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Some mathematical tools:  Statistics

Turbulence is an intrinsic feature of the atmospheric BL 
that must be quantified in order to study it.

The randomness of turbulence precludes a deterministic 
approach and we are forced to use statistics, where we are 
limited to average or expected measures of turbulence.

The procedure involves separating the turbulent from the 
nonturbulent part of the flow as described in this section.

Trace of wind speed observed in the early afternoon
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Eddy sizes

There appears to be a wide variety of time-scales of wind 
variation superimposed on top of each other in the wind 
trace.

If we look closely we see that the time period between each 
little peak in wind speed is about a minute.

The larger peaks seem to happen about every 5 min and 
there are other variations that indicate a 10 min time period.

The smallest detectable variations are about 10 sec long.

If each time-scale is associated with a different size 
turbulent eddy, we can conclude (using Taylor’s hypothesis)
that we are seeing eddies ranging in size from about 50 m to 
about 3000 m, evidence of the spectrum of turbulence.

The turbulence spectrum

The turbulence spectrum is analogous to the spectrum of 
colours in a rainbow.

White light consists of many colours (i.e. many wavelengths 
or frequencies) superimposed on one another.

Raindrops act like a prism that separates the colours.

We could measure the intensity of each colour to learn the 
magnitude of its contribution to the original light beam.

We can perform a similar analysis on a turbulence signal 
using mathematical rather than physical devices (i.e. a 
prism) to learn about the contribution of each different eddy 
size to the total turbulence kinetic energy.



Spectrum of near surface wind speed

Schematic spectrum of wind speed near the ground.
N

Energy cascade

The largest eddies in this range are 
usually the most intense.

The smaller, high frequency, eddies 
are very weak.

Large-eddy motions can create 
eddy-size wind-shear regions, which 
can generate smaller eddies.

Such a net transfer of turbulence 
energy from the larger to the 
smaller scales is known as the 
energy cascade.

At the smallest eddy sizes, the cascade of energy is dissipated 
into heat by molecular viscosity.



The flavour of the energy cascade is captured by 
Lewis Richardson’s poem of 1922:

Big whirls have little whirls,
Which feed on their velocity;
And little whirls have lesser whirls,
And so on to viscosity.

The spectral gap

There appears to be a distinct lack of wind-speed variation 
in the wind trace having time periods of about 30 min to 1 h. 
We already noted the slow variation of the mean wind speed 
from 6 to 5 m s−1.

The lack of variation at intermediate time or space scales is 
called the spectral gap.



The spectral gap

The spectral gap appears as the large valley separating the 
microscale from the synoptic scale peaks.

mean flow  --------→←--------- turbulence

For some flows there may not be a spectral gap.

For example, larger cumulus clouds act like large eddies 
with timescales on the order of an hour. Thus a spectrum of 
wind speed made in the cloud layer might not exhibit a vivid 
separation of scales.

Most analyses of turbulence rely on the separation of scales 
to simplify the problem; hence cloud-filled flow regimes 
might be difficult to properly describe.

Many NWP models use grid spacings or wavelength cutoffs 
that fall within the spectral gap. This means that the larger-
scale motions can be explicitly resolved and deterministically 
forecast.

The smaller-scale motions, namely turbulence, are not 
modelled directly: they have to be parameterized.



Mean and turbulent parts of the flow

There is a very easy way to isolate the large-scale variations 
from the turbulent ones: by averaging the wind speed 
measurements over a period of 30 min to one hour, we can 
eliminate or average out the positive and negative deviations 
of the turbulent velocities about the mean.

Let
u U u′= +

instantaneous wind     mean wind      turbulent part

The existence of a spectral gap allows us to partition the 
flow field in this manner.

instantaneous wind turbulent part

Detailed view of the wind speed record shown earlier. u' is the gust or 
deviation of the actual instantaneous wind, u, from the local mean,  u.

mean wind



Some basic statistical methods

Three types of mean: time average, space average, ensemble 
average.

