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Abstract
An idealized, three-dimensional, 1 km horizontal grid spacing numerical simu-
lation of a rapidly intensifying tropical cyclone is used to extend basic knowledge
on the role of mean and eddy momentum transfer on the dynamics of the
intensification process. Examination of terms in the tangential and radial veloc-
ity tendency equations provides an improved quantitative understanding of
the dynamics of the spin-up process within the inner-core boundary layer and
eyewall regions of the system-scale vortex. Unbalanced and non-axisymmetric
processes are prominent features of the rapid spin-up process. In particular,
the wind asymmetries, associated in part with the asymmetric deep convection,
make a substantive contribution (∼30%) to the maximum wind speed inside the
radius of this maximum. The analysis provides a novel explanation for inflow jets
sandwiching the upper-tropospheric outflow layer which are frequently found
in numerical model simulations. In addition, it provides an opportunity to assess
the applicability of generalized Ekman balance during rapid vortex spin-up. The
maximum tangential wind occurs within and near the top of the frictional inflow
layer and as much as 10 km inside the maximum gradient wind. Spin-up in the
friction layer is accompanied by supergradient winds that exceed the gradient
wind by up to 20%. Overall, the results affirm prior work pointing to significant
limitations of a purely axisymmetric balance description, for example, gradient
balance/Ekman balance, when applied to a rapidly intensifying tropical cyclone.
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1 INTRODUCTION

The problem of understanding tropical cyclone intensity
change has been at the cutting edge of meteorologi-
cal research in recent years, especially in the context
of the rapid intensification or rapid decay of storms
threatening landfall in populated coastal communities.

This is because of the continued challenges in forecasting
intensity change, a phenomenon which involves processes
with scales spanning many orders of magnitude.

Most of the available paradigms for understanding
tropical cyclone intensification are based, for simplicity,
on axisymmetric models and most have considered the
prototype problem, which addresses the evolution of an
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initially cloud-free, warm-cored, symmetric vortex in gra-
dient wind and hydrostatic balance in a quiescent envi-
ronment on an f -plane. However, such models have been
shown to have inherent limitations for understanding the
intensification process because they represent convection
in the form of axisymmetric rings (Persing et al., 2013).

As shown in many previous studies, for much of the
intensification phase of a simulated storm, the flow is
markedly asymmetric (Montgomery et al., 2006; Nguyen
et al., 2008; Fang and Zhang 2011; Persing et al., 2013; Kil-
roy et al., 2016, 2017, 2018). This is because deep convective
structures, which are a key component of the intensifica-
tion process, are intrinsically three-dimensional and their
locations within the vortex have a stochastic element. In
fact, the azimuthally averaged fields of, for example, ver-
tical velocity, vertical vorticity, diabatic heating rate and
regions of saturation are dominated by such structures.
Accordingly, eddy processes and the accompanying asym-
metric vortex waves must be an integral part of a complete
dynamical explanation of the vortex behaviour.

For the foregoing reasons, a paradigm for trop-
ical cyclone intensification that incorporates the
three-dimensional nature of deep convection has been
developed over the last decade or more, the so-called
rotating-convection paradigm. The rotating-convection
paradigm is reviewed by Smith and Montgomery (2016)
and Montgomery and Smith (2014, 2017) in the context
of the prototype problem. While the main focus of the
rotating-convection paradigm has been on the dynam-
ical mechanisms involved in the spin-up process, the
paradigm acknowledges the need for a modest elevation
of surface enthalpy fluxes to sustain the deep convection
required for vortex spin-up. On the dynamical side, it has
been recognized for some time that the intensification of a
realistic tropical cyclone involves marked deviations from
classical axisymmetric balance dynamics, which assumes
a slow evolution of an axisymmetric vortex in strict gra-
dient and hydrostatic balance subject to forcing by heat
release and tangential momentum sources or sinks. Such
deviations were highlighted by a high-resolution (at that
time, horizontal grid spacing 6 km) simulation of hurri-
cane Andrew (1992) by Zhang et al. (2001). These authors
set out, inter alia, to answer three main questions (p. 93):
“To what extent is the gradient wind balance model a good
approximation to the local and azimuthally averaged tan-
gential winds in an intensifying hurricane? What causes
the gradient wind imbalance locally and in an azimuthally
averaged state? What is the intensifying mechanism of
tangential winds in the eyewall?”

Their answer to the first question was yes, to a degree
within approximately 10%. However, supergradient winds
were found to be an important feature of the corner flow

region of the simulated storm and also in the eyewall
where the air motion has an outward component. Zhang
et al. (2011, p. 106) explained the development of the super-
gradient wind and spin-up of the eyewall as follows: “As
the storm deepens, the cross-isobaric radial inflow in the
marine boundary layer transports more absolute angular
momentum from the hurricane environment into the eye-
wall region than frictional dissipation. The major radial
inflow decelerates as it approaches the radius of max-
imum wind where the centrifugal force exceeds radial
pressure gradient force. … Then, all the inflow air mass
must ascend in the eyewall, transporting absolute angu-
lar momentum upward to spin up the tangential flow
above. This upward transport of absolute angular momen-
tum could increase significantly the local centrifugal force,
thereby causing the pronounced supergradient accelera-
tion and the development of radial outflow in the eyewall.
In the present case, the supergradient acceleration occurs
at the same order of magnitude as radial pressure gradient
force in the vicinity of V max (the maximum wind speed, our
insertion), and accounts for the generation of an outflow
jet near the top of the marine boundary layer. However,
the local changes in tangential winds are always small due
to the intense advection in the eyewall. It is evident that
(a) the intensity of the radial outflow depends critically on
the upward transport of absolute angular momentum, and
(b) the spin-down of the eyewall by radial outflow must
be overcompensated by the upward transport of absolute
angular momentum if the storm is to deepen. Of course,
the underlying ocean (and latent heat release in the eye-
wall) is the fundamental energy source for the deepening
of tropical cyclones.”

According to the above view, the evaporation of water
from the underlying ocean supports a nonlinear spin-up
process wherein the development of supergradient winds
in the boundary layer of the vortex, in combination with
the upward transport of absolute angular momentum from
the boundary layer, play an important role in the inten-
sification of the storm’s eyewall cloud. Similar findings
were reported in idealized, but finer resolution numeri-
cal simulations by Smith et al. (2009) and Persing et al.
(2013). In particular, Persing et al. showed that the spin-up
of the eyewall in the lower troposphere was accomplished
primarily by resolved vertical eddy momentum fluxes in
their three-dimensional configuration (Persing et al., 2013,
their figures 10d,g,h). The nonlinear dynamics of the vor-
tex boundary layer and its contribution to spinning up the
eyewall was discussed further from the perspective of the
newly developed rotating-convection paradigm by Mont-
gomery and Smith (2017). The upshot of the foregoing
findings is that, if unbalanced and eddy processes play
a marked role in spinning up a tropical cyclone eyewall,
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a more complete understanding of the dynamics of the
tropical cyclone boundary layer and interior is certainly
warranted.

The previous work of Persing et al. used a 3 km hor-
izontal grid spacing, arguably only marginally adequate
for representing deep convective processes, but a ques-
tion remains as to whether the convective eddy momen-
tum fluxes were under-represented by this resolution. To
address this question, we employ here a horizontal grid
spacing of 1 km so as to better represent the convective
eddy momentum transports. Although the Persing et al.
study did calculate and interpret the contribution from
the convective vertical transport of radial momentum, it
stopped short of a complete analysis of the radial momen-
tum equation. One application of such an analysis would
be an assessment of the integrity of a balance representa-
tion of the intensification process. We address this issue
here by employing an azimuthally averaged analysis of the
radial momentum equation.

