Boundary Layer Meteorology

Chapter 3

Contents

> Equations for turbulent flow, special problems
$>$ Basic governing equations, interpretation of terms
$>$ Manipulation of the equation of state
> Shallow convection approximation
$>$ Flux form of the advection terms
$>$ Horizontal homogeneity
$>$ Summary of mean flow equations
$>$ Examples

Equations for turbulent flow

$>$ To quantitatively describe and forecast the state of the boundary layer, we turn to the governing equations of fluid dynamics.
These include:

- the continuity equation
- the momentum equation (expressing Newton's $2^{\text {nd }}$ law)
- the thermodynamic equation
- the moisture equation
- the equation of state

Special problems for turbulent flow

In principle, the equations can be applied directly to turbulent flows, but this is generally too complicated.
We would not be able to resolve all turbulent scales down to the smallest eddy to determine the initial condition.
$>$ Instead, for simplicity, we pick some cut-off eddy size below which we include only the statistical effects of turbulence.
$>$ In some mesoscale and synoptic scale models the cut off is on the order of 10 to 100 km , while for some boundary layer models known as large eddy simulation models, the cut off is on the order of 100 m .

Special problems for turbulent flow

$>$ The complete set of equations as applied to the boundary layer are so complex that no analytic solution is known: we are forced to look for approximate solutions.

We can seek

- exact analytical solutions to simplified subsets of the equations, or
- approximate numerical solutions to a more complete set of equations.
$>$ We begin by formulating equations that are statistically averaged over the small eddy sizes.

Mean and turbulent parts of the flow

$>$ There is a very easy way to isolate the large-scale variations from the turbulent ones: by averaging the wind speed measurements over a period of 30 min to one hour, we can eliminate or average out the positive and negative deviations of the turbulent velocities about the mean.
$>$ Let

$>$ The existence of a spectral gap allows us to partition the flow field in this manner.

Basic governing equations 1

Equation of state (ideal gas law for moist air)

pressure density specific gas constant virtual temperature

$\mathrm{T}_{\mathrm{v}}=\mathrm{T}(1+0.61 \mathrm{r})$

Water vapour mixing ratio or specific humidity

Basic governing equations 2

Mass conservation (continuity equation): two forms

Flux form

$$
\frac{\partial \rho}{\partial \mathrm{t}}+\frac{\partial\left(\rho \mathrm{u}_{\mathrm{j}}\right)}{\partial \mathrm{x}_{\mathrm{j}}}=0
$$

Ordinary
form

$$
\frac{\mathrm{D} \rho}{\mathrm{Dt}}+\rho \frac{\partial \mathrm{u}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{j}}}=0
$$

$$
\underbrace{D} \frac{D}{D t} \equiv \frac{\partial}{\partial t}+u_{j} \frac{\partial}{\partial x_{j}}
$$

Boussinesq form $\quad \frac{\partial \mathbf{u}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{j}}}=0$

Basic governing equations 3

Conservation of momentum (Newton's second law)

$$
\frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{t}}+\mathrm{u}_{\mathrm{j}} \frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}=-\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{x}_{\mathrm{i}}}-\delta_{\mathrm{i} 3} \mathrm{~g}-2 \varepsilon_{\mathrm{ijk}} \Omega_{\mathrm{j}} \mathrm{u}_{\mathrm{k}}+\frac{1}{\rho} \frac{\partial \tau_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{j}}}
$$

I II III IV

Term I represents the rate-of-change of momentum (inertia)
Term II is the advection of momentum
Term III is the pressure gradient force
Term IV is the Coriolis force
Term V is the gravitational force
Term VI is the viscous stress term

Basic governing equations 4

Term VI \Rightarrow

$$
\frac{1}{\rho} \frac{\partial \tau_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{j}}}=\frac{1}{\rho} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left\{\mu\left[\frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}+\frac{\partial \mathrm{u}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{i}}}\right]-\frac{2}{3} \mu \delta_{\mathrm{ij}}\left[\frac{\partial \mathrm{u}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{k}}}\right]\right\}
$$

Assuming that μ is not a function of position,

$$
\frac{1}{\rho} \frac{\partial \tau_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{j}}}=\frac{\mu}{\rho}\left\{\frac{\partial^{2} \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left[\frac{\partial \mathrm{u}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{j}}}\right]-\frac{2}{3} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left[\frac{\partial \mathrm{u}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{k}}}\right]\right\}
$$

For an incompressible fluid

$$
\frac{1}{\rho} \frac{\partial \tau_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{j}}}=v \frac{\partial^{2} \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
$$

Basic governing equations 5

Conservation of momentum \Rightarrow

$$
\frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{t}}+\mathrm{u}_{\mathrm{j}} \frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}=-\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{x}_{\mathrm{i}}}-\delta_{\mathrm{i} 3} \mathrm{~g}-2 \varepsilon_{\mathrm{ijk}} \Omega_{\mathrm{j}} \mathrm{u}_{\mathrm{k}}+v \frac{\partial^{2} \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
$$

This is just the Navier-Stokes' equation

Basic governing equations 6

Conservation of moisture (water substance)

q_{T} specific humidity for water substance
Term I represents the local rate-of-change of water substance Term II is the advection of water substance
Term III is the diffusion of water vapour (specific humidity q)
Term IV is the net source of water substance

Basic governing equations 7

Put $\mathrm{q}_{\mathrm{T}}=\mathrm{q}+\mathrm{q}_{\mathrm{L}}$ and $\mathrm{S}_{\mathrm{q}_{\mathrm{T}}}=\mathrm{S}_{\mathrm{q}}+\mathrm{S}_{\mathrm{q}_{\mathrm{L}}}$

$$
\begin{aligned}
& \frac{\partial q_{1}}{\partial t}+u_{j} \frac{\partial q_{1}}{\partial x_{j}}=v_{q} \frac{\partial^{2} q^{2}}{\partial x_{j}^{2}}+\frac{S_{q}}{\rho}+\frac{E}{\rho} \\
& \frac{\partial q_{L}}{\partial t}+u_{j} \frac{\partial q_{L}}{\partial x_{j}}=\quad \frac{S_{q_{L}}}{\rho}-\frac{E}{\rho}
\end{aligned}
$$

$$
E=\text { rate-of-evaporation of liquid water }
$$

Molecular diffusion of liquid water is neglected

Basic governing equations 8

Conservation of heat (First law of thermodynamics)

$$
\begin{aligned}
& \frac{\partial \theta}{\partial \mathrm{t}}+\mathrm{u}_{\mathrm{j}} \frac{\partial \theta}{\partial \mathrm{x}_{\mathrm{j}}}=\mathrm{v}_{\theta} \frac{\partial^{2} \theta}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{1}{\rho \mathrm{c}_{\mathrm{p}}} \frac{\partial \mathrm{Q}_{\mathrm{j}}^{*}}{\partial \mathrm{x}_{\mathrm{j}}}-\frac{\mathrm{LE}}{\rho \mathrm{c}_{\mathrm{p}}} \\
& \text { I } \quad \text { II }
\end{aligned}
$$

