u )1 LEu
t x c x x c x

′ ′∂ ∂ θ∂θ ∂θ ∂ θ
+ = − + ν − −

∂ ∂ ρ ∂ ∂ ρ ∂

Conservation of heat

j j j j
j j j j

2 2

c2 2
j j

c c c c c cu u u u
t t x x x x

c c S
x x

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′+ + + + + =
∂ ∂ ∂ ∂ ∂ ∂

′∂ ∂
ν + ν +

∂ ∂

2
j

j c2
j j j

(u c )c c cu S
t x x x

′ ′∂∂ ∂ ∂
+ = ν + −

∂ ∂ ∂ ∂

Proceeding as before

Mean 
source term



I           II          III  IV     V

Term I represents the rate-of-change of tracer concentration
Term II is the advection of tracer concentration by the mean 
wind
Term III is the molecular diffusion of tracer concentration 
Term IV is the mean source of tracer concentration
Term V represents the divergence of the turbulent tracer 
concentration flux.

2
j

j c2
j j j

(u c )c c cu S
t x x x

′ ′∂∂ ∂ ∂
+ = ν + −

∂ ∂ ∂ ∂

2
i ji i i

j ij3 j i3 2
j i j j

(u u )u u u1 pu fu g
t x x x x

′ ′∂∂ ∂ ∂∂
+ = ε − − δ + ν −

∂ ∂ ρ ∂ ∂ ∂

Neglect of viscosity for mean motions

In each of the conservation equations except mass 
conservation, there are molecular diffusion/viscosity terms.

Observations in the atmosphere indicate that the molecular 
diffusion terms are several orders of magnitude smaller 
than other terms and can be neglected.

After making the hydrostatic approximation, all terms are 
of the same order of magnitude except the viscous term, 
which is O(1/Re) ≈ 10-7 time the others, except in the lowest 
few centimetres above the surface.



j
j ij3 g j

j j

(u u )u uu f (v v )
t x x

′ ′∂∂ ∂
+ = −ε − −

∂ ∂ ∂

Summary of mean flow equations 1

Neglect molecular diffusion and viscosity and make the 
hydrostatic and Boussinesq approximations ⇒

vp R T= ρ

j

j

u
0

x
∂

=
∂

i j
j ij3 g

j j

(u v )v vu f (u u)
t x x

′ ′∂∂ ∂
+ = +ε − −

∂ ∂ ∂

Summary of mean flow equations 2

Tq j TT T
j

j j

S (u q )q qu
t x x

′ ′∂∂ ∂
+ = −

∂ ∂ ρ ∂

*
j j

j
j p i j

Q (u )1u LE
t x c x x

′ ′⎡ ⎤∂ ∂ θ∂θ ∂θ
+ = − + −⎢ ⎥

∂ ∂ ρ ∂ ∂⎢ ⎥⎣ ⎦

j
j c

j j

(u c )c cu S
t x x

′ ′∂∂ ∂
+ = −

∂ ∂ ∂

Note the similarity in structure of the five prediction 
equations. The covariance terms that appear highlight 
the role of statistics in turbulent flow. 



In the two momentum equations, the mean geostrophic wind 
components were defined using the mean horizontal 
pressure gradients:

Summary of mean flow equations 3

g g
1 p 1 pu , v
f y f x

∂ ∂
= − =

ρ ∂ ρ ∂

j
j

D( ) ( ) ( )u
Dt t x

∂ ∂
≡ +

∂ ∂

We could write:

where the total derivative D/Dt includes only the mean advection.

Examples

Many applications must wait until more realistic PBL initial 
and boundary conditions have been covered.

We examine here one or two artificial examples showing the 
use of the mean flow equations.

Suppose that the turbulent flux decreases linearly with 
height according to w'θ' = a – bz, where a = 0.3 (K m s-1) 
and b = 3 × 10−4 (K s-1) .

If the initial potential temperature profile is an arbitrary 
shape, then what will be the shape of the final profile one 
hour later? Neglect subsidence, radiation, latent heating, 
and assume horizontal homogeneity.

Problem 1



Solution: Neglecting subsidence, radiation, latent heating 
leaves:

Substituting the expression for w'θ' gives ∂θ/∂z = b.