A recent articulation of tropical cyclone intensifica-
tion by Emanuel (2018, p. 15.15) highlights the critical
role of Ekman layer dynamics in the frontogenesis of
the developing eyewall (in terms of equivalent potential
temperature): “... the boundary layer near the radius of
maximum winds is strongly frontogenetical, with conver-
gence of the Ekman boundary layer flow guaranteed by
the large radially inward increase of inertial stability as the
vorticity rapidly increases inward.” Given the prominence
ascribed to the Ekman layer, which is only valid when
the radial and vertical advection of radial momentum are
negligible, a natural question arises concerning the valid-
ity of the Ekman model in a rapidly intensifying tropical
cyclone. Our analysis of the radial momentum equation
permits an investigation of this question, and related ques-
tions concerning the upper-level outflow and inflow-layer
dynamics.

In the present study we use an idealized modeling
configuration to investigate further the salient dynamical
features of the boundary layer and vortex interior dur-
ing the rapid intensification of the vortex. We examine
also hitherto unexplored features of the flow in the upper
troposphere. In particular, we aim to

a. quantify the relative contributions of the mean and
eddy covariance terms to the tangential and radial
accelerations in the vortex core region (including the
departure from gradient wind balance), extending the
work of Zhang et al. (2001) and Persing et al. (2013);

b. assess the validity of generalized Ekman balance
(Abarca et al., 2015; Smith and Montgomery, 2020) in
the inner-core boundary layer during rapid intensifica-
tion; and

c. investigate and offer an explanation for inflow jets sand-
wiching the upper-tropospheric outflow layer, struc-
tures which are frequently found in numerical model
simulations (e.g., figures 15a, 17a of Persing et al., 2013;
figure 2 of Ohno and Satoh, 2015; figure 2 of Kilroy
et al., 2018; figure 2b,d of Smith et al., 2018). These
inflow structures develop as part of the intensification
process and, as they contribute to the spin-up of tan-
gential winds at upper levels by carrying absolute angu-
lar momentum inwards, it would seem appropriate to
investigate their origin. As far as we are aware, there has
been no satisfactory explanation for these upper-level
inflow jets.

The remaining paper is organized as follows. The
numerical model used and an overview of the numerical
simulation are presented in Section 2. Section 3 summa-
rizes certain aspects of the simulated vortex evolution,
including a quantitative assessment of the wind asym-
metries in relation to the maximum wind speed in the
boundary layer. Section 4 quantifies and interprets the
role of mean and eddy processes mentioned above on
the azimuthal-mean tangential and radial wind tendencies
during vortex spin-up. This analysis includes an examina-
tion of the development of upper-tropospheric inflow jets
and generalized Ekman balance. A summary and conclu-
sions are presented in Section 5.

2 THE NUMERICAL MODEL

The numerical model used for the study is version 16 of
the three-dimensional, non-hydrostatic cloud model CM1
(Bryan and Fritsch, 2002). In brief, the model has predic-
tion equations for the three components of the velocity
vector, specific humidity, suspended liquid, perturbation
Exner function, and perturbation density potential tem-
perature, where perturbation quantities are defined rela-
tive to a prescribed hydrostatic basic state. For simplicity,
the Kessler warm rain scheme is used in which rain has
a fixed fall speed of 7 m⋅s−1 and ice microphysical pro-
cesses and dissipative heating are not included. While
it is certainly true that ice processes modify the verti-
cal profile of latent heat release, as well as the strength
of downdraughts, which, in turn, modify the kinematic
and thermodynamic structure of the system scale vor-
tex (Penny et al., 2016; Kilroy et al., 2018; and references
therein), we believe it is essential to have a zero-order
model of the basic intensification process without ice as
a baseline for understanding. The calculations here are
carried out for a period of 5 days with data output every
15 min.
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A latitude of 20◦N and a constant sea surface tem-
perature of 27 ◦C are assumed. The model configuration
is similar to that described in section 2 of Črnivec et al.
(2016), except that a potentially more realistic time-scale
for Newtonian relaxation to the temperature field (10 days)
is applied here instead of the previous default CM1 value
(12 hr) (Mapes and Zuidema, 1996).1

The model domain is 3,010 × 3,010 km, with 1,040 grid
points in the zonal and meridional directions. The inner
600 × 600 km of the domain has a constant horizontal grid
spacing of 1 km, while in the outer domain the grid spacing
is stretched gradually from 1 to 10 km. There are 68 vertical
levels starting at a height of 50 m and extending upwards
to a height of 25 km. The vertical grid spacing is 50 m in the
lowest 1 km, above which it stretches smoothly to 1200 m
near the model top.

To suppress the artificial reflection of internal gravity
waves from the upper boundary, a Rayleigh damping layer
is added at heights above 20 km. The lateral boundaries are
open radiative.

The background thermodynamic state is based on
the Dunion moist tropical sounding (Dunion, 2011). This
sounding has a Convective Available Potential Energy of
2104 J⋅kg−1 and a Total Precipitable Water of 51.5 kg⋅m−2.

The values for the subgrid-scale turbulence mixing
lengths are based on the recent observational findings of
Zhang and Montgomery (2012) and Zhang et al. (2011),
respectively, and the resulting vertical and horizontal eddy
diffusivities output in prior model simulations of Pers-
ing et al. (2013). The chosen values of horizontal mixing
length lh=700 m and vertical mixing length lv=50 m are
close to the values recommended by Bryan (2012) in order
to produce realistic hurricane structure. For simplicity,
these mixing lengths are assumed constant in both space
and time.

1The differences in results between the two simulations does not
become manifest during the intensification phase, and only becomes
noticeable in the maximum tangential wind during the decay phase of
the simulated storm. For example, with a 10-day relaxation time-scale,
there is some warming of the far field environment, especially at upper
levels, after about 4–5 days of integration. This warming does not occur
with the default, smaller, time-scale. We have found in our previous
studies of real-life events in the European Centre for Medium Range
Weather Forecasts operational analyses (not shown) that the large-scale
environment surrounding tropical cyclones warms on the order of about
2–4 K over a ten-day period (as seen, for example, in averaged
temperature difference plots of tropical cyclone George (2007) and
tropical cyclone Carlos (2011)). These findings provide some evidence
that the default time-scale for relaxation in CM1 is strongly
over-relaxing to the initial sounding in the case of a mature hurricane.
In any case, with a 10-day relaxation time-scale, there is not sufficient
warming on the order of 5 days to strongly affect vortex evolution. In the
simulation presented here, the far field warms by about 1 K between
heights of 5 and 15 km over the 5-day time period integrated.

The initial vortex is axisymmetric and in thermal wind
balance. The initial tangential wind speed has a maximum
of 15 m⋅s−1 at the surface and at a radius of 100 km. The
tangential wind speed decreases sinusoidally with height,
becoming zero at a height of 20 km. Above this height, the
tangential wind is set to zero.

The balanced pressure, density and temperature fields
consistent with this prescribed tangential wind distribu-
tion are obtained using the method described by Smith
(2006). The choice of this relatively strong initial vortex
bypasses the genesis phase, which was examined in detail
by e.g. Kilroy et al. (2017) and references therein.

3 SOME ASPECTS OF VORTEX
EVOLUTION

To provide a context for the analysis of mean and eddy
effects, we summarize briefly the time evolution of the vor-
tex and then present characteristics of the low-level flow
field during the spin-up phase. In the diagnostic analyses
presented here, we use a cylindrical polar coordinate sys-
tem (r,𝜆,z), where r is the radius, 𝜆 is the azimuth and
z is the height, and corresponding velocity components
(u,v,w). The axis of coordinates is located at the surface
pressure minimum2.

3.1 Time series of vmax

Figure 1 shows a time series of the maximum
azimuthally-averaged tangential wind speed (vmax) and
maximum total wind speed (vTmax) during the 5-day inte-
gration period. Following a brief gestation period lasting
about 24 hr, the vortex begins a period of rapid intensifi-
cation (RI), lasting from about 24 to 96 hr. At this time the
vortex reaches its mature stage, with a maximum inten-
sity of about 81 m⋅s−1. The vertical lines shown in the
figure highlight times for which extensive analyses will be
presented later.