Q_{j}^{*} is the component of net radiation in the j-direction
Term I represents the rate-of-change of potential temperature
Term II is the advection of potential temperature
Term III is the effect of the molecular diffusion of heat Term IV is the effect of the radiative flux divergence
Term V is the effect of the latent heat consumed by evaporation

Basic governing equations 9

Conservation of a scalar quantity

$$
\begin{aligned}
& \frac{\partial \mathrm{c}}{\partial \mathrm{t}}+\mathrm{u}_{\mathrm{j}} \frac{\partial \mathrm{c}}{\partial \mathrm{x}_{\mathrm{j}}}=\mathrm{v}_{\mathrm{c}} \frac{\partial^{2} \mathrm{c}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+\mathrm{S}_{\mathrm{c}} \\
& \text { I II }
\end{aligned}
$$

c is the scalar concentration (per unit mass of air)

Term I represents the rate-of-change of the scalar
Term II is the advection of the scalar
Term III is the effect of the molecular diffusion of the scalar
Term IV is the source of the scalar quantity

Manipulation of the equation of state

Put $\rho=\bar{\rho}+\rho^{\prime}, \quad T_{v}=\bar{T}_{v}+T_{v}^{\prime}, \quad p=\bar{p}+p^{\prime}$

$$
\mathrm{p}=\rho \mathrm{RT} \mathrm{~T}_{\mathrm{v}} \quad \square \quad \overline{\mathrm{p}}+\mathrm{p}^{\prime}=\mathrm{R}\left(\bar{\rho}+\rho^{\prime}\right)\left(\overline{\mathrm{T}}_{\mathrm{v}}+\mathrm{T}_{\mathrm{v}}^{\prime}\right)
$$

$$
\overline{\mathrm{p}}+\mathrm{p}^{\prime}=\mathrm{R}\left(\bar{\rho}_{\mathrm{T}_{\mathrm{v}}}+\rho^{\prime} \overline{\mathrm{T}}_{\mathrm{v}}+\bar{\rho} \mathrm{T}_{\mathrm{v}}^{\prime}+\rho_{\mathrm{v}}^{\prime} \mathrm{T}_{\mathrm{v}}^{\prime}\right)
$$

$$
\longmapsto \overline{\mathrm{p}}=\mathrm{R}\left(\bar{\rho} \overline{\mathrm{~T}}_{\mathrm{v}}+\overline{\rho^{\prime} \mathrm{T}^{\prime}}\right)
$$

small

$$
\longmapsto \quad \overline{\mathrm{p}}=\mathrm{R} \bar{\rho} \overline{\mathrm{~T}}_{\mathrm{v}}
$$

Manipulation of the equation of state

\[

\]

$$
\frac{\mathrm{p}^{\prime}}{\overline{\mathrm{p}}}=\frac{\rho^{\prime}}{\bar{\rho}}+\frac{\mathrm{T}_{\mathrm{v}}^{\prime}}{\overline{\mathrm{T}}_{\mathrm{v}}}
$$

$>$ Static pressure fluctuations are associated with variations in the mass of air from column to column in the atmosphere.
$>$ For the larger eddies and thermals in the BL, these fluctuations may be as large as 0.1 mb , while for smaller eddies the effect is smaller.
$>$ Dynamic pressure fluctuations associated with wind speeds $\approx 10 \mathrm{~m} \mathrm{~s}^{-1}$ cause fluctuations of about 0.1 mb also.
$>$ Thus for most BL situations

$$
\frac{\mathrm{p}^{\prime}}{\overline{\mathrm{p}}}=\frac{10 \mathrm{~Pa}}{10^{5} \mathrm{~Pa}}=10^{-4} \quad \text { cf } \quad \frac{\mathrm{T}_{\mathrm{v}}^{\prime}}{\overline{\mathrm{T}}_{\mathrm{v}}}=\frac{1 \mathrm{~K}}{300 \mathrm{~K}}=3.3 \times 10^{-3}
$$

Shallow convection approximation

$$
\begin{aligned}
\frac{p^{\prime} /}{p}=\frac{\rho^{\prime}}{\bar{\rho}}+\frac{\mathrm{T}_{\mathrm{v}}^{\prime}}{\overline{\mathrm{T}}_{\mathrm{v}}} & \square \frac{\rho^{\prime}}{\bar{\rho}} \approx-\frac{\mathrm{T}_{\mathrm{v}}^{\prime}}{\overline{\mathrm{T}}_{\mathrm{v}}}
\end{aligned} \quad \begin{aligned}
& \square \frac{\rho^{\prime}}{\bar{\rho}} \approx-\frac{\theta_{\mathrm{v}}^{\prime}}{\bar{\theta}_{\mathrm{v}}}, \begin{array}{l}
\text { Show as } \\
\text { exercise }
\end{array}
\end{aligned}
$$

$>$ Air that is warmer than average is less dense than average.
> These equations allow us to substitute temperature fluctuations, easily measurable quantities, in place of density fluctuations, which are not so easily measured.