The time average, applies at one specific point in space 
and consists of a sum or integral over a time period T.
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Let A = A(t,s), t time, s space. Then:

where t = iΔt, for the discrete case.

Δt = T/N, where N is the number of data points.

The space average, which applies at some instant of time is 
given by a sum or integral over a spatial domain S.
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where, for the discrete case, s = jΔs, and Δs = S/N.

An ensemble average, consists of the sum over N identical 
experiments, or realizations.
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For laboratory experiments, the ensemble average is the 
most desirable. It allows us to reduce random experimental 
errors by repeating the basic experiment.

Unlike laboratory experiments, we have little control over 
the atmosphere so we are rarely able to observe 
reproducible weather events. Therefore we are unable to 
use the ensemble average.

Spatial averages are possible by deploying an array of 
meteorological sensors covering a line, area, or volume.

If the turbulence is homogenous (statistically the same at 
every point in space) then each of the sensors in the array 
will be measuring the same phenomenon, making a spatial 
average meaningful.

The real atmosphere is only horizontally homogeneous 
in limited locations, meaning that most spatial means 
are averaged over a variety of different phenomena.

By proper choice of sensor-array domain size as well as 
intra-array spacing, one can sometimes isolate scales of 
phenomena for study, while averaging out in the other 
scales.



Laboratory generation of homogeneous turbulence behind a grid. Using a 
finer resolution than in the figure, the merging unstable wakes quickly 

form a homogeneous field. As it decays downstream, it provides a useful 
approximation to homogeneous turbulence.

Types of averaging

Volume averaging is virtually impossible using direct sensors 
such as thermometers because of the difficulty of deploying 
these sensors at all locations and altitudes throughout the BL.

Remote sensors such as radars, lidars and sodars can scan 
volumes of the atmosphere, making volume averages of 
selected variables possible.

Area averaging in the surface layer is frequently performed 
within small domains by deploying an array of small 
instrumented masts or instrument shelters on the ground.

Line averages are similarly performed by erecting sensors 
along a road, for example.



Types of averaging

Sensors mounted on a moving platform, such as a truck or 
an aircraft, can provide quasi-line averages.

These are not true line (spatial) averages because the 
turbulence state of the flow may change during the time it 
takes the platform to move along the desired path.

Most measurement paths are designed as a compromise 
between long length (to increase the statistical significance 
by observing a larger number of data points), and short 
time (because of the diurnal change that occur in the mean 
and turbulent state over most land surfaces.)

Time averages

Time averages are frequently used, and are computed from 
sensors mounted on a single, fixed-location platform such as 
mast or tower.

The relative ease of making observations at a fixed point has 
meant that time averaging has been the most popular in the 
lower BL.

Some vertically-looking remote sensors also use this method 
to observe the middle and top of the BL.

For turbulence that is both homogeneous and stationary 
(statistically not changing over time), the time, space and 
ensemble averages should all be equal. This is called the 
ergodic condition, which is often assumed to make the 
turbulence problem more tractable.



The rules of averaging
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Average of an average

Also
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Differentiation
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Multiply both sides by 1/S, where S = S2 – S1 gives:

SSd( A) A
dt t

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

This special case is not always valid for variable depth BLs.

Differentiation

Leibnitz’ theorem
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If s1 and s2 are independent of time



Example

Suppose we wish to find the time rate-of-change of a BL-
averaged mixing ratio,    , where the BL average is defined by 
integrating over the depth of the BL; i.e. from z = 0 to z = zi.

Since zi varies with time, we can use the full Leibnitz’ theorem 
to give:

where zi
+ represents a location just above the top of the BL.

S

S i
i i i

dzd r[z r ] z r(t, z )
dt t dt

+∂⎡ ⎤= +⎢ ⎥∂⎣ ⎦

r

The spectral gap

See figure

Let us re-examine the spectral gap.
With an averaging time of 30 min to 1 hour, turbulent 
fluctuations will be eliminated, leaving the longer-period time 
variations.
We saw that the 30 min mean wind speed changes over a period 
of a few hours. Thus we can take the 30 min average of the time 
derivative of variable A to find out how A varies over longer 
periods: t tA d A

t dt
∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

In other words, the average of the local slopes (slope = rate of
change with time) equals the slope of the averages.