Significantly, vTmax exceeds vmax as soon as deep con-
vection forms early in the gestation period. The differ-
ence between these two quantities, which is typically up
to 10 m⋅s−1, quantifies the distinction between mean tan-
gential velocity and total wind speed, the latter of which

2The vortex centre location is obtained by finding the minimum in a
filtered surface pressure field, subject to the requirement that the vortex
does not move more than 20 km in a single output time. This
requirement prevents the centre-finding algorithm from locking on to a
localized region of strong convection. Since there is no ambient vertical
shear in the problem, it is reasonable to take the centre location to be
independent of height.
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F I G U R E 1 Time series of maximum azimuthally averaged
tangential wind speed (vmax, red curve) and maximum total wind
speed (vTmax, blue curve). The different phases of evolution
discussed in the text are identified by thin vertical lines

includes the azimuthally averaged tangential velocity and
radial inflow and wind eddies also. The heights of both vmax
and vTmax are typically below 1 km, within the frictional
boundary layer.

3.2 Low-level radial wind profiles

We examine next the low-level wind structure in the high
wind speed region of the developing vortex at selected
times. This analysis will prove useful later in our inter-
pretation of the horizontal momentum dynamics of the
inner-core vortex.

Figure 2 shows radial profiles of the azimuthally aver-
aged tangential velocity component, v, the corresponding
gradient wind3, vgr, at roughly the height of the tangen-
tial wind maximum (725 m), and the similarly averaged
radial velocity component, u, at the lowest model level
(25 m) at 36, 48 and 72 hr during the RI phase. Shown
also are the radial profiles of maximum total wind speed
vT = max (

√
u2 + v2) and maximum total eddy wind speed

vTp in the lowest 1 km at each radius. The total eddy
wind speed is defined as max (

√
u′2 + v′2), where a prime

denotes the difference between the total and azimuthally
averaged variable.

At 36 hr, v is approximately equal to vgr beyond a radius
of 45 km, but there are small amplitude fluctuations of the
difference. The maximum tangential wind is 41.3 m⋅s−1

and occurs at a radius, rvmax, of 34 km, while the maximum
gradient wind is 38.3 m⋅s−1 and occurs at a radius of 33 km.
Between radii of 15 km and 45 km, v exceeds vgr, that is, the

3The gradient wind, vg, is obtained by solving the quadratic equation
(v2

g∕r) + f vg − (1∕𝜌)𝜕p∕𝜕r = 0.

(a)

(b)

(c)

F I G U R E 2 Radial profiles of azimuthally averaged
tangential wind (labelled v) and gradient wind (vgr) at a height of
725 m at (a) 36 hr, (b) 48 hr and (c) 72 hr. Shown also are radial
profiles of azimuthally averaged radial inflow (us, where s refers to
the surface) at the lowest model level (25 m), the maximum total
wind speed (vT) and maximum total eddy wind speed (vTp, where p
refers to perturbation). The last two quantities are not spatially
averaged and can occur anywhere in the lowest 1 km

tangential wind is supergradient. At rvmax, v exceeds vgr by
9.2%, while vT exceeds v at all radii and has its maximum
at a radius outside rvmax. The near-surface radial wind has
a maximum of 15.9 m⋅s−1 at a radius of 41 km, the maxi-
mum being 38% of vmax. Notably, vTp retains a high degree
of variability out to 100 km radius, suggesting that the total
eddy wind speed remains a significant component of the
total flow throughout the inner-core region.

At 48 and 72 hr, the results are broadly similar to
the findings at 36 hr, but the velocity maxima contract
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inwards with time and amplify considerably. For example,
at 48 hr, vmax is 56.5 m⋅s−1 while the maximum gradient
wind is only 47 m⋅s−1 and the near-surface maximum
inflow is 22 m⋅s−1. At this time, rvmax is 26 km, while the
radius of the maximum gradient wind is 34 km. Further,
at rvmax, the tangential wind is supergradient by 22%.
The total wind speed vT exceeds the tangential wind v at
all radii and, at this time, has its maximum at a radius
inside rvmax

At 72 hr, vmax is 66.5 m⋅s−1 while the maximum gradi-
ent wind is only 52 m⋅s−1 and the near-surface maximum
inflow is 27.5 m⋅s−1. At this time, rvmax is 31 km (slightly
outside that at 48 hr), while the radius of the maximum
gradient wind is 37 km. Further, at rvmax, the tangential
wind is supergradient by 27.8%. Once again, vT exceeds v
at all radii and, at this time, has its maximum at a radius
inside rvmax. As at 36 and 48 hr, the difference between
vT and v and the eddy wind speed vTp profile reflect the
presence of wind speed asymmetries. The total eddy wind
speed remains a significant component of the total flow
inside rvmax. Presumably, the confinement of the maxi-
mum wind asymmetries to the region inside rvmax is a
reflection of the focussing of deep convection to the eye-
wall region of the mature vortex.

Overall, the results indicate that the radial component
of near-surface flow is a significant fraction of the tangential
wind speed and affirm the findings of Zhang et al. (2001)
that gradient-wind imbalance is an intrinsic feature of the
boundary-layer dynamics during vortex spin-up.

4 ANALYSIS OF MEAN
AND EDDY PROCESSES DURING
VORTEX INTENSIFICATION

During intensification, multiple vortical updraughts have
been shown to be a ubiquitous feature of the inner-core
circulation. These updraughts act collectively to draw air
parcels inwards in the low- to mid-troposphere. Above
the vortex boundary layer, at least, the inflow concen-
trates cyclonic vorticity. These updraughts have been
shown to contribute to the sign and structure of the
eddy momentum fluxes in the azimuthally averaged tan-
gential acceleration equation (Persing et al., 2013). The
updraughts have been shown also to excite vortex Rossby
and inertia-buoyancy waves (e.g., Chen et al., 2003; Reasor
and Montgomery, 2015), which in turn contribute to the
eddy momentum fluxes and divergence in the tangential
acceleration equation. Thus, during spin-up, a complex
turbulent system of rotating, deep moist convection and
vortex waves comprises the eddy field of the cloudy
vortex core.

A more complete understanding of the complex eddy
dynamics is certainly warranted and here we take a next
step in quantifying the net signatures of the updraughts
and related vortex waves in the eddy terms and cor-
responding mean terms in the horizontal momentum
equations during vortex spin-up. In particular, we extend
the Persing et al. (2013) analysis of, inter alia, the mean and
eddy contributions to the azimuthal-mean tangential wind
tendency equation. Here we employ a higher horizontal
resolution (1 km grid spacing in the inner-vortex region)
and examine also the eddy and mean contributions to the
corresponding radial velocity tendency equation during
spin-up. The latter analysis enables one to quantify in a
dynamically consistent framework:

a. the degree of gradient wind imbalance in relation to
other terms in the radial acceleration equation;

b. the role of unbalanced flow processes in the spin-up of
the inner-core boundary layer, the eyewall updraught
complex and upper-tropospheric inflow layers; and

c. the departure from generalized Ekman balance (Abarca
et al., 2015; Smith and Montgomery, 2020).