Flux form of the advection terms

Advection term $=\mathrm{u}_{\mathrm{j}} \frac{\partial \xi}{\partial \mathrm{x}_{\mathrm{j}}} \quad \xi$ any dependent variable

$$
=\mathrm{u}_{\mathrm{j}} \frac{\partial \xi}{\partial \mathrm{x}_{\mathrm{j}}}+\xi \frac{\partial \mathrm{u}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{j}}} \quad \underset{\text { continuity eq. }}{\frac{\partial \mathrm{u}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{j}}}=0}
$$

Flux form

$$
=\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left(\mathrm{u}_{\mathrm{j}} \xi\right)
$$

Conservation of momentum

Vertical component (put $\mathrm{x}_{3}=\mathrm{z}, \mathrm{u}_{3}=\mathrm{w}$)

$$
\begin{gathered}
\frac{\mathrm{Dw}}{\mathrm{Dt}}=-\mathrm{g}-\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{z}}+v \frac{\partial^{2} \mathrm{w}}{\partial \mathrm{x}_{\mathrm{j}}^{2}} \quad \text { Treat } \mathrm{v}, \mu \text { as constants } \\
\left(\bar{\rho}+\rho^{\prime}\right) \frac{\mathrm{D}\left(\overline{\mathrm{w}}+\mathrm{w}^{\prime}\right)}{\mathrm{Dt}}=-\mathrm{g}\left(\bar{\rho}+\rho^{\prime}\right)-\frac{\partial}{\partial \mathrm{t}}+\mathrm{u}_{\mathrm{j}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}} \frac{\partial\left(\overline{\mathrm{p}}+\mathrm{p}^{\prime}\right)}{\partial \mathrm{z}}+\mu \frac{\partial^{2}\left(\overline{\mathrm{w}}+\mathrm{w}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{j}}^{2}} \\
\left(1+\frac{\rho^{\prime}}{\bar{\rho}}\right) \frac{\mathrm{D}\left(\overline{\mathrm{w}}+\mathrm{w}^{\prime}\right)}{\mathrm{Dt}}=-\mathrm{g} \frac{\rho^{\prime}}{\bar{\rho}}-\frac{1}{\bar{\rho}} \frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{z}}+v \frac{\partial^{2}\left(\overline{\mathrm{w}}+\mathrm{w}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{1}{\bar{\rho}}\left(\frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{z}}+\mathrm{g} \bar{\rho}\right)
\end{gathered}
$$

$$
\left(1+\frac{\rho^{\prime}}{\bar{\rho}}\right) \frac{D\left(\overline{\mathrm{w}}+\mathrm{w}^{\prime}\right)}{\mathrm{Dt}}=-\mathrm{g} \frac{\rho^{\prime}}{\bar{\rho}}-\frac{1}{\bar{\rho}} \frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{z}}+v \frac{\partial^{2}\left(\overline{\mathrm{w}}+\mathrm{w}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{1}{\bar{\rho}}\left(\frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{z}}+\mathrm{g} \bar{\rho}\right)
$$

$$
\frac{\rho^{\prime}}{\bar{\rho}}=-\frac{\mathrm{T}_{\mathrm{v}}^{\prime}}{\overline{\mathrm{T}}_{\mathrm{v}}} \approx 3.3 \times 10^{-3}
$$

Assume hydrostatic equilibrium in the mean $\frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{z}}+\mathrm{g} \bar{\rho}=0$

$$
\frac{\mathrm{D}\left(\overline{\mathrm{w}}+\mathrm{w}^{\prime}\right)}{\mathrm{Dt}}=-\mathrm{g} \frac{\rho^{\prime}}{\bar{\rho}}-\frac{1}{\bar{\rho}} \frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{z}}+v \frac{\partial^{2}\left(\overline{\mathrm{w}}+\mathrm{w}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
$$

Cannot neglect: Boussinesq approximation

$$
-g \frac{\rho^{\prime}}{\bar{\rho}} \approx g \frac{\theta_{v}^{\prime}}{\bar{\theta}_{v}}
$$

$>$ Although subsidence, $\overline{\mathrm{w}}$, is important in mass conservation and in material advection from aloft, it is less important in the momentum equation.
> In fair weather BLs, it can vary from 0 to $0.1 \mathrm{~m} \mathrm{~s}^{-1}$. This is small compared with w^{\prime}, which frequently varies over the range 0 to $5 \mathrm{~m} \mathrm{~s}^{\mathbf{- 1}}$. In the momentum equation only, we can take:

$$
\begin{gathered}
\overline{\mathrm{w}} \equiv 0 \\
\frac{\mathrm{Dw}^{\prime}}{\mathrm{Dt}}=\mathrm{g} \frac{\theta_{\mathrm{v}}^{\prime}}{\bar{\theta}_{\mathrm{v}}}-\frac{1}{\bar{\rho}} \frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{z}}+v \frac{\partial^{2} w^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
\end{gathered}
$$

$>$ Air that is warmer than average is accelerated upwards.
> The last two terms represent the effects of the vertical pressure gradient and viscous stress on the motion.

Equation important in the evolution of convective thermals.

Conservation of momentum

Horizontal component (put $x_{1}=x, x_{2}=y, u_{1}=u, u_{2}=v$)
Define the geostrophic wind by $f\left(u_{g}, v_{g}\right)=\left(-\frac{1}{\rho} \frac{\partial p}{\partial y}, \frac{1}{\rho} \frac{\partial p}{\partial x}\right)$

$$
\frac{\mathrm{Du}}{\mathrm{Dt}}=-\mathrm{f}\left(\mathrm{v}_{\mathrm{g}}-\mathrm{v}\right)+\mathrm{v} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
$$

Then

$$
\frac{D v}{D t}=f\left(u_{g}-u\right)+v \frac{\partial^{2} v}{\partial x_{j}^{2}}
$$

Ageostrophic wind

Combined momentum equation

$$
\frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{t}}+\mathrm{u}_{\mathrm{j}} \frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}=-\varepsilon_{\mathrm{ij3}} \mathrm{f}\left(\mathrm{u}_{\mathrm{gj}}-\mathrm{u}_{\mathrm{j}}\right)-\delta_{\mathrm{i} 3}\left[\mathrm{~g} \frac{\theta_{\mathrm{v}}^{\prime}}{\bar{\theta}_{\mathrm{v}}}-\frac{1}{\bar{\rho}} \frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{z}}\right]+v \frac{\partial^{2} \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
$$

Here we have applied the shallow convection, incompressibility, hydrostatic and Boussinesq approximations and set

$$
\mathbf{u}_{\mathrm{g}}=\left(\mathrm{u}_{\mathrm{g}}, \mathrm{v}_{\mathrm{g}}, 0\right) .
$$

Horizontal homogeneity

Expand the total derivative of any mean variable

$$
\frac{\mathrm{D} \bar{\xi}}{\mathrm{Dt}}=\frac{\partial \bar{\xi}}{\partial \mathrm{t}}+\mathrm{u} \frac{\partial \bar{\xi}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \bar{\xi}}{\partial \mathrm{y}}+\mathrm{w} \frac{\partial \bar{\xi}}{\partial \mathrm{z}}
$$

> Averaged variables such as θ or turbulent $K E$ exhibit large vertical variations over $1-2 \mathrm{~km}$ of the BL, but a much smaller horizontal variation over the same $1-2$ scale.
$>$ However, $|\mathrm{w}| \ll|(\mathrm{u}, \mathrm{v})|$
$>\Rightarrow$ the terms are comparable in many situations.