This is independent of z, so that air at each height in the 
sounding warms at the same rate. Integrating gives:

Assuming horizontal homogeneity gives:

(u ) (v ) (w )u v
t x y x y z

′ ′ ′ ′ ′ ′∂θ ∂θ ∂θ ∂ θ ∂ θ ∂ θ
+ + = − − −

∂ ∂ ∂ ∂ ∂ ∂

(w )
t z

′ ′∂θ ∂ θ
= −

∂ ∂

In one hour the warming is 3 × 10−4 (K/s) × 3600 (s) =1.08 K.

0 0(t) (t ) b(t t )θ = θ + −

N

If a horizontal wind of 10 m s−1 is advecting drier air into a 
region where the horizontal moisture gradient is 5 g water 
per kg of air per 100 km, then what vertical gradient of 
turbulent moisture flux in the BL is required to maintain a 
steady-state profile of specific humidity?

Assume all the water is in vapour form, and that there is no 
body source of moisture. Be sure to state any additional 
assumptions you make.

Problem 2

Solution: Steady-state ⇒ ∂( )/∂t = 0 ⇒

q q (u q ) (v q ) (w q )u w
x z x y z

′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂
+ = − − −

∂ ∂ ∂ ∂ ∂



No information was given about subsidence, or about 
horizontal flux gradients; therefore let’s assume that they 
are zero for simplicity ⇒

Solution

q (w q )u
x z

′ ′∂ ∂
= −

∂ ∂

⇒ 10 (ms−1) × 5 × 10−5 (g kg −1 m−1) = (w q )
z
′ ′∂

−
∂

Thus (w q )
z
′ ′∂

∂
=  −5 × 10−4 (g kg −1 s−1)  

A gradient of this magnitude corresponds to a 0.5 (g kg−1 

m s−1) decrease of w'q' over a vertical distance of 1 km.

Note a decrease of flux with height ⇒ a time increase of q.

Assume a turbulent BL at a latitude of 44oN, where the 
mean wind is 2 m s−1 slower than geostrophic (i.e. the 
wind is subgeostrophic). Neglect subsidence and assume 
horizontal homogeneity and steady state conditions.

(a) Find the Reynolds stress divergence necessary to 
support this velocity deficit.

(b) If the stress divergence were related to molecular 
viscosity instead of turbulence, what curvature in the 
mean wind profile would be necessary?

Problem 3

Solution: (a) For simplicity, pick a coordinate system aligned 
with the stress ⇒



Assuming horizontal homogeneity, steady state, and 
neglecting subsidence gives ⇒

Solution (a)

g
(u w )0 f (v v)

z
′ ′∂

= − − −
∂

= 10−4 (s−1) × 2 (ms−1) 5 = 2 × 10−4 m s−2
g

(u w ) f (v v)
z
′ ′∂

− = −
∂

Solution (b)  The viscous stress term is expressed by ν∂2u/∂z2.

Thus ν∂2u/∂z2 = 2 × 10−4 m s−2 .

With ν = 1.5 × 10−5 m2 s−1  ⇒ 2
1 1

2

u 13.33 m s
z

− −∂
=

∂

N

j
j g

j j

(u u )u uu f (v v)
t x x

′ ′∂∂ ∂
+ = − − −

∂ ∂ ∂

Steady horizontally-homogeneous flow

w 0
z

∂
=

∂

i j
j g

j j

(u v )v vu f (u u)
t x x

′ ′∂∂ ∂
+ = + − −

∂ ∂ ∂

steady horizontally-
homogeneous

continuity

Ignore temperature and moisture fluctuations
(u w )

z
′ ′∂

−
∂

(v w )
z
′ ′∂

−
∂



g
(u w )0 f (v v)

z
′ ′∂

= − − −
∂

Steady horizontally-homogeneous flow

w 0
z

∂
=

∂

g
(v w )0 f (u u)

z
′ ′∂

= + − −
∂

Balance of forces

F1

F2

NH

ug
z > h

z < h uF1

F2

F3

g gf ( v , u )= −1F

2 f (v, u)= −F

(u w ) (v w ),
z z

⎛ ⎞′ ′ ′ ′∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

3F

α

End