Schematic comparison of the slope of average values versus the average of 
local slopes. Averaging period, T, is indicated by the width of the horizontal 
arrows.

Reynolds averaging

≠ 0

A A a A a A a= + = + = +

A A a, B B b= + = +

Apply rules to mean and fluctuation

a 0=

AB (A a)(B b)

AB aB Ab ab

AB 0 0 ab AB ab

= + +

= + + +

= + + + = +



Variance

N 1
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A i

i 0
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One statistical measure of the dispersion of data about the 
mean is the variance, σ2, defined by

Called the biased variance.  It is a good measure of the 
dispersion of a sample of BL observations, but not the best 
measure of the dispersion of the whole population of possible 
observations. A better estimate of the variance (an unbiased 
variance) of the population, given a sample of data, is
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=

σ = −
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For 1 << N, there is little difference in these two estimates.

Standard deviation

N 1
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=
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The turbulent part of a turbulence variable is: a' = A – A.

Thus turbulence quantities such as

2 2 2 2 2 2u , v , w , , r , q′ ′ ′ ′ ′ ′θ
can be interpreted as variances.

The standard deviation is defined as the square root of the 
variance:

2
A a′σ =



The standard deviation always has the same dimensions as 
the original variable. In this figure, for example, we might 
guess the standard deviation to be about 0.5-0.6 m s−1 at 
noon, dropping to about 0.3 m s−1 by 1400 local time.

Relationship between the standard deviation and turbulence 
variations:

• solid line connects the data points
• heavy dashed line is the average
• dotted lines are drawn one standard deviation above and 
below the mean

N



Turbulence intensity

Near the ground the turbulence intensity might be expected to 
increase as the mean wind speed U increases.

A dimensionless measure of the turbulence intensity, I, is often 
defined as

I = σM/U

For mechanically generated turbulence, one might expect σM
to be a simple function of U.

Recall that I < 0.5 is required for Taylor’s hypothesis to be 
valid.

Covariance and correlation
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Covariance between two variables

Using Reynolds’ averaging methods:
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Thus, the nonlinear turbulence products introduced earlier 
have the same meaning as covariances.



Interpretation of covariances

The covariance indicates the degree of common relationship 
between the two variables, A and B.

Example: A = air temperature T,   B = vertical velocity w.

On a hot summer day over land, we might expect the 
warmer air to rise (T' and w' both > 0), and the cooler than 
average air to sink (T' and w' both < 0).

⇒ w' T' > 0 on average, indicating that w and T vary 
together.

The covariance               is indeed found to be positive 
throughout the bottom 80% of the convective mixed layer.

w T′ ′

Normalized covariance

Sometimes one is interested in a normalized covariance.

Such a relationship is defined as the linear correlation 
coefficient:

AB
A B

abr =
σ σ

This variable ranges between –1 and +1 by definition.

Two variables that are perfectly correlated (i.e. vary 
together) yield r = 1. Two variables that are perfectly 
negatively correlated (i.e. vary oppositely) yield r = −1. 

Variables with no net variation together yield r = 0.



Example

Typical correlation coefficient profiles in the 
convective mixed layer.

Turbulence kinetic energy

The usual definition of kinetic energy (KE) is 0.5mU2.

For a fluid we often talk about KE/unit mass = 0.5U2.

We can partition into mean KE + turbulence KE:
2 2 21

2
2 2 21

2

MKE / m (u v w )

TKE / m (u v w )

= + +

′ ′ ′= + +

Instantaneous KE/unit mass

We can expect rapid variations in TKE as we measure faster 
and slower gusts ⇒ define a mean turbulent KE/unit mass:

2 2 21
2TKE / m (u v w )′ ′ ′= + +

Note the appearance of the variance!