Horizontal homogeneity

$>$ Sometimes micrometeorologists wish to focus their attention on turbulence effects at the expense of neglecting mean advection.
$>$ By assuming horizontal homogeneity, we can set

$$
\frac{\partial \bar{\xi}}{\partial \mathrm{x}}=0, \quad \frac{\partial \bar{\xi}}{\partial \mathrm{y}}=0
$$

And neglecting subsidence gives $\overline{\mathrm{w}}=0$.
> While these assumptions are frequently made to simplify the derivations, they are rarely valid in the atmosphere.
> When made, the advection terms involving mean quantities disappear, leaving the important turbulent flux terms.

Reorienting and rotating the coordinate system

> We often use a Cartesian coordinate system aligned such that the ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) axes point (east, north, up).
$>$ Sometimes it is convenient to rotate the axes about the vertical ($\mathrm{z}-$) axis so that x and y point in other directions. Some examples include aligning the x -axis with:

- The mean wind direction,
- The geostrophic wind direction,
- The direction of the surface stress, or
- Perpendicular to shorelines or mountain ridges.
$>$ The reason for doing this is to simplify some of the terms in the governing equations.

Equations for mean variables in a turbulent flow

The equation of state is assumed to hold in the mean: $\overline{\mathrm{p}}=\bar{\rho} \mathrm{R} \overline{\mathrm{T}}$

Continuity equation:

$$
\begin{aligned}
& \frac{\partial\left(\overline{\mathrm{u}}_{\mathrm{j}}+\mathrm{u}_{\mathrm{j}}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{j}}}=0 \quad \text { Time average } \quad \frac{\overline{\partial \overline{\mathrm{u}}_{\mathrm{j}}}}{\partial \mathrm{x}_{\mathrm{j}}}+\frac{\partial \mathrm{u}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}=0 \\
& \frac{\partial \overline{\mathrm{u}}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{j}}}+\underbrace{\frac{\overline{\partial \mathrm{u}^{\prime}}}{\partial \mathrm{x}_{\mathrm{j}}}}_{\mathrm{r}_{\mathrm{i}}}=0 \quad \square \frac{\partial \overline{\mathrm{u}}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{j}}}=0 \quad \square \quad \frac{\partial \mathrm{u}_{\mathrm{j}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}=0 \\
& =0 \\
& \text { Can put turbulent advection } \\
& \text { terms in flux form }
\end{aligned}
$$

Conservation of momentum

$$
\frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{t}}+\mathrm{u}_{\mathrm{j}} \frac{\partial \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}=\varepsilon_{\mathrm{ij} 3} \mathrm{fu}_{\mathrm{j}}-\frac{1}{\bar{\rho}} \frac{\partial\left(\overline{\mathrm{p}}+\mathrm{p}^{\prime}\right)}{\partial \mathrm{z}}-\delta_{\mathrm{i} 3} \mathrm{~g} \frac{\theta_{\mathrm{v}}^{\prime}}{\bar{\theta}_{\mathrm{v}}}+v \frac{\partial^{2} \mathrm{u}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
$$

Expand the dependent variables into mean and turbulent parts, except where already done:

$$
\begin{gathered}
\frac{\partial\left(\overline{\mathrm{u}}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}^{\prime}\right)}{\partial \mathrm{t}}+\left(\overline{\mathrm{u}}_{\mathrm{j}}+\mathrm{u}_{\mathrm{j}}^{\prime}\right) \frac{\partial\left(\overline{\mathrm{u}}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{j}}}=\varepsilon_{\mathrm{ij3}} \mathrm{f}\left(\overline{\mathrm{u}}_{\mathrm{i}}+\mathrm{u}^{\prime}\right)-\frac{1}{\bar{\rho}} \frac{\partial\left(\overline{\mathrm{p}}+\mathrm{p}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{i}}} \\
-\delta_{\mathrm{i} 3}\left[\mathrm{~g}-\mathrm{g} \frac{\theta_{\mathrm{v}}^{\prime}}{\bar{\theta}_{\mathrm{v}}}\right]+v \frac{\partial^{2}\left(\overline{\mathrm{u}}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\partial\left(\overline{\mathrm{u}}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}^{\prime}\right)}{\partial \mathrm{t}}+\left(\overline{\mathrm{u}}_{\mathrm{j}}+\mathrm{u}_{\mathrm{j}}^{\prime}\right) \frac{\partial\left(\overline{\mathrm{u}}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{j}}}=\varepsilon_{\mathrm{ij} 3} \mathrm{f}\left(\overline{\mathrm{u}}_{\mathrm{j}}+\mathrm{u}_{\mathrm{j}}^{\prime}\right)-\frac{1}{\bar{\rho}} \frac{\partial\left(\overline{\mathrm{p}}+\mathrm{p}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{i}}} \\
& -\delta_{i 3}\left[g-g \frac{\theta_{v}^{\prime}}{\bar{\theta}_{v}}\right]+v \frac{\partial^{2}\left(\bar{u}_{i}+u_{i}^{\prime}\right)}{\partial x_{j}^{2}} \\
& \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{t}}+\frac{\partial \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}+\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}+\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}=\varepsilon_{\mathrm{ij} 3} \mathrm{f}_{\mathrm{u}}+\varepsilon_{\mathrm{ij} 3} \mathrm{fu}_{\mathrm{j}}^{\prime} \\
& -\frac{1}{\bar{\rho}} \frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{x}_{\mathrm{i}}}+-\frac{1}{\bar{\rho}} \frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{x}_{\mathrm{i}}}-\delta_{\mathrm{i} 3}\left[\mathrm{~g}-\mathrm{g} \frac{\theta_{\mathrm{v}}^{\prime}}{\bar{\theta}_{\mathrm{v}}}\right]+v \frac{\partial^{2} \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+v \frac{\partial^{2} \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
\end{aligned}
$$