4.1 Azimuthal mean tendency
equations for horizontal velocity

In a cylindrical polar coordinate system defined relative
to an approximate invariant centre of circulation, the tan-
gential and radial momentum equations may be written,
respectively, as

𝜕v
𝜕t

+ u𝜕v
𝜕r

+ v
r
𝜕v
𝜕𝜆

+ w𝜕v
𝜕z

+
(

f + v
r

)
u = − 1

𝜌r
𝜕p
𝜕𝜆

+ F𝜆,

(1)
and

𝜕u
𝜕t

+ u𝜕u
𝜕r

+ v
r
𝜕u
𝜕𝜆

+ w𝜕u
𝜕z

− v2

r
− fv = −1

𝜌

𝜕p
𝜕r

+ Fr, (2)

where (u,v,w) is the three-dimensional velocity vector (u
radial, v tangential and w vertical velocities), t is the
time, f is the Coriolis parameter, Fr and F𝜆 are the
radial and tangential components of the subgrid-scale
eddy-momentum flux divergence, and 𝜌 is the density. We
define an azimuthal averaging operator by the equation

𝛾 = 1
2𝜋 ∫

2𝜋

o
𝛾 d𝜆, (3)

and set any dependent variable 𝛾 as the sum of a mean part
𝛾 , and an asymmetry (or eddy) 𝛾 ′, i.e. 𝛾 = 𝛾 + 𝛾 ′. Then, not-
ing that, by definition, 𝛾 ′ = 0, we obtain, for example, the
tendency equation for the azimuthally averaged tangential
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velocity:

𝜕v
𝜕t

⏟⏟⏟
Vt

= −ū(𝜁 + f )
⏟⏞⏞⏟⏞⏞⏟

Vm𝜁

−w𝜕v
𝜕z

⏟⏟⏟
Vmv

−u′𝜁 ′
⏟⏟⏟

Ve𝜁

−w′ 𝜕v′
𝜕z

⏟⏟⏟
Vev

+ F𝜆
⏟⏟⏟

Vd

,

(4)
where 𝜁 = 𝜁 + 𝜁 ′ is the vertical component of relative
vorticity. Here, we have neglected the azimuthally aver-
aged pressure gradient term involving perturbations of
density in the azimuthal direction. As noted by Persing
et al. (2013), this term [V ppg in their equation (12)] is
tiny compared with all other terms. The five terms on the
right-hand side of Equation (4) are, in order: V m𝜁 is the
mean radial influx of absolute vertical vorticity; V mv is
the mean vertical advection of mean tangential momen-
tum; V e𝜁 is the eddy radial vorticity flux; V ev is the vertical
advection of eddy tangential momentum; and V d is the
combined mean horizontal and vertical diffusive tendency
of tangential momentum, given by

F𝜆
⏟⏟⏟

Vd

= 1
r2𝜌

𝜕r2𝜌 𝜏r𝜆

𝜕r
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Vdr

+ 1
𝜌

𝜕𝜌 𝜏𝜆z

𝜕z
⏟⏞⏟⏞⏟

Vdz

, (5)

where the stress tensors (e.g., Landau and Lifshitz,
1966, p. 51) – generalized to account for anisotropic
eddy momentum diffusivities) for the subgrid-scale
motions – are given by

𝜏r𝜆 = Km,h

(
1
r
𝜕u
𝜕𝜆

+ r
𝜕v∕r
𝜕r

)
, (6)

𝜏𝜆z = Km,v

(
1
r
𝜕w
𝜕𝜆

+ 𝜕v
𝜕z

)
, (7)

and Km,h and Km,v are the model output horizontal and
vertical momentum diffusivities, respectively.

The azimuthally averaged radial momentum equation
can be written similarly as

𝜕ū
𝜕t

⏟⏟⏟
Ut

+ ū𝜕ū
𝜕r

⏟⏟⏟
Umr

+
(

u′ 𝜕u′

𝜕r
+ v′

r
𝜕u′

𝜕𝜆

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ueh
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Here, Fr is the combined mean horizontal and vertical
diffusive tendency of radial momentum, given by:
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⏟⏟⏟
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𝜕r𝜌 𝜏rr

𝜕r
− 𝜏𝜆𝜆
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Udh

+ 1
𝜌

𝜕𝜌 𝜏rz

𝜕z
⏟⏞⏟⏞⏟

Udz

, (9)

where the stress tensors (e.g., Landau and Lifshitz, 1966,
p. 51) for the subgrid-scale motions4 are given by

𝜏rr = 2Km,h

(
𝜕u
𝜕r

)
, (10)

𝜏𝜆𝜆 = 2Km,h

(1
r
𝜕v
𝜕𝜆

+ u
r

)
, (11)

𝜏rz = Km,v

(
𝜕u
𝜕z

+ 𝜕w
𝜕r

)
. (12)

The individual terms on the left-hand-side of
Equation (8) represent: the local tendency of the mean
radial velocity, U t, the mean radial advection of radial
momentum per unit mass, Umr, and the mean horizontal
advection of eddy radial momentum, Ueh per unit mass.
The terms on the right-hand side of the equation are in
order: Umv is minus the mean vertical advection of mean
radial momentum per unit mass and Uev is minus the eddy
vertical advection of eddy radial momentum per unit mass;
Umagf and Ueagf are the mean and eddy agradient force
per unit mass, respectively; and Ud is the combined mean
radial and vertical diffusive tendency of radial momentum.

In contrast to the tangential momentum equation, we
have chosen this pseudo-Lagrangian form of the radial
momentum equation in which the left-hand side repre-
sents the material acceleration in the radial direction fol-
lowing the horizontal wind. Then, the sum of terms on the
right-hand side can be interpreted as forces that produce
pseudo-material acceleration in the radial direction. This
pseudo-Lagrangian form is preferred because it facilitates
a layer-wise perspective on the forces generating horizon-
tal acceleration within the boundary layer as well as on the
formation of the upper-tropospheric inflow and outflow
layers. Such a choice would seem less appropriate in the
tangential momentum equation as one would then lose the
neat form of the radial vorticity flux term.

Note that we have chosen to write Umagf with 𝜌 in
the denominator. This choice requires that the azimuthal
variation of 𝜌 be retained in the definition of Ueagf, and
assumes that |𝜌 − 𝜌| << 𝜌, which is always well satisfied
in these numerical experiments.

4.1.1 Attributes of the mean–eddy flow
partitioning

The foregoing partitioning of the flow into azimuthal
mean and eddy contributions is a natural one for an

4The expression for 𝜏rz corrects the expression given in Persing et al.
(2013, their equation (20)) and Montgomery and Smith (2017, their
equation (15)). The difference is found to be negligible.
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isolated vortex, especially when applied to vortex waves
(e.g., Reasor and Montgomery, 2015, and references
therein). Nevertheless, care is required when interpret-
ing the individual contributions when strong and highly
azimuthally localized features punctuate the vortex flow
in a particular annulus. This is because such localized fea-
tures project onto both components of the partition. For
example, an individual updraught within this annulus will
project both into the mean and eddy components. How-
ever, the mean updraught will have a small positive value
while the eddy will have a large positive value in its par-
ticular location, but a small negative value elsewhere, a
consequence of the partitioning result that w′ = 0. The
small negative value for the eddy will identically cancel the
small positive value from the mean outside the region of
the individual updraught.

Another issue with this partitioning is that, because
the vortex centre is not exactly stationary, there may be
a weak flow across the vortex axis, even in the problem
studied here where the vortex environment is quiescent.
Since there is no source or sink of mass at the axis, both
ū and v must vanish at the axis, the latter since the vor-
ticity at the axis is finite. As a result, both mean tendency
terms must be zero, implying that the sums of terms on the
right-hand sides of Equations (4) and (8) must sum to zero
at the axis. Because one of the terms in the expressions for
Ueh and Ueagf involve v′/r, and v′ may be finite at the axis,
these terms must cancel. However, on a finite mesh, this
cancellation may be susceptible to appreciable numerical
discretization error.

Despite the foregoing cancellation issue, the formula-
tion in terms of mean and eddy components is generally
useful for providing insight as long as this attribute of the
partitioning is borne in mind. As an example, the effects
of eddy momentum fluxes associated with velocity pertur-
bations due to a single updraught on the tangential-mean
velocity tendency were investigated by Kilroy and Smith
(2016) and a conceptual framework for the interpretation
of these eddy fluxes was given.