Diurnal cycle of                                                measured by 
aircraft below 300 m AGL over Tennessee, August 1978

A typical daytime variation of TKE in convective conditions

2 2 21
2TKE / m (u v w )′ ′ ′= + +

Examples of TKE/m for various BLs. (a) Daytime convective mixed layer 
with mostly clear skies and light winds. (b) Near neutral day with strong 
winds (10 – 15 m s−1 near the surface) and broken clouds. (c) nocturnal 
stable BL at 1000 local time.

N



Kinematic flux

Flux is the transfer of a quantity per unit area per unit time.

Examples

Sometimes the moisture flux is rewritten as a latent heat 
flux:

E vQ L R=

Latent heat of 
vaporization

We rarely measure quantities like momentum directly. 
Instead we measure quantities like temperature or wind 
speed.

⇒ we define kinematic fluxes by dividing by the density of 
moist air, ρair. In the case of sensible heat flux we divide also 
by the specific heat at constant pressure, cp.

ρcp = 1.216 × 103 W m−3 / (K m s−1) allows us to convert easily 
between kinematic heat fluxes and normal heat fluxes.

N



Most of the fluxes can be split into three components: a 
vertical component and two horizontal components as in (a):

If a greater flux enters a volume than leaves it, there must 
be an increase of that quantity within the volume as in (b):

We can picture these fluxes as vectors

In the case of momentum, the flux in one direction might be 
the flux of u, v or w  ⇒ there are nine components of this flux. 
Each of the three momentum components can pass through a 
plane normal to any of the three Cartesian directions.

The momentum flux is a (second-order) tensor



We can split the fluxes into mean and turbulent parts.

Some of the fluxes associated with the mean wind (i.e. 
advection) are:

• vertical kinematic advective heat flux

• vertical kinematic advective moisture flux

• kinematic advective heat flux in the x-direction 

• vertical kinematic advective flux of u-momentum

w
wq
u
wu

θ

θ

also the kinematic flux of w-momentum in the x-direction 

Fluxes in other directions can be constructed in a similar way.

These fluxes have the proper dimensions for kinematic fluxes 
and make physical sense: for example, a larger vertical  
velocity or a larger potential temperature both create a larger 
vertical heat flux, as would be expected intuitively.

Fluid motion can transport quantities, resulting in fluxes.

Turbulence involves motion also.

Thus we expect that turbulence transports quantities as well.

Turbulent transport

A term like           looks similar to the kinematic terms, except 
that the perturbation values are used instead of mean values 
of w and θ.

If turbulence is completely random, then a positive w'θ' at one 
instant might cancel a negative w'θ' at some later instant, 
resulting in a near zero value for the average turbulent heat 
flux.

Concepts

w′ ′θ



However, there are situations where the average turbulent 
flux         might be significantly different from zero.w′ ′θ

θ θ

w 0′ < w 0′ > w 0′ <w 0′ >

0′θ <

0′θ >
Net upward 

heat flux

z

0
θ

Eddy mixes some air 
down and some air up

0′θ <

0′θ >

Net downward 
heat flux

z

0
θ

Note that turbulence can transport heat              although 
there is no mass transport            .

These form of these fluxes highlights the statistical nature of 
turbulence: a flux such as              is just a statistical 
covariance.

Turbulent transport

w 0′ ′θ ≠
w 0′ =

w 0′ ′θ ≠

• vertical kinematic eddy heat flux

• vertical kinematic eddy moisture flux

• kinematic eddy heat flux in the x-direction 

• vertical kinematic eddy flux of u-momentum

w

w q

u

w u

′ ′θ

′ ′

′ ′θ

′ ′

also the kinematic eddy flux of w-momentum in the x-direction 



It is important to recognize that            throughout most of 
the BL.

Thus the vertical advective fluxes are usually negligible 
compared with the vertical turbulent fluxes.

No such statement can be made about the horizontal fluxes.