Next average the whole equation

$$
\begin{aligned}
& \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{t}}+\frac{\partial \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}+\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}+\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}=\varepsilon_{\mathrm{ij} 3} \mathrm{f}_{\mathrm{u}}^{\mathrm{j}}{ }^{2}+\varepsilon_{\mathrm{ij} 3} \mathrm{fu}_{\mathrm{j}}^{\prime} \\
& -\frac{1}{\bar{\rho}} \frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{x}_{\mathrm{i}}}+-\frac{1}{\bar{\rho}} \frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{x}_{\mathrm{i}}}-\delta_{\mathrm{i} 3}\left[\mathrm{~g}-\mathrm{g} \frac{\theta_{\mathrm{v}}^{\prime}}{\bar{\theta}_{\mathrm{v}}}\right]+v \frac{\partial^{2} \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+v \frac{\partial^{2} \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}^{2}} \\
& \overline{\frac{\partial \bar{u}_{i}}{\partial t}}+\overline{\frac{\partial u_{i}}{\partial t}}+\overline{\bar{u}_{j} \frac{\partial \bar{u}_{i}}{\partial \mathrm{x}_{\mathrm{j}}}}+\overline{\overline{\mathrm{u}}_{\mathrm{j}}} \overline{\partial \mathrm{u}_{\mathrm{i}}^{\prime}} \partial \overline{\partial \mathrm{x}_{\mathrm{j}}}+\overline{\mathrm{u}_{\mathrm{i}}^{\prime}} \overline{\partial \overline{\mathrm{u}}_{\mathrm{i}}} \frac{\partial \mathrm{x}_{\mathrm{j}}}{}+\overline{\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}}=\overline{\varepsilon_{\mathrm{ij} 3} \overline{\mathrm{u}}_{\mathrm{j}}}+\overline{\varepsilon_{\mathrm{ij}}} \overline{f \mathrm{u}_{\mathrm{j}}^{\prime}}
\end{aligned}
$$

$$
\frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}+\overline{\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial \mathrm{u}_{\mathrm{i}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}}=\varepsilon_{\mathrm{i} 3} \mathrm{f} \overline{\mathrm{u}}_{\mathrm{j}}-\frac{1}{\bar{\rho}} \frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{x}_{\mathrm{i}}}-\delta_{\mathrm{i} 3} \mathrm{~g}+v \frac{\partial^{2} \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}
$$

Add $u_{i}^{\prime} \times$ the continuity equation and average to put the turbulent advection term in flux form and move this term to the right-hand-side:

$$
\frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}=\varepsilon_{\mathrm{ij} 3} \mathrm{f} \overline{\mathrm{u}}_{\mathrm{j}}-\frac{1}{\bar{\rho}} \frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{x}_{\mathrm{i}}}-\delta_{\mathrm{i} 3} \mathrm{~g}+v \frac{\partial^{2} \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{\overline{\partial\left(\mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{j}}^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}}
$$

Note the prediction equation for the mean wind is very similar to the original conservation equation, except for the last term.

$$
\begin{gathered}
\frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}=\varepsilon_{\mathrm{ij3}} \mathrm{f} \overline{\mathrm{u}}_{\mathrm{j}}-\frac{1}{\bar{\rho}} \frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{x}_{\mathrm{i}}}-\delta_{\mathrm{i} 3} \mathrm{~g}+v \frac{\partial^{2} \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{\overline{\partial\left(\mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{j}}^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}} \\
\text { I III }
\end{gathered}
$$

Term I represents the rate-of-change of mean momentum
Term II is the advection of mean momentum by the mean wind
Term III is the mean Coriolis force
Term IV is the mean pressure gradient force
Term V is the gravitational force
Term VI is the influence of the viscous stress on the mean motion
Term VII represents the influence of the Reynolds' stress on the mean motion. It can be interpreted also as the divergence of the turbulent momentum flux.

Turbulent momentum flux

$$
\frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}=\varepsilon_{\mathrm{ij}} \mathrm{f}_{\mathrm{i}}-\frac{1}{\bar{\rho}} \frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{x}_{\mathrm{i}}}-\delta_{\mathrm{i} 3} \mathrm{~g}+v \frac{\partial^{2} \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{\overline{\partial\left(\mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{j}}^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}}
$$

Can write

$$
-\overline{\frac{\partial\left(\mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{j}}^{\prime}\right)}{\partial \mathrm{x}_{\mathrm{j}}}}=\frac{1}{\bar{\rho}} \frac{\partial \tau_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{j}}} \quad \text { where } \quad \tau_{\mathrm{ij}}=-\bar{\rho} \overline{\mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{j}}^{\prime}}
$$

Implication: turbulence must be considered in predicting the turbulent BL, even if we are trying to predict only mean quantities. The last term can often be as large in magnitude, or larger, than many other terms in the equation.

Conservation of moisture

$$
\begin{aligned}
& \frac{\partial \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{t}}+\frac{\partial \mathrm{q}_{\mathrm{T}}^{\prime}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{x}_{\mathrm{j}}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \mathrm{q}_{\mathrm{T}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}+\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{x}_{\mathrm{j}}}+\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial \mathrm{q}_{\mathrm{T}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}= \\
& v_{\mathrm{q}} \frac{\partial^{2} \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+v_{\mathrm{q}} \frac{\partial^{2} \mathrm{q}_{\mathrm{T}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+\frac{\mathrm{S}_{\mathrm{q}_{\mathrm{T}}}}{\frac{\bar{\rho}}{\text { Mean }}} \\
& \text { Sroceeding as before term }
\end{aligned}
$$

$$
\frac{\partial \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{x}_{\mathrm{j}}}=v_{\mathrm{q}} \frac{\partial^{2} \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+\frac{\mathrm{S}_{\mathrm{q}_{\mathrm{r}}}}{\bar{\rho}}-\frac{\partial\left(\overline{\mathrm{u}_{\mathrm{j}}^{\prime} \mathrm{q}_{\mathrm{T}}^{\prime}}\right)}{\partial \mathrm{x}_{\mathrm{j}}}
$$

$$
\begin{gathered}
\frac{\partial \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{x}_{\mathrm{j}}}=\mathrm{v}_{\mathrm{q}} \frac{\partial^{2} \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+\frac{\mathrm{S}_{\mathrm{q}_{\mathrm{T}}}}{\bar{\rho}}-\frac{\partial\left(\overline{\mathrm{u}_{\mathrm{j} \mathrm{q}_{\mathrm{T}}^{\prime}}^{\prime}}\right)}{\partial \mathrm{x}_{\mathrm{j}}} \\
\text { III } \\
\text { II } \quad \text { III }
\end{gathered}
$$

Term I represents the rate-of-change of mean total water
Term II is the advection of mean total water by the mean wind
Term III is the molecular diffusion of water vapour
Term IV is the mean source term for total water
Term V represents the divergence of the turbulent total water flux.