4.2 Tangential velocity tendency
analysis

4.2.1 Spin-up at 36 hr

Figure 3 shows radius–height plots of the 3-hr
time-averaged terms in the azimuthally averaged tangen-
tial velocity tendency equation at 36 hr, which is during
the period of rapid intensification (Figure 1). The time
average is based on model output saved every 15 min.
Figures 3a, b show the contributions to the tendency from

the mean radial vorticity flux and vertical advection, while
Figures 3c, d show the corresponding eddy contributions.
Figures 3e, f show the sum of the mean and eddy terms,
respectively. In each panel the mean eyewall updraught
is highlighted by the thick yellow contour, which shows
the location of the 0.5 m⋅s−1 vertical velocity isopleth, and
the purple contours show the ±1 m⋅s−1 radial velocity. So
as to provide a spatial reference of the acceleration terms,
the green curve shows the azimuthally averaged radius of
maximum tangential velocity up to 16 km height.

The mean vorticity influx (Figure 3a) is large and pos-
itive in a shallow layer near the surface, marking the
boundary-layer inflow region, and it is large and negative
in a narrow sloping sheath just above this layer in the inner
core. It is large and negative also in the eyewall updraught,
extending into the upper-tropospheric outflow layer. There
are a few small regions of positive vorticity flux, including
a larger more coherent region in the outflow layer outside
a radius of about 80 km. The principal features in the mean
tendency from vertical advection (Figure 3b) are similar
to those in (a), but are opposite in sign, so that there is
considerable cancellation as seen in (e). This cancellation
is a reflection of the fact that, above the boundary layer,
absolute angular momentum is approximately conserved
(appendix of Smith et al., 2009).

From the perspective of the mean dynamics, the main
contribution to the spin-up of the tangential wind is asso-
ciated with the import of mean cyclonic absolute vor-
ticity in the boundary layer and the vertical advection
of tangential momentum so generated into the eyewall
updraught. However, there is a region spanning between
1 and 3 km where the mean tendencies give a spin-down
effect (Figure 3e). This spin-down is more than negated by
the vertical eddy momentum transport discussed below.

The contributions to the mean tendency from the
eddies are confined mainly to the eyewall updraught
region. The eddy vorticity flux term is mostly negative
(Figure 3c), but there is a region of positive tendency above
about 12 km in the outflow region. The vertical advec-
tion of eddy tangential momentum (Figure 3d) is relatively
large and positive below a height of 4 km, but has more of
a dipole structure above this level with positive tendencies
on the inner part of the eyewall updraught and negative
tendencies on the outside. The combined eddy tendency in
Figure 3f shows a pattern that is quite similar to the sum of
the mean tendencies (Figure 3e), but of opposite sign. This
tendency for cancellation is perhaps not surprising bearing
in mind the attributes of the flow partitioning discussed in
Section 4.1.1. Also, the combined eddy tendency in the eye-
wall region spanning approximately 1 to 3 km height more
than compensates the spin-down effect from the combined
mean terms. In essence, the vertical momentum transport
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Tangential wind tendencies at 36 h

F I G U R E 3 Radius–height plots of the 3 hr time-averaged terms in the azimuthally averaged tangential wind tendency equation
(Equation (4)) at 36 hr. Here, Vezeta=V eζ and Vmzeta=V mζ, etc. The time averaging is centred on the time shown. Shading is indicated on the
side bar in m⋅s−1⋅hr−1, with shaded regions enclosed by contours. The thick black contour shows ± 20 m⋅s−1⋅hr−1. The yellow contour shows
the 0.5 m⋅s−1 vertical velocity, while the purple contours show ± 1 m⋅s−1 radial velocity. The green curve shows the azimuthally averaged
rvmax. Solid contours are positive, and dashed contours negative. (i) shows the sum of all tendency terms on right-hand side of Equation (4),
while (j) denotes the actual mean tangential wind tendency derived from the output of the numerical simulation
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in this layer is taking place principally by the convective
eddy structures, affirming the findings of Persing et al.
(2013)

The horizontal diffusive tendency shows a weak neg-
ative region in the eyewall (Figure 3g), while the vertical
diffusive tendency is strongly negative in a shallow layer
near the surface with a small region of positive tendency
below the base of the eyewall updraught. Comparing the
radial and vertical eddy terms with the corresponding
subgrid-scale diffusion terms shows that the pattern of the
eddy terms is generally quite different from that of the
diffusion terms. The discrepancy in the pattern of tenden-
cies implies that the resolved eddy contributions cannot
be regarded simply as a down-gradient diffusive process.
Persing et al. (2013) arrived at a similar conclusion in their
study.

Comparing Figures 3a and h, one sees that the hori-
zontal vorticity influx is generally larger than the mean
vertical diffusion tendency. Even after adding the slight
negative tendency from the combined eddy term near the
surface, the net tendency of tangential wind (Figure 3i)
is positive in the inner-core boundary layer. In essence,
this is confirmation that the nonlinear boundary-layer
spin-up mechanism (e.g., Smith and Montgomery, 2016)
is operating to spin up the maximum tangential wind in
the boundary layer. Another manifestation of this spin-up
mechanism is the outward sloping region of positive values
below about 4 km in height in Figure 3d. The positive val-
ues of v′, which presumably contribute to the supergradi-
ent excess, are being lofted to give the positive values of V ev
and must be generated within the boundary layer. These
positive tendency values in Figure 3d must be a result of
the nonlinear boundary-layer spin-up mechanism, which
acts on the asymmetric component of flow also.

The time-averaged tangential velocity tendency calcu-
lated directly from the model output is shown in Figure 3j.
This tendency is simply the difference in tangential veloc-
ity over the 3 hr period divided by the 3 hr time span. The
panel shows clearly that there is spin-up throughout much
of the eyewall updraught, including the boundary layer
beneath the eyewall and extending to approximately 60 km
radius.

This direct tendency (Figure 3j) can be compared with
the estimate from the sum of tendency terms (Figure 3i) on
the right-hand side of Equation (4). While the direct cal-
culation is a little smoother, the estimate does show fairly
broad agreement with the direct calculation including,
in particular, a sloping band of strong positive tendency,
mostly inside the 0.5 m/s eyewall updraught contour. The
most notable discrepancies between these two panels are
found (a) in the eyewall between heights of 3 and 11 km,
where there is a small region of negative tendency centred
around 35 km radius, straddling the radius of maximum

wind at this time; and (b) in an outward-sloping, nar-
row filament at low levels (0–1.75 km, Figure 3i), approxi-
mately 5 km inside the radius of maximum wind. Possible
sources for the error in the sum of tendency terms are
discussed by Persing et al. (2013, p. 12318). In brief, there
are principally three sources of error: the coarse temporal
sampling of output data, the evaluation of parametrized
internal diffusion and surface momentum fluxes, and the
use of centred spatial differences to calculate all advection
terms. (The CM1 model uses a fifth-order upwind advec-
tion scheme. The region near and inside the radius of maxi-
mum wind (RMW) is a region of high spatial gradients and
our simple second-order accurate finite-difference approx-
imation for these gradients is not expected to capture
such gradients accurately.) Notwithstanding the relatively
limited discrepancies within these portions of the eye-
wall updraught, the broad agreement elsewhere between
the two calculations provides strong support to the phys-
ical interpretations of the various tendency terms given
above.