Turbulence in the real atmosphere usually consists of many 
large positive and negative values of the instantaneous 
fluxes, such as the heat flux w'θ'.

Only after averaging does a smaller, but significant, net flux
become apparent.

Turbulent transport

w′ ′θ

w 0′ =

Example

Instantaneous kinematic surface heat flux w'θ' trace measured 
by aircraft. Dashed line is the average heat flux          .w′ ′θ

Time (s)

w
'θ

'
(K

 m
s-1

)



Stress is the force tending to produce deformation in a body.

It is measured as a force per unit area.

There are three types of stress that we have to consider:

• pressure

• Reynolds stress, and

• viscous shear stress.           

Stress

Pressure is a familiar concept: it is isotropic (i.e. independent 
of direction) and therefore a scalar quantity.           

Pressure

Effect on a cube

Initial state

Pressure

N



Reynolds stress exists only when the fluid is in turbulent (or 
wavy) motion.           

Reynolds stress

Effect on a cube
Reynolds stress

N

u w′ ′

w u′ ′

| u w | | w u |′ ′ ′ ′=

Viscous shear stress exists when there are shearing motions in 
the fluid. The motion can be laminar or turbulent.          

Viscous stress

Effect on a cubeViscous shear stress

In this case, molecular motions rather than turbulent eddies 
are responsible for the transport of momentum.          



For a fluid for the viscous stress is linearly dependent on the 
shear (deformation) is called a Newtonian fluid. The stress, 
τij,  is given by:          

Viscous stress

ji k2
ij B ij3

j i k

uu u( )
x x x

⎛ ⎞∂∂ ∂
τ = μ + + μ − μ δ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

Dynamic viscosity 
coefficient

Bulk viscosity 
coefficient

μB is near zero for most gases

Interpret τij as the force per unit area in the xi-direction 
acting on the face that is normal to the xj-direction.

The viscous stress can be put into kinematic form: the 
kinematic viscosity is ν = μ/ρ.

The standard atmosphere sea-level value for air is:           
ν = 1.4607 × 10−5 m2 s−1.

For a mean wind shear of du/dz = 0.5 s−1 (typical for 
atmospheric surface layers), the resulting viscous stress is 
τ/ρ = 7.304 × 10−6 m2 s−2.

Viscous stress

This value is so much smaller than the Reynolds stresses in 
the BL that the viscous stress is usually neglected in mean 
wind forecasts. However, turbulent eddies can have much 
larger values of shear in localized eddy-size regions. Thus 
we cannot ignore viscosity when forecasting turbulence.



During situations where turbulence is generated or modulated 
by wind shear near the ground, the magnitude of the surface 
Reynolds stress proves to be an important scaling variable.

The total vertical flux of horizontal momentum near the 
surface is given by:

Friction velocity

xz s yz su w and v w′ ′ ′ ′τ = −ρ τ = −ρ

2 2
s xz yz| |= τ + ττ

Define a friction velocity, u*, by:

2 2 2
* s su | | / (u w ) (v w )′ ′ ′ ′= ρ = +τ

For the special case where the coordinate system is aligned so 
that the x-axis points in the direction of the surface stress, we 
can write the friction velocity as

Friction velocity and other surface scales

2
* su | u w | | | /′ ′= = ρsτ

Similarly we can define a surface layer temperature (θ*
SL) and 

specific humidity (q*
SL) scales defined by:

SL s
*

*

SL s
*

*

w |
u

w q |q
u

′ ′− θ
θ =

′ ′−
=



Diurnal variation of friction velocity

QH

u*

Example of diurnal variation of kinematic heat flux and 
friction velocity.

Some mathematical tools:  Statistics

The turbulence spectrum

Energy cascade, The spectral gap

Mean and turbulent parts of the flow

Some basic statistical methods

Types of averaging

The rules of averaging

Variance, covariance and correlation

Turbulence intensity, turbulent transport

Reynolds stress, viscous stress, friction velocity

Topics covered so far



End