Similar equations can be written down for the vapour and non-vapour parts of the specific humidity.

Conservation of heat

$$
\begin{aligned}
\frac{\partial \bar{\theta}}{\partial \mathrm{t}}+ & \frac{\partial \theta^{\prime}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \bar{\theta}}{\partial \mathrm{x}_{\mathrm{j}}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \theta_{\mathrm{i}}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}+y_{\mathrm{j}} \frac{\partial \bar{\theta}}{\partial \mathrm{x}_{\mathrm{j}}}+\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial \theta^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}= \\
& -\frac{1}{\bar{\rho} \mathrm{c}_{\mathrm{p}}} \frac{\partial \overline{\mathrm{Q}}_{\mathrm{j}}^{*}}{\partial \mathrm{x}_{\mathrm{i}}}-\frac{1}{\bar{\rho}} \frac{\partial \mathrm{Q}_{\mathrm{j}}^{*}}{\partial \mathrm{x}_{\mathrm{i}}}+v \frac{\partial^{2} \bar{\theta}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+v \frac{\partial^{2} \theta^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{L E}{\bar{\rho} \mathrm{c}_{\mathrm{p}}}
\end{aligned}
$$

Proceeding as before

$$
\frac{\partial \bar{\theta}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \bar{\theta}}{\partial \mathrm{x}_{\mathrm{j}}}=-\frac{1}{\bar{\rho} \mathrm{c}_{\mathrm{p}}} \frac{\partial \overline{\mathrm{Q}}_{\mathrm{j}}^{*}}{\partial \mathrm{x}_{\mathrm{i}}}+v \frac{\partial^{2} \bar{\theta}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{\mathrm{LE}}{\bar{\rho} \mathrm{c}_{\mathrm{p}}}-\frac{\partial \overline{\left(\mathrm{u}_{\mathrm{j}}^{\prime} \theta^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}}
$$

$$
\begin{aligned}
& \frac{\partial \bar{\theta}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \bar{\theta}}{\partial \mathrm{x}_{\mathrm{j}}}=-\frac{1}{\bar{\rho} \mathrm{c}_{\mathrm{p}}} \frac{\partial \overline{\mathrm{Q}}_{\mathrm{j}}^{*}}{\partial \mathrm{x}_{\mathrm{i}}}+v \frac{\partial^{2} \bar{\theta}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{\mathrm{LE}}{\bar{\rho} \mathrm{c}_{\mathrm{p}}}-\frac{\partial \overline{\left(\mathrm{u}_{\mathrm{j}}^{\prime} \theta^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}} \\
& \text { III }
\end{aligned}
$$

Term I represents the rate-of-change of heat
Term II is the advection of heat by the mean wind
Term III is the molecular conduction of heat
Term IV is the mean radiative divergence source
Term V is the source associated with latent heat release
Term VI represents the divergence of the turbulent heat flux.

Conservation of heat

$$
\begin{array}{r}
\frac{\partial \overline{\mathrm{c}}}{\partial \mathrm{t}}+\frac{\partial \mathrm{c}^{\prime}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{c}}}{\partial \mathrm{x}_{\mathrm{j}}}+\overline{\mathrm{u}}_{\mathrm{i}} \frac{\partial \mathrm{c}^{\prime}}{\partial \mathrm{x}_{\mathrm{j}}}+\nu_{\mathrm{j}}^{\prime} \frac{\partial \overline{\mathrm{c}}}{\partial \mathrm{x}_{\mathrm{j}}}+\mathrm{u}_{\mathrm{j}}^{\prime} \frac{\partial{c^{\prime \prime}}_{\partial \mathrm{x}_{\mathrm{j}}}=}{v \frac{\partial^{2} \overline{\mathrm{c}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+v \frac{\partial^{2} q^{\prime \prime}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+\frac{\mathrm{S}_{\mathrm{c}}}{\underline{\text { Mean }}}}
\end{array}
$$ source term

Proceeding as before

$$
\frac{\partial \overline{\mathrm{c}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{c}}}{\partial \mathrm{x}_{\mathrm{j}}}=v \frac{\partial^{2} \overline{\mathrm{c}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+\overline{\mathrm{S}}_{\mathrm{c}}-\frac{\partial \overline{\left(\mathrm{u}_{\mathrm{j}}^{\prime} \mathrm{c}^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}}
$$

$$
\begin{gathered}
\frac{\partial \overline{\mathrm{c}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{c}}}{\partial \mathrm{x}_{\mathrm{j}}}=\mathrm{v} \frac{\partial^{2} \overline{\mathrm{c}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}+\overline{\mathrm{S}}_{\mathrm{c}}-\frac{\partial \overline{\left(\mathrm{u}_{\mathrm{j}}^{\prime} \mathrm{c}^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}} \\
\text { I III }
\end{gathered}
$$

Term I represents the rate-of-change of tracer concentration
Term II is the advection of tracer concentration by the mean wind
Term III is the molecular diffusion of tracer concentration Term IV is the mean source of tracer concentration
Term V represents the divergence of the turbulent tracer concentration flux.

Neglect of viscosity for mean motions

In each of the conservation equations except mass conservation, there are molecular diffusion/viscosity terms.
$>$ Observations in the atmosphere indicate that the molecular diffusion terms are several orders of magnitude smaller than other terms and can be neglected.

$$
\frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}=\varepsilon_{\mathrm{i} 3} \mathrm{f} \overline{\mathrm{u}}_{\mathrm{j}}-\frac{1}{\bar{\rho}} \frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{x}_{\mathrm{i}}}-\delta_{\mathrm{i} 3} \mathrm{~g}+v \frac{\partial^{2} \overline{\mathrm{u}}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}^{2}}-\frac{\overline{\partial\left(\mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{j}}^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}}
$$

> After making the hydrostatic approximation, all terms are of the same order of magnitude except the viscous term, which is $\mathrm{O}(1 / \mathrm{Re}) \approx 10^{-7}$ time the others, except in the lowest few centimetres above the surface.