4.2.2 Later times

Similar radius–height plots to those in Figure 3 have been
constructed for 48 and 72 hr (not shown), which are dur-
ing the period of rapid intensification also (Figure 1). The
individual tendency terms have structures that are similar
to their counterparts in Figure 3, but are generally larger in
magnitude on account of the quadratic nonlinearity of the
momentum equations. In particular, there is still a strong
mean tendency associated with the radial influx of vortic-
ity in the boundary layer, which is partly opposed by the
negative tendency due to friction. Significantly, the strong
negative mean tendency V m𝜁+V mv where the air ascends
as it exits the boundary layer is opposed by a positive ten-
dency by the sum of the eddy terms V e𝜁+V ev. This implies,
again, that the eddies are playing an important role in
intensifying the swirling flow in the eyewall. In the upper
part of the eyewall, there is much cancellation between the
sums (V m𝜁+V mv) and (V e𝜁+V ev).

4.3 Radial velocity tendency analysis

As for the tangential momentum equation, the terms in
the radial momentum equation are exemplified at 36 hr
also. Radius–height plots of the 3-hr time-averaged terms
in the pseudo-Lagrangian radial momentum equation at
36 h are shown in Figure 4. Selected contours of azimuthal
and time-mean radial velocity are superposed on all pan-
els to facilitate interpretation of the radial momentum
dynamics. The radius of maximum azimuthally averaged
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tangential velocity is superposed also for interpretation
purposes.

4.3.1 Agradient force

Figure 4a,b show the mean and eddy agradient force fields,
Umagf and Ueagf, respectively. The sum of these terms rep-
resents the main driving force per unit mass for the mean
radial flow. Moreover, its departure from zero is a measure
of the degree of gradient wind balance.

As expected, Umagf is strongly negative in a shal-
low surface-based layer at radii beyond about 30 km.
This negative region coincides with the frictional bound-
ary layer in which the tangential velocity is, of course,
retarded. It is primarily this negative force field that drives
the boundary-layer inflow beyond a certain radius. Kilroy
et al. (2016) showed that much of the low-level inflow
can be attributed to boundary-layer dynamics, where-
upon the “suction effect” of deep convection plays a sec-
ondary role. Near the surface, the magnitude of Umagf
increases with decreasing radius to about 50 km and then
declines rapidly. The corresponding tangential winds in
this region of negative values are referred to as subgradi-
ent. The mean radial inflow progressively increases with
decreasing radius in this layer (e.g., Figure 2a), reach-
ing values of about 15 m⋅s−1, which is a significant frac-
tion (about 38%) of the tangential winds in the same
region.

Inside approximately 50 km radius and in a shallow
layer that slopes upwards with radius, Umagf is strongly
positive and serves to decelerate the inflow and even accel-
erate the flow outwards just above the boundary layer into
the eyewall updraught. In this positive region, the tangen-
tial winds are supergradient. There is a negative region
between heights of about 2 and 4 km. Above the nega-
tive region, Umagf is generally positive, being particularly
strong in the inner portion of the eyewall updraught and
in the outflow region to more than 100 km radius. This
pattern is not surprising because air with high angular
momentum is being transported vertically by deep convec-
tive cores in the developing eyewall.

The eddy agradient force field, Ueagf (Figure 4b) con-
tributes to a positive radial acceleration throughout the
troposphere out to between 50 and 90 km radius, where
it represents an additional centrifuge effect to that of the
mean term Umagf. In particular, Ueagf shows strong positive
values near the surface at radii between approximately 10
and 30 km near where the surface inflow terminates, rein-
forcing the deceleration of the boundary-layer inflow. The
relatively large values of Ueagf near the axis should not be
taken too seriously and are presumably due to numerical
inaccuracy as discussed in Section 4.1.1.

In the upper troposphere there is a region of posi-
tive Umagf near the top of the developing eyewall, which
is thickest near the top of the eyewall and tapering to
zero at a radius of about 110 km. The remainder of the
upper troposphere, and, indeed, much of the lower tro-
posphere beyond the developing eyewall updraught, has
mostly negative values of Umagf, with magnitude not
more than 5 m⋅s−1 ⋅hr−1. The subgradient tangential wind
in this region acts to decelerate outflow and accelerate
inflow. We will reserve further discussion on the topic of
the upper-level outflow and inflow layer dynamics until
Section 4.5.

4.3.2 Other radial forces

The radius–height structure of the mean vertical advec-
tion Umv in Figure 4c shows a series of layers in which
Umv has alternating sign. In the lowest layer, near the base
of the developing eyewall updraught, Umv<0, indicating
a contribution to an increase of the radial inflow by the
vertical advection of inward radial momentum from near
the surface. In the sloping layer above, Umv>0, reflecting
the mean vertical transport of positive radial momentum
associated with the strong outflow of air just above the
boundary layer. The layer of negative Umv between about
5 and 8 km height is associated with the upward trans-
port of mean radial inflow in the eyewall updraught from
the lower troposphere. The layered pattern of Umv above
about 8 km is consistent also with the layered pattern of
inflow and outflow in the upper troposphere together with
that of vertical velocity. For example, the upward trans-
port of mean inward radial momentum from the inflow
layer just below the mean outflow layer together with the
downward transport of inward radial momentum from the
inflow layer just above the mean outflow layer contribute
to the layer of negative tendency centred at an altitude of
about 12 km.

Figure 4d shows minus the eddy vertical advection of
eddy radial momentum per unit mass, Uev. The structure
of this term, like Umv, exhibits a series of layers in which
Uev has alternating sign. In the lower troposphere, the Uev
field broadly reinforces that of Umv. In the upper tropo-
sphere there is a degree of cancellation between Umv and
Uev, but the eddies can be seen to be reinforcing the strong
outflow in the layer between about 11 and 14 km in height.
This layer lies below the axis of the upper-level outflow
layer, which implies that the eddies are acting to trans-
port radial momentum against the mean gradient in this
layer; that is, they are counter-gradient. In contrast, the
layer of negative Uev in the height range 14–16 km lies
above the axis of the outflow layer and acts to slow down
the outflow in this layer. Further, the layer of negative
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Radial wind tendencies at 36 h
(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

F I G U R E 4 Radius–height plots of the 3-hr time-averaged terms in the azimuthally averaged radial velocity tendency equation
(Equation (8 )) at 36 hr. (i) shows the mean horizontal acceleration comprising the left-hand side of Equation (8); (j) shows the sum of terms
on the right-hand side of Equation (8) (the forcing per unit mass); and (h) shows the temporal and azimuthal-average of the local time rate of
change of mean radial velocity. The time averaging is centred on the time shown. Shading is indicated on the side bar in m⋅s−1⋅hr−1, with
shaded regions enclosed by contours. The thick black contour shows ± 20 m⋅s−1⋅hr−1. The yellow contour shows the 0.5 m⋅s−1 vertical
velocity, while the purple contours show ± 1 m⋅s−1 radial velocity. The green curve shows the azimuthally averaged rvmax. Solid contours are
positive, and dashed contours negative
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Uev in the height range 8–11 km overlaps with the pro-
nounced inflow layer just below the outflow layer and acts
to reinforce the inflow in this layer. These features are con-
sistent with the upper-level pattern of the vertical eddy
momentum flux shown in Persing et al. (2013; figure 15e)
and contribute to a strengthening of the primary outflow
layer itself, as well as the inflow layer below the outflow
layer.

Figures 4e,f show the time-averaged and azimuthally
averaged subgrid-scale tendencies, Udh and Udz. The hor-
izontal diffusion of radial momentum (Udh) is relatively
small except in the region where the radial flow termi-
nates and turns up into the eyewall. The vertical diffu-
sion of radial momentum (Udz) shows a very shallow
layer of strong positive tendency beyond a radius of about
30 km, which is a manifestation of surface friction slow-
ing down the inflow. Above this layer lies a somewhat
thicker layer of negative tendency, which is associated
with the vertical diffusion of inward radial momentum
through the inflow layer. This diffusion becomes par-
ticularly strong near where the boundary-layer inflow
terminates.

4.3.3 Pseudo-Lagrangian radial
acceleration and net radial force

The three terms constituting the pseudo-Lagrangian radial
acceleration on the left-hand side of Equation (8) consist
of the local time rate of change of the mean radial flow,
U t, the horizontal mean advection of mean radial velocity,
Umr, and the mean of the eddy advection of eddy radial
velocity, Ueh. All terms are time averaged over a 3-hr inter-
val centred at 36 hr. Figure 4g,h show the structure of Umr
and U t. The term Ueh is found to make a relatively small
contribution to the total acceleration and is not shown
separately.

The structure of the mean radial advection Umr shows a
shallow layer of elevated negative values beyond a radius of
about 35 km near the surface where the flow in the bound-
ary layer is accelerating inwards. It shows also shallow
sloping regions of alternating positive and negative values,
generally confined within a radius of 50 km and a height of
about 3 km. The lowermost region of positive values coin-
cides with the radii where the inflow is decelerated sharply
before ascending into the eyewall.

In the upper troposphere, the radial flow accelerates
outwards as the air exits the eyewall, but the region
of outward acceleration is sandwiched by layers where
Umr<0 outside a radius of about 60 km. Beyond approxi-
mately 90 km radius, the mean acceleration in the upper
troposphere is inwards so that outward flowing air is

being decelerated, consistent with the pattern of Umagf.
Moreover, inspection of the time-mean inflow (purple
dash contours) during this same time interval shows that
there are regions of inflow sandwiching the outflow layer
and these regions overlap with that of negative Umagf and
Umr. Where this occurs, the flow in the inflow layers will
be accelerated inwards.

Figure 4h shows the quantity U t, which, if time inte-
grated over a 3 hr interval, indicates that, over this time
interval, there has been a strengthening of the radial cir-
culation. In particular, the low-level inflow has strength-
ened, the outflow just above the boundary layer where
the boundary layer terminates has strengthened, and
the upper-level outflow has strengthened. In addition, a
region of inflow being drawn in by the developing eyewall
updraught in a layer between 4 and 8 km in height has
strengthened.

Figure 4i shows the time-averaged pseudo-Lagrangian
radial acceleration, U t+Umr+Ueh, while Figure 4j shows
the corresponding net time-averaged net radial force per
unit mass leading to this acceleration. These two panels
encapsulate the radial momentum budget. Generally, the
principal features of these two fields match each other rea-
sonably well, despite there being a few local discrepancies
in detail which are presumably associated with interpola-
tion errors and the like (Section 4.2.1).

4.3.4 Later times

Similar radius–height cross-sections to those in Figure 4
have been constructed at 48 and 72 hr. The tendencies in
the individual panels (not shown) have structures that are
similar to their counterparts in Figure 4, but, as in the case
of the tangential tendency equation, the fields are gen-
erally larger in magnitude consistent with the quadratic
nonlinearity of the momentum equations. As an illus-
trative example, Figure 5 shows the results of the mean
radial velocity tendency analysis at 72 hr, a time when the
system-scale vortex is approaching maximum intensity (cf.
Figure 1).

Figure 5a shows the mean pseudo-Lagrangian accel-
eration, while Figure 5b shows the sum of the radial
force per unit mass contributions. Even at this later time,
there is good agreement between the structure and mag-
nitude of the net forcing and those of the acceleration. As
expected, the magnitude of radial forcing is seen to have
increased considerably relative to the earlier analysis time.
The increase in magnitude is particularly striking in both
the lowest 2 km and in the upper troposphere between
about 10 and 16 km.
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Radial wind tendencies at 72 h

(a) (b)

F I G U R E 5 Radius–height plots of the 3 hr time-averaged terms in the azimuthally averaged radial velocity tendency Equation (8) at
72 hr. The time averaging is centred on the time shown. Shading is indicated on the side bar in m⋅s−1⋅hr−1, with shaded regions enclosed by
contours. The thick black contour shows ± 20 m⋅s−1⋅hr−1. The yellow contour shows the 0.5 m⋅s−1 vertical velocity, while the pink contours
show ± 1 m⋅s−1 radial velocity. The green curve shows the azimuthally averaged rvmax. Solid contours are positive, and dashed contours
negative

4.3.5 Summary of radial velocity
analysis

Broadly speaking, there is a net inward force field through
much of the lower troposphere including much of the
developing eyewall region itself. This inward force is par-
ticularly strong in the inner-core boundary layer. Near
the surface and just below the eyewall updraught, this
time-averaged force at 36 hr exceeds 5 m⋅s−1⋅hr−1. Inside
the developing eyewall, near its inner edge, and through-
out much of the upper troposphere out to a radius of
about 100 km, there is strong positive radial acceleration,
exceeding 20 m⋅s−1⋅hr−1 in the upper troposphere. The
net radial force is associated primarily with the pattern
of mean agradient force and the mean and eddy vertical
advection terms (Figure 5a, c, d). Similar results are found
at later times, with the magnitude of the net radial force
field increasing substantially as the vortex attains a mature
intensity.

The flow in much of the inner-core region is signif-
icantly unbalanced in the radial direction, especially at
low levels and in the upper troposphere. This finding
strongly supports the results and interpretations of Zhang
et al. (2001). Thus, while the assumption of gradient wind
balance may be a defensible zero-order approximation
through much of the middle troposphere during spin-up,
the assumption cannot be justified in the inner-core
boundary layer or in the upper troposphere in the region
of strong outflow. The radial force fields demonstrate that
even a generalized Ekman balance (i.e., a balance between
the linearized form of Umagf and Udz, discussed further
below) is strongly violated in the inner-core boundary
layer, where the terms Umv, Uev and Ueagf are compara-
ble in magnitude to Umagf and cannot be meaningfully
neglected in a zero-order approximation.

4.4 Validity of generalized Ekman
balance?

In recent years, generalized Ekman balance has been
invoked to help explain the dynamics of the tropical
cyclone boundary layer during steady-state, spin-up and
secondary eyewall formation phases (e.g., Kepert, 2001;
Kepert and Wang, 2001; Kepert, 2013). Like traditional
Ekman balance (e.g., Gill, 1982) comprising a balance
between pressure gradient, Coriolis and viscous forces in
the atmospheric boundary layer, generalized Ekman bal-
ance involves a balance between pressure gradient, gen-
eralized Coriolis and viscous forces. This vortex Ekman
balance, and issues concerning its interpretation for trop-
ical cyclone vortices, are reviewed and analyzed by Smith
and Montgomery (2020). In the notation of Section 4.1, the
generalized Ekman balance in the radial direction takes
the form:

0 = Umagf + Udz, (13)

where Umagf is the agradient force defined in Section 4.1
(equal to the sum of radial pressure gradient, Coriolis and
centrifugal forces), Udz = Kv𝜕

2ū∕𝜕z2 is the vertical diffu-
sion of radial momentum and Kv the vertical momentum
diffusivity (assuming for simplicity the vertical diffusivity
Kv is locally constant). Although this generalized balance
is comprised strictly of the linearized form of Umagf, we
retain the un-approximated form here for simplicity. As
is evident after inspecting Figure 4a,f, although this bal-
ance is reasonably satisfied in the outer vortex boundary
layer, it is not at all satisfied in the inner-core bound-
ary layer around the radius of maximum tangential wind
wherein Udz is small in comparison to Umagf. Indeed,
Figure 4 shows that within approximately 70 km from the
vortex centre, all terms, save for the radial diffusion, Udh,
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contribute markedly to the radial momentum balance in
the corner flow region of the rapidly developing vortex.
In particular, the radial advection of mean radial veloc-
ity, Umr and the vertical advection of mean radial velocity,
Umv make significant contributions to the radial acceler-
ation just outside and underneath the eyewall complex.
The eddy centrifugal acceleration Ueagf and eddy vertical
advection of eddy radial velocity Uev are non-negligible
also in this region. These results are found to hold true at
later times during the intensification process (not shown),
and can be anticipated by the quadratic nonlinearity of the
equations as the vortex strengthens.