Summary of mean flow equations 1

$>$ Neglect molecular diffusion and viscosity and make the hydrostatic and Boussinesq approximations \Rightarrow

$$
\begin{gathered}
\overline{\mathrm{p}}=\mathrm{R} \bar{\rho} \overline{\mathrm{~T}}_{\mathrm{v}} \\
\frac{\partial \overline{\mathrm{u}}_{\mathrm{j}}}{\partial \mathrm{x}_{\mathrm{j}}}=0 \\
\frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{x}_{\mathrm{j}}}=-\varepsilon_{\mathrm{ij} 3} \mathrm{f}\left(\overline{\mathrm{v}}_{\mathrm{g}}-\overline{\mathrm{v}}_{\mathrm{j}}\right)-\frac{\overline{\partial\left(\mathrm{u}_{\mathrm{j}}^{\prime} \mathrm{u}^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}} \\
\frac{\partial \overline{\mathrm{v}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{v}}}{\partial \mathrm{x}_{\mathrm{j}}}=+\varepsilon_{\mathrm{ij} 3} \mathrm{f}\left(\overline{\mathrm{u}}_{\mathrm{g}}-\overline{\mathrm{u}}\right)-\frac{\overline{\partial\left(\mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{v}_{\mathrm{j}}^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}}
\end{gathered}
$$

Summary of mean flow equations 2

$$
\begin{gathered}
\frac{\partial \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{q}}_{\mathrm{T}}}{\partial \mathrm{x}_{\mathrm{j}}}=\frac{\overline{\mathrm{S}}_{\mathrm{q}_{\mathrm{T}}}}{\bar{\rho}}-\frac{\partial\left(\overline{\mathrm{u}_{\mathrm{j}}^{\prime} \mathrm{q}_{\mathrm{T}}^{\prime}}\right)}{\partial \mathrm{x}_{\mathrm{j}}} \\
\frac{\partial \bar{\theta}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \bar{\theta}}{\partial \mathrm{x}_{\mathrm{j}}}=-\frac{1}{\bar{\rho} \mathrm{c}_{\mathrm{p}}}\left[\frac{\partial \overline{\mathrm{Q}}_{\mathrm{j}}^{*}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{LE}\right]-\frac{\partial \overline{\left(\mathrm{u}_{\mathrm{j}}^{\prime} \theta^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}} \\
\frac{\partial \overline{\mathrm{c}}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial \overline{\mathrm{c}}}{\partial \mathrm{x}_{\mathrm{j}}}=\overline{\mathrm{S}}_{\mathrm{c}}-\frac{\partial \overline{\left(\mathrm{u}_{\mathrm{j}}^{\prime} \mathrm{c}^{\prime}\right)}}{\partial \mathrm{x}_{\mathrm{j}}}
\end{gathered}
$$

$>$ Note the similarity in structure of the five prediction equations. The covariance terms that appear highlight the role of statistics in turbulent flow.

Summary of mean flow equations 3

> In the two momentum equations, the mean geostrophic wind components were defined using the mean horizontal pressure gradients:

$$
\overline{\mathrm{u}}_{\mathrm{g}}=-\frac{1}{\mathrm{f} \bar{\rho}} \frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{y}}, \quad \overline{\mathrm{v}}_{\mathrm{g}}=\frac{1}{\mathrm{f} \bar{\rho}} \frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{x}}
$$

$>$ We could write:

$$
\frac{\mathrm{D}(\mathrm{)}}{\mathrm{Dt}} \equiv \frac{\partial(\mathrm{)}}{\partial \mathrm{t}}+\overline{\mathrm{u}}_{\mathrm{j}} \frac{\partial()}{\partial \mathrm{x}_{\mathrm{j}}}
$$

where the total derivative D / Dt includes only the mean advection.

Examples

Many applications must wait until more realistic PBL initial and boundary conditions have been covered.
$>$ We examine here one or two artificial examples showing the use of the mean flow equations.

Problem 1

$>$ Suppose that the turbulent flux decreases linearly with height according to $\overline{\mathrm{w}^{\prime} \theta^{\prime}}=\mathrm{a}-\mathrm{bz}$, where $\mathrm{a}=0.3\left(\mathrm{~K} \mathrm{~m} \mathrm{~s}^{-1}\right)$ and $b=3 \times 10^{-4}\left(\mathrm{~K} \mathrm{~s}^{-1}\right)$.
$>$ If the initial potential temperature profile is an arbitrary shape, then what will be the shape of the final profile one hour later? Neglect subsidence, radiation, latent heating, and assume horizontal homogeneity.
> Solution: Neglecting subsidence, radiation, latent heating leaves:

$$
\frac{\partial \bar{\theta}}{\partial \mathrm{t}}+\overline{\mathrm{u}} \frac{\partial \bar{\theta}}{\partial \mathrm{x}}+\overline{\mathrm{v}} \frac{\partial \bar{\theta}}{\partial \mathrm{y}}=-\frac{\partial \overline{\left(\mathrm{u}^{\prime} \theta^{\prime}\right)}}{\partial \mathrm{x}}-\frac{\partial \overline{\left(\mathrm{v}^{\prime} \theta^{\prime}\right)}}{\partial \mathrm{y}}-\frac{\partial \overline{\left(\mathrm{w}^{\prime} \theta^{\prime}\right)}}{\partial \mathrm{z}}
$$

> Assuming horizontal homogeneity gives:

$$
\frac{\partial \bar{\theta}}{\partial \mathrm{t}}=-\frac{\partial \overline{\left(\mathrm{w}^{\prime} \theta^{\prime}\right)}}{\partial \mathrm{z}}
$$

$>$ Substituting the expression for $\overline{w^{\prime} \theta}$ gives $\partial \theta / \partial \mathrm{z}=\mathrm{b}$.
$>$ This is independent of z, so that air at each height in the sounding warms at the same rate. Integrating gives:

$$
\bar{\theta}(\mathrm{t})=\bar{\theta}\left(\mathrm{t}_{0}\right)+\mathrm{b}\left(\mathrm{t}-\mathrm{t}_{0}\right)
$$

In one hour the warming is $3 \times 10^{-4}(\mathrm{~K} / \mathrm{s}) \times 3600(\mathrm{~s})=1.08 \mathrm{~K}$.

Problem 2

If a horizontal wind of $10 \mathrm{~m} \mathrm{~s}^{-1}$ is advecting drier air into a region where the horizontal moisture gradient is 5 g water per kg of air per 100 km , then what vertical gradient of turbulent moisture flux in the BL is required to maintain a steady-state profile of specific humidity?
$>$ Assume all the water is in vapour form, and that there is no body source of moisture. Be sure to state any additional assumptions you make.
$>$ Solution: Steady-state $\Rightarrow \partial() / \partial \mathrm{t}=0 \Rightarrow$

$$
\overline{\mathrm{u}} \frac{\partial \overline{\mathrm{q}}}{\partial \mathrm{x}}+\overline{\mathrm{w}} \frac{\partial \overline{\mathrm{q}}}{\partial \mathrm{z}}=-\frac{\partial \overline{\left(\mathrm{u}^{\prime} \mathrm{q}^{\prime}\right)}}{\partial \mathrm{x}}-\frac{\partial \overline{\left(\mathrm{v}^{\prime} \mathrm{q}^{\prime}\right)}}{\partial \mathrm{y}}-\frac{\partial \overline{\left(\mathrm{w}^{\prime} \mathrm{q}^{\prime}\right)}}{\partial \mathrm{z}}
$$

Solution

$>$ No information was given about subsidence, or about horizontal flux gradients; therefore let's assume that they are zero for simplicity \Rightarrow
$\overline{\mathrm{u}} \frac{\partial \overline{\mathrm{q}}}{\partial \mathrm{x}}=-\frac{\partial \overline{\left(\mathrm{w}^{\prime} \mathrm{q}^{\prime}\right)}}{\partial \mathrm{z}}$
$\Rightarrow 10\left(\mathrm{~ms}^{-1}\right) \times 5 \times 10^{-5}\left(\mathrm{~g} \mathrm{~kg}^{-1} \mathrm{~m}^{-1}\right)=-\frac{\partial \overline{\left(\mathrm{w}^{\prime} \mathrm{q}^{\prime}\right)}}{\partial \mathrm{z}}$
Thus $\quad \frac{\partial \overline{\left(\mathrm{w}^{\prime} \mathrm{q}^{\prime}\right)}}{\partial \mathrm{z}}=-5 \times 10^{-4}\left(\mathrm{~g} \mathrm{~kg}^{-1} \mathrm{~s}^{-1}\right)$
$>$ A gradient of this magnitude corresponds to a $0.5\left(\mathrm{~g} \mathrm{~kg}^{-1}\right.$ $\mathrm{m} \mathrm{s}^{-1}$) decrease of $\mathrm{w}^{\prime} \mathrm{q}^{1}$ over a vertical distance of 1 km .

Note a decrease of flux with height \Rightarrow a time increase of \bar{q}.

Problem 3

Assume a turbulent BL at a latitude of $44^{\circ} \mathrm{N}$, where the mean wind is $2 \mathrm{~m} \mathrm{~s}^{-1}$ slower than geostrophic (i.e. the wind is subgeostrophic). Neglect subsidence and assume horizontal homogeneity and steady state conditions.
(a) Find the Reynolds stress divergence necessary to support this velocity deficit.
(b) If the stress divergence were related to molecular viscosity instead of turbulence, what curvature in the mean wind profile would be necessary?

Solution: (a) For simplicity, pick a coordinate system aligned with the stress \Rightarrow

Solution (a)

$>$ Assuming horizontal homogeneity, steady state, and neglecting subsidence gives \Rightarrow

$$
\begin{gathered}
0=-f\left(\bar{v}_{g}-\overline{\mathrm{v}}\right)-\frac{\partial \overline{\left(\mathrm{u}^{\prime} \mathrm{w}^{\prime}\right)}}{\partial \mathrm{z}} \\
-\frac{\partial \overline{\left(\mathrm{u}^{\prime} \mathrm{w}^{\prime}\right)}}{\partial \mathrm{z}}=\mathrm{f}\left(\overline{\mathrm{v}}_{\mathrm{g}}-\overline{\mathrm{v}}\right)=10^{-4}\left(\mathrm{~s}^{-1}\right) \times 2\left(\mathrm{~ms}^{-1}\right) 5=2 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}
\end{gathered}
$$

Solution (b) The viscous stress term is expressed by $v \partial^{2} \overline{\mathbf{u}} / \partial z^{2}$.
\Rightarrow Thus $v \partial^{2} u / \partial z^{2}=2 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}$.
$>$ With $v=1.5 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \Rightarrow$

$$
\frac{\partial^{2} \bar{u}}{\partial \mathrm{z}^{2}}=13.33 \mathrm{~m}^{-1} \mathrm{~s}^{-1}
$$

Steady horizontally-homogeneous flow

Ignore temperature and moisture fluctuations

steady horizontallyhomogeneous

$$
\text { continuity } \quad \frac{\partial \overline{\mathrm{w}}}{\partial \mathrm{z}}=0
$$

Steady horizontally-homogeneous flow

$$
\begin{aligned}
& 0=-f\left(\bar{v}_{g}-\bar{v}\right)-\frac{\overline{\partial\left(u^{\prime} w^{\prime}\right)}}{\partial z} \\
& 0=+f\left(\bar{u}_{g}-\bar{u}\right)-\frac{\overline{\partial\left(v^{\prime} w^{\prime}\right)}}{\partial z} \\
& \frac{\partial \bar{w}}{\partial \mathbf{z}}=0 \\
& \text { Balance of forces } \\
& \begin{array}{l}
\text { NH } \\
\mathrm{z}>\mathrm{h}
\end{array} \xlongequal{\substack{ \\
\mathbf{F}_{2} \\
\mathbf{F}_{1} \\
\mathbf{F}_{2}=\mathrm{f}(\overline{\mathrm{v}},-\overline{\mathrm{u}})}} \begin{array}{c}
\overline{\mathbf{u}}_{\mathrm{g}}
\end{array} \\
& z<h \underbrace{\mathrm{~F}_{3}}_{F_{2}}
\end{aligned}
$$