A similar assessment may be conducted for the vortex
Ekman balance in the tangential direction comprising a
balance between the mean vorticity influx and the retarda-
tion of tangential momentum by vertical diffusion into the
underlying ocean, that is,

0 = Vm𝜁 + Vdz, (14)

where V m𝜁 is the mean vorticity influx as defined in
Section 4, and Vdz = Kv𝜕

2v∕𝜕z2 is the vertical diffusion
of tangential momentum (assuming, of course, that Kv
is locally constant). In the simple case of an axisym-
metric vortex, there is no pressure gradient force in the
azimuthal direction and so this force does not appear
in the leading-order balance given by Equation (14). As
in the above assessment of radial Ekman balance, we
do not here separate the linear (gradient) and nonlinear
(agradient) terms in the vorticity influx term. Inspect-
ing Figure 3a,h, the tangential Ekman balance is reason-
ably satisfied in the outer vortex boundary layer beyond
approximately 100 km radius. However, it is not well satis-
fied within approximately 70 km radius, especially around
the RMW wherein V m𝜁 markedly exceeds V dz. Indeed,
Figure 3 shows that within approximately 70 km from
the vortex centre, all terms, save for horizontal diffusion
(V dh) contribute markedly to the mean tangential veloc-
ity tendency. In particular, the vertical advection of mean
and eddy tangential velocity, V mv and V ev, respectively,
make significant contributions to the mean tendency near
the RMW in the boundary layer. Therefore, as with the
radial Ekman balance, tangential Ekman balance is a poor
approximation in the high-wind region of the vortex.

The foregoing results are found to hold true at later
times during the intensification process, and the degree of
Ekman imbalance is found to increase as the vortex inten-
sifies (not shown). The increased Ekman imbalance can be
anticipated by the quadratic nonlinearity of the equations
as the vortex strengthens.

In summary, these findings point to the inconsis-
tency of the generalized Ekman balance in the inner-core
boundary layer during vortex spin-up and indicate that

“explanations” of the flow structure during vortex spin-up
that invoke this balance are suspect and should be avoided.
These results extend the findings and interpretations of
Vogl and Smith (2009), Abarca et al. (2015) and Smith and
Montgomery (2020) to a period of rapid intensification of a
three-dimensional tropical cyclone. These former studies
focussed on the mature phase of a tropical cyclone, either
during its quasi-steady stage or just prior to and during
secondary eyewall formation.

4.5 Upper-level inflow jets

The existence of the inward agradient force provides
a basic explanation for the occurrence of inflow lay-
ers that sandwich the upper-tropospheric outflow layer.
As pointed out by Wang et al. (2020), a way to think
about the upper-level outflow layer is to consider it as an
expanding jet of air emanating from a mass and radial
momentum source where the eyewall convection termi-
nates (Ooyama, 1987). The outward expansion is resisted
by a radially inward pressure gradient force (e.g., Smith
et al., 2018, figure 5c,d), recalling that the centrifugal force
is always positive and the Coriolis force in the radial direc-
tion is positive as long as the tangential flow remains
cyclonic. Because the induced pressure field extends verti-
cally beyond just the outflow layer itself, one can expect a
flow response vertically beyond the outflow layer as well.
Where this inward force persists, it will act to accelerate air
parcels inwards.

Wang et al. (2020) have carried out a more thorough
investigation of these inflow jets in a separate study using
this framework in which the vertical resolution in their
model is increased in the upper troposphere at the expense
of that in low levels within the frictional boundary layer.
In particular, Wang et al. show that interpretations of the
inflow jets in terms of axisymmetiric balance dynamics are
problematic. They show also that the inflow jets have a
significant degree of azimuthal asymmetry.

5 CONCLUSIONS

We have used an idealized, three-dimensional, 1 km hor-
izontal grid spacing numerical simulation to explore
new aspects of vortex spin-up in the framework of the
rotating-convection paradigm. As in previous studies, the
maximum tangential winds are found to occur within
and near the top of the boundary layer, while the max-
imum radial inflow is at or just above the surface. As
the mean vortex intensifies, spin-up in the boundary layer
is accompanied by the development of azimuthal-mean
supergradient winds that exceed the gradient wind by up
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to 20%. Reflecting the strong radial inflow in the boundary
layer, the maximum mean tangential wind occurs as much
as 10 km inside the maximum gradient wind. The wind
asymmetries, associated in part with the asymmetric deep
convection, make a substantive contribution (∼30%) to the
maximum wind speed inside the radius of this maximum.

As is well known, the boundary-layer dynamics can-
not be considered strictly in isolation as they depend
on the vortex evolution above the boundary layer, which
itself depends on the ability of the convection to amplify
the winds above the boundary layer by the classical
spin-up mechanism. An improved understanding of the
flow within and above the boundary layer is afforded by an
analysis of both the azimuthal-mean tangential and radial
wind tendency equations during vortex spin-up.

As a start, we have extended a previous analysis of the
tangential momentum dynamics to a higher spatial reso-
lution and quantified the net effect of convective eddies
and the associated waves they generate on the spin-up of
the vortex. The analysis shows that the eddies make a sub-
stantial contribution to the spin-up of the eyewall region,
confirming previous findings.

A particular novelty of the study is an analysis of the
mean radial momentum dynamics during the intensifi-
cation of the vortex. The radial force fields highlight a
significant degree of gradient wind imbalance in much
of the intensifying inner-core vortex as well as much of
the upper troposphere. This analysis points to the impor-
tant role of gradient wind imbalance in driving the radial
circulation within the intensifying vortex. As an illustra-
tion of the utility of this dynamical framework, a basic
explanation of the inflow layers sandwiching the upper
tropospheric outflow layer is obtained from an examina-
tion of the inward agradient force per unit mass and the
vertical transport of radial momentum by the mean and
eddy components of the flow.

In recent years, a generalized Ekman balance approach
has been advocated to interpret vortex boundary-layer
structure during spin-up and secondary eyewall forma-
tion. Our present analysis has shown that generalized
Ekman balance is a poor approximation in the inner-core
region during vortex spin-up and should not be invoked to
“explain” the flow structure of the tropical cyclone bound-
ary layer.

The results of this study support and extend prior work
of Zhang et al. (2001) and Persing et al. (2013) and point
to significant limitations of a purely axisymmetric and/or
balance description of tropical cyclone intensification.

ACKNOWLEDGEMENTS
MTM acknowledges the support of NSF grants AGS-
1313948, IAA-1656075, ONR grant N0001417WX00336,
and the U.S. Naval Postgraduate School. GK acknowledges

financial support for this research from the DFG under
grant number KI-2248. The views expressed herein are
those of the authors and do not represent sponsoring agen-
cies or institutions.

ORCID
Michael T. Montgomery https://orcid.org/0000-0001-
5383-4648
Gerard Kilroy https://orcid.org/0000-0002-9240-6555
Roger K. Smith https://orcid.org/0000-0002-3668-1608

REFERENCES
Abarca, S.F., Montgomery, M.T. and McWilliams, J.C. (2015) The

azimuthally averaged boundary-layer structure of a numerically
simulated major hurricane. Journal of Advances in Modeling
Earth Systems, 7, 1207–1219.

Bryan, G.H. (2002). An investigation of the convective region of
numerically simulated squall lines. PhD thesis, Pennsylvania
State University, Pennsylvania, PA, USA.

Bryan, G.H. and Fritsch, J.M. (2002) A benchmark simulation
for moist non-hydrostatic numerical models. Monthly Weather
Review, 130, 2917–2928.

Chen, Y., Brunet, G. and Yau, M.K. (2003) Spiral bands in a simu-
lated hurricane. Part II: wave activity diagnosis. Journal of the
Atmospheric Sciences, 60, 1239–1756.
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